// SPDX-License-Identifier: MIT /* * Copyright © 2019 Intel Corporation * */ #include "gem/i915_gem_internal.h" #include "gem/i915_gem_lmem.h" #include "i915_drv.h" #include "i915_irq.h" #include "i915_reg.h" #include "intel_crtc.h" #include "intel_de.h" #include "intel_display_types.h" #include "intel_dsb.h" #include "intel_dsb_regs.h" #include "intel_vblank.h" #include "intel_vrr.h" #include "skl_watermark.h" struct i915_vma; enum dsb_id { INVALID_DSB = -1, DSB1, DSB2, DSB3, MAX_DSB_PER_PIPE }; struct intel_dsb { enum dsb_id id; u32 *cmd_buf; struct i915_vma *vma; struct intel_crtc *crtc; /* * maximum number of dwords the buffer will hold. */ unsigned int size; /* * free_pos will point the first free dword and * help in calculating tail of command buffer. */ unsigned int free_pos; /* * ins_start_offset will help to store start dword of the dsb * instuction and help in identifying the batch of auto-increment * register. */ unsigned int ins_start_offset; int dewake_scanline; }; /** * DOC: DSB * * A DSB (Display State Buffer) is a queue of MMIO instructions in the memory * which can be offloaded to DSB HW in Display Controller. DSB HW is a DMA * engine that can be programmed to download the DSB from memory. * It allows driver to batch submit display HW programming. This helps to * reduce loading time and CPU activity, thereby making the context switch * faster. DSB Support added from Gen12 Intel graphics based platform. * * DSB's can access only the pipe, plane, and transcoder Data Island Packet * registers. * * DSB HW can support only register writes (both indexed and direct MMIO * writes). There are no registers reads possible with DSB HW engine. */ /* DSB opcodes. */ #define DSB_OPCODE_SHIFT 24 #define DSB_OPCODE_NOOP 0x0 #define DSB_OPCODE_MMIO_WRITE 0x1 #define DSB_BYTE_EN 0xf #define DSB_BYTE_EN_SHIFT 20 #define DSB_REG_VALUE_MASK 0xfffff #define DSB_OPCODE_WAIT_USEC 0x2 #define DSB_OPCODE_WAIT_SCANLINE 0x3 #define DSB_OPCODE_WAIT_VBLANKS 0x4 #define DSB_OPCODE_WAIT_DSL_IN 0x5 #define DSB_OPCODE_WAIT_DSL_OUT 0x6 #define DSB_SCANLINE_UPPER_SHIFT 20 #define DSB_SCANLINE_LOWER_SHIFT 0 #define DSB_OPCODE_INTERRUPT 0x7 #define DSB_OPCODE_INDEXED_WRITE 0x9 /* see DSB_REG_VALUE_MASK */ #define DSB_OPCODE_POLL 0xA /* see DSB_REG_VALUE_MASK */ static bool assert_dsb_has_room(struct intel_dsb *dsb) { struct intel_crtc *crtc = dsb->crtc; struct drm_i915_private *i915 = to_i915(crtc->base.dev); /* each instruction is 2 dwords */ return !drm_WARN(&i915->drm, dsb->free_pos > dsb->size - 2, "[CRTC:%d:%s] DSB %d buffer overflow\n", crtc->base.base.id, crtc->base.name, dsb->id); } static void intel_dsb_dump(struct intel_dsb *dsb) { struct intel_crtc *crtc = dsb->crtc; struct drm_i915_private *i915 = to_i915(crtc->base.dev); const u32 *buf = dsb->cmd_buf; int i; drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] DSB %d commands {\n", crtc->base.base.id, crtc->base.name, dsb->id); for (i = 0; i < ALIGN(dsb->free_pos, 64 / 4); i += 4) drm_dbg_kms(&i915->drm, " 0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n", i * 4, buf[i], buf[i+1], buf[i+2], buf[i+3]); drm_dbg_kms(&i915->drm, "}\n"); } static bool is_dsb_busy(struct drm_i915_private *i915, enum pipe pipe, enum dsb_id id) { return intel_de_read_fw(i915, DSB_CTRL(pipe, id)) & DSB_STATUS_BUSY; } static void intel_dsb_emit(struct intel_dsb *dsb, u32 ldw, u32 udw) { u32 *buf = dsb->cmd_buf; if (!assert_dsb_has_room(dsb)) return; /* Every instruction should be 8 byte aligned. */ dsb->free_pos = ALIGN(dsb->free_pos, 2); dsb->ins_start_offset = dsb->free_pos; buf[dsb->free_pos++] = ldw; buf[dsb->free_pos++] = udw; } static bool intel_dsb_prev_ins_is_write(struct intel_dsb *dsb, u32 opcode, i915_reg_t reg) { const u32 *buf = dsb->cmd_buf; u32 prev_opcode, prev_reg; /* * Nothing emitted yet? Must check before looking * at the actual data since i915_gem_object_create_internal() * does *not* give you zeroed memory! */ if (dsb->free_pos == 0) return false; prev_opcode = buf[dsb->ins_start_offset + 1] & ~DSB_REG_VALUE_MASK; prev_reg = buf[dsb->ins_start_offset + 1] & DSB_REG_VALUE_MASK; return prev_opcode == opcode && prev_reg == i915_mmio_reg_offset(reg); } static bool intel_dsb_prev_ins_is_mmio_write(struct intel_dsb *dsb, i915_reg_t reg) { /* only full byte-enables can be converted to indexed writes */ return intel_dsb_prev_ins_is_write(dsb, DSB_OPCODE_MMIO_WRITE << DSB_OPCODE_SHIFT | DSB_BYTE_EN << DSB_BYTE_EN_SHIFT, reg); } static bool intel_dsb_prev_ins_is_indexed_write(struct intel_dsb *dsb, i915_reg_t reg) { return intel_dsb_prev_ins_is_write(dsb, DSB_OPCODE_INDEXED_WRITE << DSB_OPCODE_SHIFT, reg); } /** * intel_dsb_reg_write() - Emit register wriite to the DSB context * @dsb: DSB context * @reg: register address. * @val: value. * * This function is used for writing register-value pair in command * buffer of DSB. */ void intel_dsb_reg_write(struct intel_dsb *dsb, i915_reg_t reg, u32 val) { /* * For example the buffer will look like below for 3 dwords for auto * increment register: * +--------------------------------------------------------+ * | size = 3 | offset &| value1 | value2 | value3 | zero | * | | opcode | | | | | * +--------------------------------------------------------+ * + + + + + + + * 0 4 8 12 16 20 24 * Byte * * As every instruction is 8 byte aligned the index of dsb instruction * will start always from even number while dealing with u32 array. If * we are writing odd no of dwords, Zeros will be added in the end for * padding. */ if (!intel_dsb_prev_ins_is_mmio_write(dsb, reg) && !intel_dsb_prev_ins_is_indexed_write(dsb, reg)) { intel_dsb_emit(dsb, val, (DSB_OPCODE_MMIO_WRITE << DSB_OPCODE_SHIFT) | (DSB_BYTE_EN << DSB_BYTE_EN_SHIFT) | i915_mmio_reg_offset(reg)); } else { u32 *buf = dsb->cmd_buf; if (!assert_dsb_has_room(dsb)) return; /* convert to indexed write? */ if (intel_dsb_prev_ins_is_mmio_write(dsb, reg)) { u32 prev_val = buf[dsb->ins_start_offset + 0]; buf[dsb->ins_start_offset + 0] = 1; /* count */ buf[dsb->ins_start_offset + 1] = (DSB_OPCODE_INDEXED_WRITE << DSB_OPCODE_SHIFT) | i915_mmio_reg_offset(reg); buf[dsb->ins_start_offset + 2] = prev_val; dsb->free_pos++; } buf[dsb->free_pos++] = val; /* Update the count */ buf[dsb->ins_start_offset]++; /* if number of data words is odd, then the last dword should be 0.*/ if (dsb->free_pos & 0x1) buf[dsb->free_pos] = 0; } } static u32 intel_dsb_mask_to_byte_en(u32 mask) { return (!!(mask & 0xff000000) << 3 | !!(mask & 0x00ff0000) << 2 | !!(mask & 0x0000ff00) << 1 | !!(mask & 0x000000ff) << 0); } /* Note: mask implemented via byte enables! */ void intel_dsb_reg_write_masked(struct intel_dsb *dsb, i915_reg_t reg, u32 mask, u32 val) { intel_dsb_emit(dsb, val, (DSB_OPCODE_MMIO_WRITE << DSB_OPCODE_SHIFT) | (intel_dsb_mask_to_byte_en(mask) << DSB_BYTE_EN_SHIFT) | i915_mmio_reg_offset(reg)); } void intel_dsb_noop(struct intel_dsb *dsb, int count) { int i; for (i = 0; i < count; i++) intel_dsb_emit(dsb, 0, DSB_OPCODE_NOOP << DSB_OPCODE_SHIFT); } void intel_dsb_nonpost_start(struct intel_dsb *dsb) { struct intel_crtc *crtc = dsb->crtc; enum pipe pipe = crtc->pipe; intel_dsb_reg_write_masked(dsb, DSB_CTRL(pipe, dsb->id), DSB_NON_POSTED, DSB_NON_POSTED); intel_dsb_noop(dsb, 4); } void intel_dsb_nonpost_end(struct intel_dsb *dsb) { struct intel_crtc *crtc = dsb->crtc; enum pipe pipe = crtc->pipe; intel_dsb_reg_write_masked(dsb, DSB_CTRL(pipe, dsb->id), DSB_NON_POSTED, 0); intel_dsb_noop(dsb, 4); } static void intel_dsb_align_tail(struct intel_dsb *dsb) { u32 aligned_tail, tail; tail = dsb->free_pos * 4; aligned_tail = ALIGN(tail, CACHELINE_BYTES); if (aligned_tail > tail) memset(&dsb->cmd_buf[dsb->free_pos], 0, aligned_tail - tail); dsb->free_pos = aligned_tail / 4; } void intel_dsb_finish(struct intel_dsb *dsb) { struct intel_crtc *crtc = dsb->crtc; /* * DSB_FORCE_DEWAKE remains active even after DSB is * disabled, so make sure to clear it (if set during * intel_dsb_commit()). */ intel_dsb_reg_write_masked(dsb, DSB_PMCTRL_2(crtc->pipe, dsb->id), DSB_FORCE_DEWAKE, 0); intel_dsb_align_tail(dsb); i915_gem_object_flush_map(dsb->vma->obj); } static int intel_dsb_dewake_scanline(const struct intel_crtc_state *crtc_state) { struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; unsigned int latency = skl_watermark_max_latency(i915); int vblank_start; if (crtc_state->vrr.enable) { vblank_start = intel_vrr_vmin_vblank_start(crtc_state); } else { vblank_start = adjusted_mode->crtc_vblank_start; if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) vblank_start = DIV_ROUND_UP(vblank_start, 2); } return max(0, vblank_start - intel_usecs_to_scanlines(adjusted_mode, latency)); } static void _intel_dsb_commit(struct intel_dsb *dsb, u32 ctrl, unsigned int dewake_scanline) { struct intel_crtc *crtc = dsb->crtc; struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; u32 tail; tail = dsb->free_pos * 4; if (drm_WARN_ON(&dev_priv->drm, !IS_ALIGNED(tail, CACHELINE_BYTES))) return; if (is_dsb_busy(dev_priv, pipe, dsb->id)) { drm_err(&dev_priv->drm, "[CRTC:%d:%s] DSB %d is busy\n", crtc->base.base.id, crtc->base.name, dsb->id); return; } intel_de_write_fw(dev_priv, DSB_CTRL(pipe, dsb->id), ctrl | DSB_ENABLE); intel_de_write_fw(dev_priv, DSB_HEAD(pipe, dsb->id), i915_ggtt_offset(dsb->vma)); if (dewake_scanline >= 0) { int diff, hw_dewake_scanline; hw_dewake_scanline = intel_crtc_scanline_to_hw(crtc, dewake_scanline); intel_de_write_fw(dev_priv, DSB_PMCTRL(pipe, dsb->id), DSB_ENABLE_DEWAKE | DSB_SCANLINE_FOR_DEWAKE(hw_dewake_scanline)); /* * Force DEwake immediately if we're already past * or close to racing past the target scanline. */ diff = dewake_scanline - intel_get_crtc_scanline(crtc); intel_de_write_fw(dev_priv, DSB_PMCTRL_2(pipe, dsb->id), (diff >= 0 && diff < 5 ? DSB_FORCE_DEWAKE : 0) | DSB_BLOCK_DEWAKE_EXTENSION); } intel_de_write_fw(dev_priv, DSB_TAIL(pipe, dsb->id), i915_ggtt_offset(dsb->vma) + tail); } /** * intel_dsb_commit() - Trigger workload execution of DSB. * @dsb: DSB context * @wait_for_vblank: wait for vblank before executing * * This function is used to do actual write to hardware using DSB. */ void intel_dsb_commit(struct intel_dsb *dsb, bool wait_for_vblank) { _intel_dsb_commit(dsb, wait_for_vblank ? DSB_WAIT_FOR_VBLANK : 0, wait_for_vblank ? dsb->dewake_scanline : -1); } void intel_dsb_wait(struct intel_dsb *dsb) { struct intel_crtc *crtc = dsb->crtc; struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; if (wait_for(!is_dsb_busy(dev_priv, pipe, dsb->id), 1)) { u32 offset = i915_ggtt_offset(dsb->vma); intel_de_write_fw(dev_priv, DSB_CTRL(pipe, dsb->id), DSB_ENABLE | DSB_HALT); drm_err(&dev_priv->drm, "[CRTC:%d:%s] DSB %d timed out waiting for idle (current head=0x%x, head=0x%x, tail=0x%x)\n", crtc->base.base.id, crtc->base.name, dsb->id, intel_de_read_fw(dev_priv, DSB_CURRENT_HEAD(pipe, dsb->id)) - offset, intel_de_read_fw(dev_priv, DSB_HEAD(pipe, dsb->id)) - offset, intel_de_read_fw(dev_priv, DSB_TAIL(pipe, dsb->id)) - offset); intel_dsb_dump(dsb); } /* Attempt to reset it */ dsb->free_pos = 0; dsb->ins_start_offset = 0; intel_de_write_fw(dev_priv, DSB_CTRL(pipe, dsb->id), 0); } /** * intel_dsb_prepare() - Allocate, pin and map the DSB command buffer. * @crtc_state: the CRTC state * @max_cmds: number of commands we need to fit into command buffer * * This function prepare the command buffer which is used to store dsb * instructions with data. * * Returns: * DSB context, NULL on failure */ struct intel_dsb *intel_dsb_prepare(const struct intel_crtc_state *crtc_state, unsigned int max_cmds) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *i915 = to_i915(crtc->base.dev); struct drm_i915_gem_object *obj; intel_wakeref_t wakeref; struct intel_dsb *dsb; struct i915_vma *vma; unsigned int size; u32 *buf; if (!HAS_DSB(i915)) return NULL; dsb = kzalloc(sizeof(*dsb), GFP_KERNEL); if (!dsb) goto out; wakeref = intel_runtime_pm_get(&i915->runtime_pm); /* ~1 qword per instruction, full cachelines */ size = ALIGN(max_cmds * 8, CACHELINE_BYTES); if (HAS_LMEM(i915)) { obj = i915_gem_object_create_lmem(i915, PAGE_ALIGN(size), I915_BO_ALLOC_CONTIGUOUS); if (IS_ERR(obj)) goto out_put_rpm; } else { obj = i915_gem_object_create_internal(i915, PAGE_ALIGN(size)); if (IS_ERR(obj)) goto out_put_rpm; i915_gem_object_set_cache_coherency(obj, I915_CACHE_NONE); } vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, 0); if (IS_ERR(vma)) { i915_gem_object_put(obj); goto out_put_rpm; } buf = i915_gem_object_pin_map_unlocked(vma->obj, I915_MAP_WC); if (IS_ERR(buf)) { i915_vma_unpin_and_release(&vma, I915_VMA_RELEASE_MAP); goto out_put_rpm; } intel_runtime_pm_put(&i915->runtime_pm, wakeref); dsb->id = DSB1; dsb->vma = vma; dsb->crtc = crtc; dsb->cmd_buf = buf; dsb->size = size / 4; /* in dwords */ dsb->free_pos = 0; dsb->ins_start_offset = 0; dsb->dewake_scanline = intel_dsb_dewake_scanline(crtc_state); return dsb; out_put_rpm: intel_runtime_pm_put(&i915->runtime_pm, wakeref); kfree(dsb); out: drm_info_once(&i915->drm, "[CRTC:%d:%s] DSB %d queue setup failed, will fallback to MMIO for display HW programming\n", crtc->base.base.id, crtc->base.name, DSB1); return NULL; } /** * intel_dsb_cleanup() - To cleanup DSB context. * @dsb: DSB context * * This function cleanup the DSB context by unpinning and releasing * the VMA object associated with it. */ void intel_dsb_cleanup(struct intel_dsb *dsb) { i915_vma_unpin_and_release(&dsb->vma, I915_VMA_RELEASE_MAP); kfree(dsb); }