/* * Copyright © 2006-2017 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include #include "intel_atomic.h" #include "intel_bw.h" #include "intel_cdclk.h" #include "intel_de.h" #include "intel_display_types.h" #include "intel_sideband.h" /** * DOC: CDCLK / RAWCLK * * The display engine uses several different clocks to do its work. There * are two main clocks involved that aren't directly related to the actual * pixel clock or any symbol/bit clock of the actual output port. These * are the core display clock (CDCLK) and RAWCLK. * * CDCLK clocks most of the display pipe logic, and thus its frequency * must be high enough to support the rate at which pixels are flowing * through the pipes. Downscaling must also be accounted as that increases * the effective pixel rate. * * On several platforms the CDCLK frequency can be changed dynamically * to minimize power consumption for a given display configuration. * Typically changes to the CDCLK frequency require all the display pipes * to be shut down while the frequency is being changed. * * On SKL+ the DMC will toggle the CDCLK off/on during DC5/6 entry/exit. * DMC will not change the active CDCLK frequency however, so that part * will still be performed by the driver directly. * * RAWCLK is a fixed frequency clock, often used by various auxiliary * blocks such as AUX CH or backlight PWM. Hence the only thing we * really need to know about RAWCLK is its frequency so that various * dividers can be programmed correctly. */ static void fixed_133mhz_get_cdclk(struct drm_i915_private *dev_priv, struct intel_cdclk_config *cdclk_config) { cdclk_config->cdclk = 133333; } static void fixed_200mhz_get_cdclk(struct drm_i915_private *dev_priv, struct intel_cdclk_config *cdclk_config) { cdclk_config->cdclk = 200000; } static void fixed_266mhz_get_cdclk(struct drm_i915_private *dev_priv, struct intel_cdclk_config *cdclk_config) { cdclk_config->cdclk = 266667; } static void fixed_333mhz_get_cdclk(struct drm_i915_private *dev_priv, struct intel_cdclk_config *cdclk_config) { cdclk_config->cdclk = 333333; } static void fixed_400mhz_get_cdclk(struct drm_i915_private *dev_priv, struct intel_cdclk_config *cdclk_config) { cdclk_config->cdclk = 400000; } static void fixed_450mhz_get_cdclk(struct drm_i915_private *dev_priv, struct intel_cdclk_config *cdclk_config) { cdclk_config->cdclk = 450000; } static void i85x_get_cdclk(struct drm_i915_private *dev_priv, struct intel_cdclk_config *cdclk_config) { struct pci_dev *pdev = to_pci_dev(dev_priv->drm.dev); u16 hpllcc = 0; /* * 852GM/852GMV only supports 133 MHz and the HPLLCC * encoding is different :( * FIXME is this the right way to detect 852GM/852GMV? */ if (pdev->revision == 0x1) { cdclk_config->cdclk = 133333; return; } pci_bus_read_config_word(pdev->bus, PCI_DEVFN(0, 3), HPLLCC, &hpllcc); /* Assume that the hardware is in the high speed state. This * should be the default. */ switch (hpllcc & GC_CLOCK_CONTROL_MASK) { case GC_CLOCK_133_200: case GC_CLOCK_133_200_2: case GC_CLOCK_100_200: cdclk_config->cdclk = 200000; break; case GC_CLOCK_166_250: cdclk_config->cdclk = 250000; break; case GC_CLOCK_100_133: cdclk_config->cdclk = 133333; break; case GC_CLOCK_133_266: case GC_CLOCK_133_266_2: case GC_CLOCK_166_266: cdclk_config->cdclk = 266667; break; } } static void i915gm_get_cdclk(struct drm_i915_private *dev_priv, struct intel_cdclk_config *cdclk_config) { struct pci_dev *pdev = to_pci_dev(dev_priv->drm.dev); u16 gcfgc = 0; pci_read_config_word(pdev, GCFGC, &gcfgc); if (gcfgc & GC_LOW_FREQUENCY_ENABLE) { cdclk_config->cdclk = 133333; return; } switch (gcfgc & GC_DISPLAY_CLOCK_MASK) { case GC_DISPLAY_CLOCK_333_320_MHZ: cdclk_config->cdclk = 333333; break; default: case GC_DISPLAY_CLOCK_190_200_MHZ: cdclk_config->cdclk = 190000; break; } } static void i945gm_get_cdclk(struct drm_i915_private *dev_priv, struct intel_cdclk_config *cdclk_config) { struct pci_dev *pdev = to_pci_dev(dev_priv->drm.dev); u16 gcfgc = 0; pci_read_config_word(pdev, GCFGC, &gcfgc); if (gcfgc & GC_LOW_FREQUENCY_ENABLE) { cdclk_config->cdclk = 133333; return; } switch (gcfgc & GC_DISPLAY_CLOCK_MASK) { case GC_DISPLAY_CLOCK_333_320_MHZ: cdclk_config->cdclk = 320000; break; default: case GC_DISPLAY_CLOCK_190_200_MHZ: cdclk_config->cdclk = 200000; break; } } static unsigned int intel_hpll_vco(struct drm_i915_private *dev_priv) { static const unsigned int blb_vco[8] = { [0] = 3200000, [1] = 4000000, [2] = 5333333, [3] = 4800000, [4] = 6400000, }; static const unsigned int pnv_vco[8] = { [0] = 3200000, [1] = 4000000, [2] = 5333333, [3] = 4800000, [4] = 2666667, }; static const unsigned int cl_vco[8] = { [0] = 3200000, [1] = 4000000, [2] = 5333333, [3] = 6400000, [4] = 3333333, [5] = 3566667, [6] = 4266667, }; static const unsigned int elk_vco[8] = { [0] = 3200000, [1] = 4000000, [2] = 5333333, [3] = 4800000, }; static const unsigned int ctg_vco[8] = { [0] = 3200000, [1] = 4000000, [2] = 5333333, [3] = 6400000, [4] = 2666667, [5] = 4266667, }; const unsigned int *vco_table; unsigned int vco; u8 tmp = 0; /* FIXME other chipsets? */ if (IS_GM45(dev_priv)) vco_table = ctg_vco; else if (IS_G45(dev_priv)) vco_table = elk_vco; else if (IS_I965GM(dev_priv)) vco_table = cl_vco; else if (IS_PINEVIEW(dev_priv)) vco_table = pnv_vco; else if (IS_G33(dev_priv)) vco_table = blb_vco; else return 0; tmp = intel_de_read(dev_priv, IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv) ? HPLLVCO_MOBILE : HPLLVCO); vco = vco_table[tmp & 0x7]; if (vco == 0) drm_err(&dev_priv->drm, "Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp); else drm_dbg_kms(&dev_priv->drm, "HPLL VCO %u kHz\n", vco); return vco; } static void g33_get_cdclk(struct drm_i915_private *dev_priv, struct intel_cdclk_config *cdclk_config) { struct pci_dev *pdev = to_pci_dev(dev_priv->drm.dev); static const u8 div_3200[] = { 12, 10, 8, 7, 5, 16 }; static const u8 div_4000[] = { 14, 12, 10, 8, 6, 20 }; static const u8 div_4800[] = { 20, 14, 12, 10, 8, 24 }; static const u8 div_5333[] = { 20, 16, 12, 12, 8, 28 }; const u8 *div_table; unsigned int cdclk_sel; u16 tmp = 0; cdclk_config->vco = intel_hpll_vco(dev_priv); pci_read_config_word(pdev, GCFGC, &tmp); cdclk_sel = (tmp >> 4) & 0x7; if (cdclk_sel >= ARRAY_SIZE(div_3200)) goto fail; switch (cdclk_config->vco) { case 3200000: div_table = div_3200; break; case 4000000: div_table = div_4000; break; case 4800000: div_table = div_4800; break; case 5333333: div_table = div_5333; break; default: goto fail; } cdclk_config->cdclk = DIV_ROUND_CLOSEST(cdclk_config->vco, div_table[cdclk_sel]); return; fail: drm_err(&dev_priv->drm, "Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", cdclk_config->vco, tmp); cdclk_config->cdclk = 190476; } static void pnv_get_cdclk(struct drm_i915_private *dev_priv, struct intel_cdclk_config *cdclk_config) { struct pci_dev *pdev = to_pci_dev(dev_priv->drm.dev); u16 gcfgc = 0; pci_read_config_word(pdev, GCFGC, &gcfgc); switch (gcfgc & GC_DISPLAY_CLOCK_MASK) { case GC_DISPLAY_CLOCK_267_MHZ_PNV: cdclk_config->cdclk = 266667; break; case GC_DISPLAY_CLOCK_333_MHZ_PNV: cdclk_config->cdclk = 333333; break; case GC_DISPLAY_CLOCK_444_MHZ_PNV: cdclk_config->cdclk = 444444; break; case GC_DISPLAY_CLOCK_200_MHZ_PNV: cdclk_config->cdclk = 200000; break; default: drm_err(&dev_priv->drm, "Unknown pnv display core clock 0x%04x\n", gcfgc); fallthrough; case GC_DISPLAY_CLOCK_133_MHZ_PNV: cdclk_config->cdclk = 133333; break; case GC_DISPLAY_CLOCK_167_MHZ_PNV: cdclk_config->cdclk = 166667; break; } } static void i965gm_get_cdclk(struct drm_i915_private *dev_priv, struct intel_cdclk_config *cdclk_config) { struct pci_dev *pdev = to_pci_dev(dev_priv->drm.dev); static const u8 div_3200[] = { 16, 10, 8 }; static const u8 div_4000[] = { 20, 12, 10 }; static const u8 div_5333[] = { 24, 16, 14 }; const u8 *div_table; unsigned int cdclk_sel; u16 tmp = 0; cdclk_config->vco = intel_hpll_vco(dev_priv); pci_read_config_word(pdev, GCFGC, &tmp); cdclk_sel = ((tmp >> 8) & 0x1f) - 1; if (cdclk_sel >= ARRAY_SIZE(div_3200)) goto fail; switch (cdclk_config->vco) { case 3200000: div_table = div_3200; break; case 4000000: div_table = div_4000; break; case 5333333: div_table = div_5333; break; default: goto fail; } cdclk_config->cdclk = DIV_ROUND_CLOSEST(cdclk_config->vco, div_table[cdclk_sel]); return; fail: drm_err(&dev_priv->drm, "Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", cdclk_config->vco, tmp); cdclk_config->cdclk = 200000; } static void gm45_get_cdclk(struct drm_i915_private *dev_priv, struct intel_cdclk_config *cdclk_config) { struct pci_dev *pdev = to_pci_dev(dev_priv->drm.dev); unsigned int cdclk_sel; u16 tmp = 0; cdclk_config->vco = intel_hpll_vco(dev_priv); pci_read_config_word(pdev, GCFGC, &tmp); cdclk_sel = (tmp >> 12) & 0x1; switch (cdclk_config->vco) { case 2666667: case 4000000: case 5333333: cdclk_config->cdclk = cdclk_sel ? 333333 : 222222; break; case 3200000: cdclk_config->cdclk = cdclk_sel ? 320000 : 228571; break; default: drm_err(&dev_priv->drm, "Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", cdclk_config->vco, tmp); cdclk_config->cdclk = 222222; break; } } static void hsw_get_cdclk(struct drm_i915_private *dev_priv, struct intel_cdclk_config *cdclk_config) { u32 lcpll = intel_de_read(dev_priv, LCPLL_CTL); u32 freq = lcpll & LCPLL_CLK_FREQ_MASK; if (lcpll & LCPLL_CD_SOURCE_FCLK) cdclk_config->cdclk = 800000; else if (intel_de_read(dev_priv, FUSE_STRAP) & HSW_CDCLK_LIMIT) cdclk_config->cdclk = 450000; else if (freq == LCPLL_CLK_FREQ_450) cdclk_config->cdclk = 450000; else if (IS_HSW_ULT(dev_priv)) cdclk_config->cdclk = 337500; else cdclk_config->cdclk = 540000; } static int vlv_calc_cdclk(struct drm_i915_private *dev_priv, int min_cdclk) { int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000; /* * We seem to get an unstable or solid color picture at 200MHz. * Not sure what's wrong. For now use 200MHz only when all pipes * are off. */ if (IS_VALLEYVIEW(dev_priv) && min_cdclk > freq_320) return 400000; else if (min_cdclk > 266667) return freq_320; else if (min_cdclk > 0) return 266667; else return 200000; } static u8 vlv_calc_voltage_level(struct drm_i915_private *dev_priv, int cdclk) { if (IS_VALLEYVIEW(dev_priv)) { if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */ return 2; else if (cdclk >= 266667) return 1; else return 0; } else { /* * Specs are full of misinformation, but testing on actual * hardware has shown that we just need to write the desired * CCK divider into the Punit register. */ return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1; } } static void vlv_get_cdclk(struct drm_i915_private *dev_priv, struct intel_cdclk_config *cdclk_config) { u32 val; vlv_iosf_sb_get(dev_priv, BIT(VLV_IOSF_SB_CCK) | BIT(VLV_IOSF_SB_PUNIT)); cdclk_config->vco = vlv_get_hpll_vco(dev_priv); cdclk_config->cdclk = vlv_get_cck_clock(dev_priv, "cdclk", CCK_DISPLAY_CLOCK_CONTROL, cdclk_config->vco); val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM); vlv_iosf_sb_put(dev_priv, BIT(VLV_IOSF_SB_CCK) | BIT(VLV_IOSF_SB_PUNIT)); if (IS_VALLEYVIEW(dev_priv)) cdclk_config->voltage_level = (val & DSPFREQGUAR_MASK) >> DSPFREQGUAR_SHIFT; else cdclk_config->voltage_level = (val & DSPFREQGUAR_MASK_CHV) >> DSPFREQGUAR_SHIFT_CHV; } static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv) { unsigned int credits, default_credits; if (IS_CHERRYVIEW(dev_priv)) default_credits = PFI_CREDIT(12); else default_credits = PFI_CREDIT(8); if (dev_priv->cdclk.hw.cdclk >= dev_priv->czclk_freq) { /* CHV suggested value is 31 or 63 */ if (IS_CHERRYVIEW(dev_priv)) credits = PFI_CREDIT_63; else credits = PFI_CREDIT(15); } else { credits = default_credits; } /* * WA - write default credits before re-programming * FIXME: should we also set the resend bit here? */ intel_de_write(dev_priv, GCI_CONTROL, VGA_FAST_MODE_DISABLE | default_credits); intel_de_write(dev_priv, GCI_CONTROL, VGA_FAST_MODE_DISABLE | credits | PFI_CREDIT_RESEND); /* * FIXME is this guaranteed to clear * immediately or should we poll for it? */ drm_WARN_ON(&dev_priv->drm, intel_de_read(dev_priv, GCI_CONTROL) & PFI_CREDIT_RESEND); } static void vlv_set_cdclk(struct drm_i915_private *dev_priv, const struct intel_cdclk_config *cdclk_config, enum pipe pipe) { int cdclk = cdclk_config->cdclk; u32 val, cmd = cdclk_config->voltage_level; intel_wakeref_t wakeref; switch (cdclk) { case 400000: case 333333: case 320000: case 266667: case 200000: break; default: MISSING_CASE(cdclk); return; } /* There are cases where we can end up here with power domains * off and a CDCLK frequency other than the minimum, like when * issuing a modeset without actually changing any display after * a system suspend. So grab the display core domain, which covers * the HW blocks needed for the following programming. */ wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_DISPLAY_CORE); vlv_iosf_sb_get(dev_priv, BIT(VLV_IOSF_SB_CCK) | BIT(VLV_IOSF_SB_BUNIT) | BIT(VLV_IOSF_SB_PUNIT)); val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM); val &= ~DSPFREQGUAR_MASK; val |= (cmd << DSPFREQGUAR_SHIFT); vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val); if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM) & DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT), 50)) { drm_err(&dev_priv->drm, "timed out waiting for CDclk change\n"); } if (cdclk == 400000) { u32 divider; divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1; /* adjust cdclk divider */ val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL); val &= ~CCK_FREQUENCY_VALUES; val |= divider; vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val); if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) & CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT), 50)) drm_err(&dev_priv->drm, "timed out waiting for CDclk change\n"); } /* adjust self-refresh exit latency value */ val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC); val &= ~0x7f; /* * For high bandwidth configs, we set a higher latency in the bunit * so that the core display fetch happens in time to avoid underruns. */ if (cdclk == 400000) val |= 4500 / 250; /* 4.5 usec */ else val |= 3000 / 250; /* 3.0 usec */ vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val); vlv_iosf_sb_put(dev_priv, BIT(VLV_IOSF_SB_CCK) | BIT(VLV_IOSF_SB_BUNIT) | BIT(VLV_IOSF_SB_PUNIT)); intel_update_cdclk(dev_priv); vlv_program_pfi_credits(dev_priv); intel_display_power_put(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref); } static void chv_set_cdclk(struct drm_i915_private *dev_priv, const struct intel_cdclk_config *cdclk_config, enum pipe pipe) { int cdclk = cdclk_config->cdclk; u32 val, cmd = cdclk_config->voltage_level; intel_wakeref_t wakeref; switch (cdclk) { case 333333: case 320000: case 266667: case 200000: break; default: MISSING_CASE(cdclk); return; } /* There are cases where we can end up here with power domains * off and a CDCLK frequency other than the minimum, like when * issuing a modeset without actually changing any display after * a system suspend. So grab the display core domain, which covers * the HW blocks needed for the following programming. */ wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_DISPLAY_CORE); vlv_punit_get(dev_priv); val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM); val &= ~DSPFREQGUAR_MASK_CHV; val |= (cmd << DSPFREQGUAR_SHIFT_CHV); vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val); if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM) & DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV), 50)) { drm_err(&dev_priv->drm, "timed out waiting for CDclk change\n"); } vlv_punit_put(dev_priv); intel_update_cdclk(dev_priv); vlv_program_pfi_credits(dev_priv); intel_display_power_put(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref); } static int bdw_calc_cdclk(int min_cdclk) { if (min_cdclk > 540000) return 675000; else if (min_cdclk > 450000) return 540000; else if (min_cdclk > 337500) return 450000; else return 337500; } static u8 bdw_calc_voltage_level(int cdclk) { switch (cdclk) { default: case 337500: return 2; case 450000: return 0; case 540000: return 1; case 675000: return 3; } } static void bdw_get_cdclk(struct drm_i915_private *dev_priv, struct intel_cdclk_config *cdclk_config) { u32 lcpll = intel_de_read(dev_priv, LCPLL_CTL); u32 freq = lcpll & LCPLL_CLK_FREQ_MASK; if (lcpll & LCPLL_CD_SOURCE_FCLK) cdclk_config->cdclk = 800000; else if (intel_de_read(dev_priv, FUSE_STRAP) & HSW_CDCLK_LIMIT) cdclk_config->cdclk = 450000; else if (freq == LCPLL_CLK_FREQ_450) cdclk_config->cdclk = 450000; else if (freq == LCPLL_CLK_FREQ_54O_BDW) cdclk_config->cdclk = 540000; else if (freq == LCPLL_CLK_FREQ_337_5_BDW) cdclk_config->cdclk = 337500; else cdclk_config->cdclk = 675000; /* * Can't read this out :( Let's assume it's * at least what the CDCLK frequency requires. */ cdclk_config->voltage_level = bdw_calc_voltage_level(cdclk_config->cdclk); } static u32 bdw_cdclk_freq_sel(int cdclk) { switch (cdclk) { default: MISSING_CASE(cdclk); fallthrough; case 337500: return LCPLL_CLK_FREQ_337_5_BDW; case 450000: return LCPLL_CLK_FREQ_450; case 540000: return LCPLL_CLK_FREQ_54O_BDW; case 675000: return LCPLL_CLK_FREQ_675_BDW; } } static void bdw_set_cdclk(struct drm_i915_private *dev_priv, const struct intel_cdclk_config *cdclk_config, enum pipe pipe) { int cdclk = cdclk_config->cdclk; int ret; if (drm_WARN(&dev_priv->drm, (intel_de_read(dev_priv, LCPLL_CTL) & (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK | LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE | LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW | LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK, "trying to change cdclk frequency with cdclk not enabled\n")) return; ret = sandybridge_pcode_write(dev_priv, BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0); if (ret) { drm_err(&dev_priv->drm, "failed to inform pcode about cdclk change\n"); return; } intel_de_rmw(dev_priv, LCPLL_CTL, 0, LCPLL_CD_SOURCE_FCLK); /* * According to the spec, it should be enough to poll for this 1 us. * However, extensive testing shows that this can take longer. */ if (wait_for_us(intel_de_read(dev_priv, LCPLL_CTL) & LCPLL_CD_SOURCE_FCLK_DONE, 100)) drm_err(&dev_priv->drm, "Switching to FCLK failed\n"); intel_de_rmw(dev_priv, LCPLL_CTL, LCPLL_CLK_FREQ_MASK, bdw_cdclk_freq_sel(cdclk)); intel_de_rmw(dev_priv, LCPLL_CTL, LCPLL_CD_SOURCE_FCLK, 0); if (wait_for_us((intel_de_read(dev_priv, LCPLL_CTL) & LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1)) drm_err(&dev_priv->drm, "Switching back to LCPLL failed\n"); sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, cdclk_config->voltage_level); intel_de_write(dev_priv, CDCLK_FREQ, DIV_ROUND_CLOSEST(cdclk, 1000) - 1); intel_update_cdclk(dev_priv); } static int skl_calc_cdclk(int min_cdclk, int vco) { if (vco == 8640000) { if (min_cdclk > 540000) return 617143; else if (min_cdclk > 432000) return 540000; else if (min_cdclk > 308571) return 432000; else return 308571; } else { if (min_cdclk > 540000) return 675000; else if (min_cdclk > 450000) return 540000; else if (min_cdclk > 337500) return 450000; else return 337500; } } static u8 skl_calc_voltage_level(int cdclk) { if (cdclk > 540000) return 3; else if (cdclk > 450000) return 2; else if (cdclk > 337500) return 1; else return 0; } static void skl_dpll0_update(struct drm_i915_private *dev_priv, struct intel_cdclk_config *cdclk_config) { u32 val; cdclk_config->ref = 24000; cdclk_config->vco = 0; val = intel_de_read(dev_priv, LCPLL1_CTL); if ((val & LCPLL_PLL_ENABLE) == 0) return; if (drm_WARN_ON(&dev_priv->drm, (val & LCPLL_PLL_LOCK) == 0)) return; val = intel_de_read(dev_priv, DPLL_CTRL1); if (drm_WARN_ON(&dev_priv->drm, (val & (DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) | DPLL_CTRL1_OVERRIDE(SKL_DPLL0))) != DPLL_CTRL1_OVERRIDE(SKL_DPLL0))) return; switch (val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) { case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, SKL_DPLL0): case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, SKL_DPLL0): case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620, SKL_DPLL0): case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, SKL_DPLL0): cdclk_config->vco = 8100000; break; case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, SKL_DPLL0): case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160, SKL_DPLL0): cdclk_config->vco = 8640000; break; default: MISSING_CASE(val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)); break; } } static void skl_get_cdclk(struct drm_i915_private *dev_priv, struct intel_cdclk_config *cdclk_config) { u32 cdctl; skl_dpll0_update(dev_priv, cdclk_config); cdclk_config->cdclk = cdclk_config->bypass = cdclk_config->ref; if (cdclk_config->vco == 0) goto out; cdctl = intel_de_read(dev_priv, CDCLK_CTL); if (cdclk_config->vco == 8640000) { switch (cdctl & CDCLK_FREQ_SEL_MASK) { case CDCLK_FREQ_450_432: cdclk_config->cdclk = 432000; break; case CDCLK_FREQ_337_308: cdclk_config->cdclk = 308571; break; case CDCLK_FREQ_540: cdclk_config->cdclk = 540000; break; case CDCLK_FREQ_675_617: cdclk_config->cdclk = 617143; break; default: MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK); break; } } else { switch (cdctl & CDCLK_FREQ_SEL_MASK) { case CDCLK_FREQ_450_432: cdclk_config->cdclk = 450000; break; case CDCLK_FREQ_337_308: cdclk_config->cdclk = 337500; break; case CDCLK_FREQ_540: cdclk_config->cdclk = 540000; break; case CDCLK_FREQ_675_617: cdclk_config->cdclk = 675000; break; default: MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK); break; } } out: /* * Can't read this out :( Let's assume it's * at least what the CDCLK frequency requires. */ cdclk_config->voltage_level = skl_calc_voltage_level(cdclk_config->cdclk); } /* convert from kHz to .1 fixpoint MHz with -1MHz offset */ static int skl_cdclk_decimal(int cdclk) { return DIV_ROUND_CLOSEST(cdclk - 1000, 500); } static void skl_set_preferred_cdclk_vco(struct drm_i915_private *dev_priv, int vco) { bool changed = dev_priv->skl_preferred_vco_freq != vco; dev_priv->skl_preferred_vco_freq = vco; if (changed) intel_update_max_cdclk(dev_priv); } static u32 skl_dpll0_link_rate(struct drm_i915_private *dev_priv, int vco) { drm_WARN_ON(&dev_priv->drm, vco != 8100000 && vco != 8640000); /* * We always enable DPLL0 with the lowest link rate possible, but still * taking into account the VCO required to operate the eDP panel at the * desired frequency. The usual DP link rates operate with a VCO of * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640. * The modeset code is responsible for the selection of the exact link * rate later on, with the constraint of choosing a frequency that * works with vco. */ if (vco == 8640000) return DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, SKL_DPLL0); else return DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, SKL_DPLL0); } static void skl_dpll0_enable(struct drm_i915_private *dev_priv, int vco) { intel_de_rmw(dev_priv, DPLL_CTRL1, DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) | DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0), DPLL_CTRL1_OVERRIDE(SKL_DPLL0) | skl_dpll0_link_rate(dev_priv, vco)); intel_de_posting_read(dev_priv, DPLL_CTRL1); intel_de_rmw(dev_priv, LCPLL1_CTL, 0, LCPLL_PLL_ENABLE); if (intel_de_wait_for_set(dev_priv, LCPLL1_CTL, LCPLL_PLL_LOCK, 5)) drm_err(&dev_priv->drm, "DPLL0 not locked\n"); dev_priv->cdclk.hw.vco = vco; /* We'll want to keep using the current vco from now on. */ skl_set_preferred_cdclk_vco(dev_priv, vco); } static void skl_dpll0_disable(struct drm_i915_private *dev_priv) { intel_de_rmw(dev_priv, LCPLL1_CTL, LCPLL_PLL_ENABLE, 0); if (intel_de_wait_for_clear(dev_priv, LCPLL1_CTL, LCPLL_PLL_LOCK, 1)) drm_err(&dev_priv->drm, "Couldn't disable DPLL0\n"); dev_priv->cdclk.hw.vco = 0; } static u32 skl_cdclk_freq_sel(struct drm_i915_private *dev_priv, int cdclk, int vco) { switch (cdclk) { default: drm_WARN_ON(&dev_priv->drm, cdclk != dev_priv->cdclk.hw.bypass); drm_WARN_ON(&dev_priv->drm, vco != 0); fallthrough; case 308571: case 337500: return CDCLK_FREQ_337_308; case 450000: case 432000: return CDCLK_FREQ_450_432; case 540000: return CDCLK_FREQ_540; case 617143: case 675000: return CDCLK_FREQ_675_617; } } static void skl_set_cdclk(struct drm_i915_private *dev_priv, const struct intel_cdclk_config *cdclk_config, enum pipe pipe) { int cdclk = cdclk_config->cdclk; int vco = cdclk_config->vco; u32 freq_select, cdclk_ctl; int ret; /* * Based on WA#1183 CDCLK rates 308 and 617MHz CDCLK rates are * unsupported on SKL. In theory this should never happen since only * the eDP1.4 2.16 and 4.32Gbps rates require it, but eDP1.4 is not * supported on SKL either, see the above WA. WARN whenever trying to * use the corresponding VCO freq as that always leads to using the * minimum 308MHz CDCLK. */ drm_WARN_ON_ONCE(&dev_priv->drm, IS_SKYLAKE(dev_priv) && vco == 8640000); ret = skl_pcode_request(dev_priv, SKL_PCODE_CDCLK_CONTROL, SKL_CDCLK_PREPARE_FOR_CHANGE, SKL_CDCLK_READY_FOR_CHANGE, SKL_CDCLK_READY_FOR_CHANGE, 3); if (ret) { drm_err(&dev_priv->drm, "Failed to inform PCU about cdclk change (%d)\n", ret); return; } freq_select = skl_cdclk_freq_sel(dev_priv, cdclk, vco); if (dev_priv->cdclk.hw.vco != 0 && dev_priv->cdclk.hw.vco != vco) skl_dpll0_disable(dev_priv); cdclk_ctl = intel_de_read(dev_priv, CDCLK_CTL); if (dev_priv->cdclk.hw.vco != vco) { /* Wa Display #1183: skl,kbl,cfl */ cdclk_ctl &= ~(CDCLK_FREQ_SEL_MASK | CDCLK_FREQ_DECIMAL_MASK); cdclk_ctl |= freq_select | skl_cdclk_decimal(cdclk); intel_de_write(dev_priv, CDCLK_CTL, cdclk_ctl); } /* Wa Display #1183: skl,kbl,cfl */ cdclk_ctl |= CDCLK_DIVMUX_CD_OVERRIDE; intel_de_write(dev_priv, CDCLK_CTL, cdclk_ctl); intel_de_posting_read(dev_priv, CDCLK_CTL); if (dev_priv->cdclk.hw.vco != vco) skl_dpll0_enable(dev_priv, vco); /* Wa Display #1183: skl,kbl,cfl */ cdclk_ctl &= ~(CDCLK_FREQ_SEL_MASK | CDCLK_FREQ_DECIMAL_MASK); intel_de_write(dev_priv, CDCLK_CTL, cdclk_ctl); cdclk_ctl |= freq_select | skl_cdclk_decimal(cdclk); intel_de_write(dev_priv, CDCLK_CTL, cdclk_ctl); /* Wa Display #1183: skl,kbl,cfl */ cdclk_ctl &= ~CDCLK_DIVMUX_CD_OVERRIDE; intel_de_write(dev_priv, CDCLK_CTL, cdclk_ctl); intel_de_posting_read(dev_priv, CDCLK_CTL); /* inform PCU of the change */ sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, cdclk_config->voltage_level); intel_update_cdclk(dev_priv); } static void skl_sanitize_cdclk(struct drm_i915_private *dev_priv) { u32 cdctl, expected; /* * check if the pre-os initialized the display * There is SWF18 scratchpad register defined which is set by the * pre-os which can be used by the OS drivers to check the status */ if ((intel_de_read(dev_priv, SWF_ILK(0x18)) & 0x00FFFFFF) == 0) goto sanitize; intel_update_cdclk(dev_priv); intel_dump_cdclk_config(&dev_priv->cdclk.hw, "Current CDCLK"); /* Is PLL enabled and locked ? */ if (dev_priv->cdclk.hw.vco == 0 || dev_priv->cdclk.hw.cdclk == dev_priv->cdclk.hw.bypass) goto sanitize; /* DPLL okay; verify the cdclock * * Noticed in some instances that the freq selection is correct but * decimal part is programmed wrong from BIOS where pre-os does not * enable display. Verify the same as well. */ cdctl = intel_de_read(dev_priv, CDCLK_CTL); expected = (cdctl & CDCLK_FREQ_SEL_MASK) | skl_cdclk_decimal(dev_priv->cdclk.hw.cdclk); if (cdctl == expected) /* All well; nothing to sanitize */ return; sanitize: drm_dbg_kms(&dev_priv->drm, "Sanitizing cdclk programmed by pre-os\n"); /* force cdclk programming */ dev_priv->cdclk.hw.cdclk = 0; /* force full PLL disable + enable */ dev_priv->cdclk.hw.vco = -1; } static void skl_cdclk_init_hw(struct drm_i915_private *dev_priv) { struct intel_cdclk_config cdclk_config; skl_sanitize_cdclk(dev_priv); if (dev_priv->cdclk.hw.cdclk != 0 && dev_priv->cdclk.hw.vco != 0) { /* * Use the current vco as our initial * guess as to what the preferred vco is. */ if (dev_priv->skl_preferred_vco_freq == 0) skl_set_preferred_cdclk_vco(dev_priv, dev_priv->cdclk.hw.vco); return; } cdclk_config = dev_priv->cdclk.hw; cdclk_config.vco = dev_priv->skl_preferred_vco_freq; if (cdclk_config.vco == 0) cdclk_config.vco = 8100000; cdclk_config.cdclk = skl_calc_cdclk(0, cdclk_config.vco); cdclk_config.voltage_level = skl_calc_voltage_level(cdclk_config.cdclk); skl_set_cdclk(dev_priv, &cdclk_config, INVALID_PIPE); } static void skl_cdclk_uninit_hw(struct drm_i915_private *dev_priv) { struct intel_cdclk_config cdclk_config = dev_priv->cdclk.hw; cdclk_config.cdclk = cdclk_config.bypass; cdclk_config.vco = 0; cdclk_config.voltage_level = skl_calc_voltage_level(cdclk_config.cdclk); skl_set_cdclk(dev_priv, &cdclk_config, INVALID_PIPE); } static const struct intel_cdclk_vals bxt_cdclk_table[] = { { .refclk = 19200, .cdclk = 144000, .divider = 8, .ratio = 60 }, { .refclk = 19200, .cdclk = 288000, .divider = 4, .ratio = 60 }, { .refclk = 19200, .cdclk = 384000, .divider = 3, .ratio = 60 }, { .refclk = 19200, .cdclk = 576000, .divider = 2, .ratio = 60 }, { .refclk = 19200, .cdclk = 624000, .divider = 2, .ratio = 65 }, {} }; static const struct intel_cdclk_vals glk_cdclk_table[] = { { .refclk = 19200, .cdclk = 79200, .divider = 8, .ratio = 33 }, { .refclk = 19200, .cdclk = 158400, .divider = 4, .ratio = 33 }, { .refclk = 19200, .cdclk = 316800, .divider = 2, .ratio = 33 }, {} }; static const struct intel_cdclk_vals cnl_cdclk_table[] = { { .refclk = 19200, .cdclk = 168000, .divider = 4, .ratio = 35 }, { .refclk = 19200, .cdclk = 336000, .divider = 2, .ratio = 35 }, { .refclk = 19200, .cdclk = 528000, .divider = 2, .ratio = 55 }, { .refclk = 24000, .cdclk = 168000, .divider = 4, .ratio = 28 }, { .refclk = 24000, .cdclk = 336000, .divider = 2, .ratio = 28 }, { .refclk = 24000, .cdclk = 528000, .divider = 2, .ratio = 44 }, {} }; static const struct intel_cdclk_vals icl_cdclk_table[] = { { .refclk = 19200, .cdclk = 172800, .divider = 2, .ratio = 18 }, { .refclk = 19200, .cdclk = 192000, .divider = 2, .ratio = 20 }, { .refclk = 19200, .cdclk = 307200, .divider = 2, .ratio = 32 }, { .refclk = 19200, .cdclk = 326400, .divider = 4, .ratio = 68 }, { .refclk = 19200, .cdclk = 556800, .divider = 2, .ratio = 58 }, { .refclk = 19200, .cdclk = 652800, .divider = 2, .ratio = 68 }, { .refclk = 24000, .cdclk = 180000, .divider = 2, .ratio = 15 }, { .refclk = 24000, .cdclk = 192000, .divider = 2, .ratio = 16 }, { .refclk = 24000, .cdclk = 312000, .divider = 2, .ratio = 26 }, { .refclk = 24000, .cdclk = 324000, .divider = 4, .ratio = 54 }, { .refclk = 24000, .cdclk = 552000, .divider = 2, .ratio = 46 }, { .refclk = 24000, .cdclk = 648000, .divider = 2, .ratio = 54 }, { .refclk = 38400, .cdclk = 172800, .divider = 2, .ratio = 9 }, { .refclk = 38400, .cdclk = 192000, .divider = 2, .ratio = 10 }, { .refclk = 38400, .cdclk = 307200, .divider = 2, .ratio = 16 }, { .refclk = 38400, .cdclk = 326400, .divider = 4, .ratio = 34 }, { .refclk = 38400, .cdclk = 556800, .divider = 2, .ratio = 29 }, { .refclk = 38400, .cdclk = 652800, .divider = 2, .ratio = 34 }, {} }; static const struct intel_cdclk_vals rkl_cdclk_table[] = { { .refclk = 19200, .cdclk = 172800, .divider = 4, .ratio = 36 }, { .refclk = 19200, .cdclk = 192000, .divider = 4, .ratio = 40 }, { .refclk = 19200, .cdclk = 307200, .divider = 4, .ratio = 64 }, { .refclk = 19200, .cdclk = 326400, .divider = 8, .ratio = 136 }, { .refclk = 19200, .cdclk = 556800, .divider = 4, .ratio = 116 }, { .refclk = 19200, .cdclk = 652800, .divider = 4, .ratio = 136 }, { .refclk = 24000, .cdclk = 180000, .divider = 4, .ratio = 30 }, { .refclk = 24000, .cdclk = 192000, .divider = 4, .ratio = 32 }, { .refclk = 24000, .cdclk = 312000, .divider = 4, .ratio = 52 }, { .refclk = 24000, .cdclk = 324000, .divider = 8, .ratio = 108 }, { .refclk = 24000, .cdclk = 552000, .divider = 4, .ratio = 92 }, { .refclk = 24000, .cdclk = 648000, .divider = 4, .ratio = 108 }, { .refclk = 38400, .cdclk = 172800, .divider = 4, .ratio = 18 }, { .refclk = 38400, .cdclk = 192000, .divider = 4, .ratio = 20 }, { .refclk = 38400, .cdclk = 307200, .divider = 4, .ratio = 32 }, { .refclk = 38400, .cdclk = 326400, .divider = 8, .ratio = 68 }, { .refclk = 38400, .cdclk = 556800, .divider = 4, .ratio = 58 }, { .refclk = 38400, .cdclk = 652800, .divider = 4, .ratio = 68 }, {} }; static const struct intel_cdclk_vals adlp_a_step_cdclk_table[] = { { .refclk = 19200, .cdclk = 307200, .divider = 2, .ratio = 32 }, { .refclk = 19200, .cdclk = 556800, .divider = 2, .ratio = 58 }, { .refclk = 19200, .cdclk = 652800, .divider = 2, .ratio = 68 }, { .refclk = 24000, .cdclk = 312000, .divider = 2, .ratio = 26 }, { .refclk = 24000, .cdclk = 552000, .divider = 2, .ratio = 46 }, { .refclk = 24400, .cdclk = 648000, .divider = 2, .ratio = 54 }, { .refclk = 38400, .cdclk = 307200, .divider = 2, .ratio = 16 }, { .refclk = 38400, .cdclk = 556800, .divider = 2, .ratio = 29 }, { .refclk = 38400, .cdclk = 652800, .divider = 2, .ratio = 34 }, {} }; static const struct intel_cdclk_vals adlp_cdclk_table[] = { { .refclk = 19200, .cdclk = 172800, .divider = 3, .ratio = 27 }, { .refclk = 19200, .cdclk = 192000, .divider = 2, .ratio = 20 }, { .refclk = 19200, .cdclk = 307200, .divider = 2, .ratio = 32 }, { .refclk = 19200, .cdclk = 556800, .divider = 2, .ratio = 58 }, { .refclk = 19200, .cdclk = 652800, .divider = 2, .ratio = 68 }, { .refclk = 24000, .cdclk = 176000, .divider = 3, .ratio = 22 }, { .refclk = 24000, .cdclk = 192000, .divider = 2, .ratio = 16 }, { .refclk = 24000, .cdclk = 312000, .divider = 2, .ratio = 26 }, { .refclk = 24000, .cdclk = 552000, .divider = 2, .ratio = 46 }, { .refclk = 24400, .cdclk = 648000, .divider = 2, .ratio = 54 }, { .refclk = 38400, .cdclk = 179200, .divider = 3, .ratio = 14 }, { .refclk = 38400, .cdclk = 192000, .divider = 2, .ratio = 10 }, { .refclk = 38400, .cdclk = 307200, .divider = 2, .ratio = 16 }, { .refclk = 38400, .cdclk = 556800, .divider = 2, .ratio = 29 }, { .refclk = 38400, .cdclk = 652800, .divider = 2, .ratio = 34 }, {} }; static int bxt_calc_cdclk(struct drm_i915_private *dev_priv, int min_cdclk) { const struct intel_cdclk_vals *table = dev_priv->cdclk.table; int i; for (i = 0; table[i].refclk; i++) if (table[i].refclk == dev_priv->cdclk.hw.ref && table[i].cdclk >= min_cdclk) return table[i].cdclk; drm_WARN(&dev_priv->drm, 1, "Cannot satisfy minimum cdclk %d with refclk %u\n", min_cdclk, dev_priv->cdclk.hw.ref); return 0; } static int bxt_calc_cdclk_pll_vco(struct drm_i915_private *dev_priv, int cdclk) { const struct intel_cdclk_vals *table = dev_priv->cdclk.table; int i; if (cdclk == dev_priv->cdclk.hw.bypass) return 0; for (i = 0; table[i].refclk; i++) if (table[i].refclk == dev_priv->cdclk.hw.ref && table[i].cdclk == cdclk) return dev_priv->cdclk.hw.ref * table[i].ratio; drm_WARN(&dev_priv->drm, 1, "cdclk %d not valid for refclk %u\n", cdclk, dev_priv->cdclk.hw.ref); return 0; } static u8 bxt_calc_voltage_level(int cdclk) { return DIV_ROUND_UP(cdclk, 25000); } static u8 cnl_calc_voltage_level(int cdclk) { if (cdclk > 336000) return 2; else if (cdclk > 168000) return 1; else return 0; } static u8 icl_calc_voltage_level(int cdclk) { if (cdclk > 556800) return 2; else if (cdclk > 312000) return 1; else return 0; } static u8 ehl_calc_voltage_level(int cdclk) { if (cdclk > 326400) return 3; else if (cdclk > 312000) return 2; else if (cdclk > 180000) return 1; else return 0; } static u8 tgl_calc_voltage_level(int cdclk) { if (cdclk > 556800) return 3; else if (cdclk > 326400) return 2; else if (cdclk > 312000) return 1; else return 0; } static void cnl_readout_refclk(struct drm_i915_private *dev_priv, struct intel_cdclk_config *cdclk_config) { if (intel_de_read(dev_priv, SKL_DSSM) & CNL_DSSM_CDCLK_PLL_REFCLK_24MHz) cdclk_config->ref = 24000; else cdclk_config->ref = 19200; } static void icl_readout_refclk(struct drm_i915_private *dev_priv, struct intel_cdclk_config *cdclk_config) { u32 dssm = intel_de_read(dev_priv, SKL_DSSM) & ICL_DSSM_CDCLK_PLL_REFCLK_MASK; switch (dssm) { default: MISSING_CASE(dssm); fallthrough; case ICL_DSSM_CDCLK_PLL_REFCLK_24MHz: cdclk_config->ref = 24000; break; case ICL_DSSM_CDCLK_PLL_REFCLK_19_2MHz: cdclk_config->ref = 19200; break; case ICL_DSSM_CDCLK_PLL_REFCLK_38_4MHz: cdclk_config->ref = 38400; break; } } static void bxt_de_pll_readout(struct drm_i915_private *dev_priv, struct intel_cdclk_config *cdclk_config) { u32 val, ratio; if (DISPLAY_VER(dev_priv) >= 11) icl_readout_refclk(dev_priv, cdclk_config); else if (IS_CANNONLAKE(dev_priv)) cnl_readout_refclk(dev_priv, cdclk_config); else cdclk_config->ref = 19200; val = intel_de_read(dev_priv, BXT_DE_PLL_ENABLE); if ((val & BXT_DE_PLL_PLL_ENABLE) == 0 || (val & BXT_DE_PLL_LOCK) == 0) { /* * CDCLK PLL is disabled, the VCO/ratio doesn't matter, but * setting it to zero is a way to signal that. */ cdclk_config->vco = 0; return; } /* * CNL+ have the ratio directly in the PLL enable register, gen9lp had * it in a separate PLL control register. */ if (DISPLAY_VER(dev_priv) >= 11 || IS_CANNONLAKE(dev_priv)) ratio = val & CNL_CDCLK_PLL_RATIO_MASK; else ratio = intel_de_read(dev_priv, BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK; cdclk_config->vco = ratio * cdclk_config->ref; } static void bxt_get_cdclk(struct drm_i915_private *dev_priv, struct intel_cdclk_config *cdclk_config) { u32 divider; int div; bxt_de_pll_readout(dev_priv, cdclk_config); if (DISPLAY_VER(dev_priv) >= 12) cdclk_config->bypass = cdclk_config->ref / 2; else if (DISPLAY_VER(dev_priv) >= 11) cdclk_config->bypass = 50000; else cdclk_config->bypass = cdclk_config->ref; if (cdclk_config->vco == 0) { cdclk_config->cdclk = cdclk_config->bypass; goto out; } divider = intel_de_read(dev_priv, CDCLK_CTL) & BXT_CDCLK_CD2X_DIV_SEL_MASK; switch (divider) { case BXT_CDCLK_CD2X_DIV_SEL_1: div = 2; break; case BXT_CDCLK_CD2X_DIV_SEL_1_5: div = 3; break; case BXT_CDCLK_CD2X_DIV_SEL_2: div = 4; break; case BXT_CDCLK_CD2X_DIV_SEL_4: div = 8; break; default: MISSING_CASE(divider); return; } cdclk_config->cdclk = DIV_ROUND_CLOSEST(cdclk_config->vco, div); out: /* * Can't read this out :( Let's assume it's * at least what the CDCLK frequency requires. */ cdclk_config->voltage_level = dev_priv->display.calc_voltage_level(cdclk_config->cdclk); } static void bxt_de_pll_disable(struct drm_i915_private *dev_priv) { intel_de_write(dev_priv, BXT_DE_PLL_ENABLE, 0); /* Timeout 200us */ if (intel_de_wait_for_clear(dev_priv, BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 1)) drm_err(&dev_priv->drm, "timeout waiting for DE PLL unlock\n"); dev_priv->cdclk.hw.vco = 0; } static void bxt_de_pll_enable(struct drm_i915_private *dev_priv, int vco) { int ratio = DIV_ROUND_CLOSEST(vco, dev_priv->cdclk.hw.ref); intel_de_rmw(dev_priv, BXT_DE_PLL_CTL, BXT_DE_PLL_RATIO_MASK, BXT_DE_PLL_RATIO(ratio)); intel_de_write(dev_priv, BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE); /* Timeout 200us */ if (intel_de_wait_for_set(dev_priv, BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 1)) drm_err(&dev_priv->drm, "timeout waiting for DE PLL lock\n"); dev_priv->cdclk.hw.vco = vco; } static void cnl_cdclk_pll_disable(struct drm_i915_private *dev_priv) { intel_de_rmw(dev_priv, BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE, 0); /* Timeout 200us */ if (intel_de_wait_for_clear(dev_priv, BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 1)) drm_err(&dev_priv->drm, "timeout waiting for CDCLK PLL unlock\n"); dev_priv->cdclk.hw.vco = 0; } static void cnl_cdclk_pll_enable(struct drm_i915_private *dev_priv, int vco) { int ratio = DIV_ROUND_CLOSEST(vco, dev_priv->cdclk.hw.ref); u32 val; val = CNL_CDCLK_PLL_RATIO(ratio); intel_de_write(dev_priv, BXT_DE_PLL_ENABLE, val); val |= BXT_DE_PLL_PLL_ENABLE; intel_de_write(dev_priv, BXT_DE_PLL_ENABLE, val); /* Timeout 200us */ if (intel_de_wait_for_set(dev_priv, BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 1)) drm_err(&dev_priv->drm, "timeout waiting for CDCLK PLL lock\n"); dev_priv->cdclk.hw.vco = vco; } static u32 bxt_cdclk_cd2x_pipe(struct drm_i915_private *dev_priv, enum pipe pipe) { if (DISPLAY_VER(dev_priv) >= 12) { if (pipe == INVALID_PIPE) return TGL_CDCLK_CD2X_PIPE_NONE; else return TGL_CDCLK_CD2X_PIPE(pipe); } else if (DISPLAY_VER(dev_priv) >= 11) { if (pipe == INVALID_PIPE) return ICL_CDCLK_CD2X_PIPE_NONE; else return ICL_CDCLK_CD2X_PIPE(pipe); } else { if (pipe == INVALID_PIPE) return BXT_CDCLK_CD2X_PIPE_NONE; else return BXT_CDCLK_CD2X_PIPE(pipe); } } static u32 bxt_cdclk_cd2x_div_sel(struct drm_i915_private *dev_priv, int cdclk, int vco) { /* cdclk = vco / 2 / div{1,1.5,2,4} */ switch (DIV_ROUND_CLOSEST(vco, cdclk)) { default: drm_WARN_ON(&dev_priv->drm, cdclk != dev_priv->cdclk.hw.bypass); drm_WARN_ON(&dev_priv->drm, vco != 0); fallthrough; case 2: return BXT_CDCLK_CD2X_DIV_SEL_1; case 3: return BXT_CDCLK_CD2X_DIV_SEL_1_5; case 4: return BXT_CDCLK_CD2X_DIV_SEL_2; case 8: return BXT_CDCLK_CD2X_DIV_SEL_4; } } static void bxt_set_cdclk(struct drm_i915_private *dev_priv, const struct intel_cdclk_config *cdclk_config, enum pipe pipe) { int cdclk = cdclk_config->cdclk; int vco = cdclk_config->vco; u32 val; int ret; /* Inform power controller of upcoming frequency change. */ if (DISPLAY_VER(dev_priv) >= 11 || IS_CANNONLAKE(dev_priv)) ret = skl_pcode_request(dev_priv, SKL_PCODE_CDCLK_CONTROL, SKL_CDCLK_PREPARE_FOR_CHANGE, SKL_CDCLK_READY_FOR_CHANGE, SKL_CDCLK_READY_FOR_CHANGE, 3); else /* * BSpec requires us to wait up to 150usec, but that leads to * timeouts; the 2ms used here is based on experiment. */ ret = sandybridge_pcode_write_timeout(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, 0x80000000, 150, 2); if (ret) { drm_err(&dev_priv->drm, "Failed to inform PCU about cdclk change (err %d, freq %d)\n", ret, cdclk); return; } if (DISPLAY_VER(dev_priv) >= 11 || IS_CANNONLAKE(dev_priv)) { if (dev_priv->cdclk.hw.vco != 0 && dev_priv->cdclk.hw.vco != vco) cnl_cdclk_pll_disable(dev_priv); if (dev_priv->cdclk.hw.vco != vco) cnl_cdclk_pll_enable(dev_priv, vco); } else { if (dev_priv->cdclk.hw.vco != 0 && dev_priv->cdclk.hw.vco != vco) bxt_de_pll_disable(dev_priv); if (dev_priv->cdclk.hw.vco != vco) bxt_de_pll_enable(dev_priv, vco); } val = bxt_cdclk_cd2x_div_sel(dev_priv, cdclk, vco) | bxt_cdclk_cd2x_pipe(dev_priv, pipe) | skl_cdclk_decimal(cdclk); /* * Disable SSA Precharge when CD clock frequency < 500 MHz, * enable otherwise. */ if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) && cdclk >= 500000) val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE; intel_de_write(dev_priv, CDCLK_CTL, val); if (pipe != INVALID_PIPE) intel_wait_for_vblank(dev_priv, pipe); if (DISPLAY_VER(dev_priv) >= 11 || IS_CANNONLAKE(dev_priv)) { ret = sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, cdclk_config->voltage_level); } else { /* * The timeout isn't specified, the 2ms used here is based on * experiment. * FIXME: Waiting for the request completion could be delayed * until the next PCODE request based on BSpec. */ ret = sandybridge_pcode_write_timeout(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, cdclk_config->voltage_level, 150, 2); } if (ret) { drm_err(&dev_priv->drm, "PCode CDCLK freq set failed, (err %d, freq %d)\n", ret, cdclk); return; } intel_update_cdclk(dev_priv); if (DISPLAY_VER(dev_priv) >= 11 || IS_CANNONLAKE(dev_priv)) /* * Can't read out the voltage level :( * Let's just assume everything is as expected. */ dev_priv->cdclk.hw.voltage_level = cdclk_config->voltage_level; } static void bxt_sanitize_cdclk(struct drm_i915_private *dev_priv) { u32 cdctl, expected; int cdclk, vco; intel_update_cdclk(dev_priv); intel_dump_cdclk_config(&dev_priv->cdclk.hw, "Current CDCLK"); if (dev_priv->cdclk.hw.vco == 0 || dev_priv->cdclk.hw.cdclk == dev_priv->cdclk.hw.bypass) goto sanitize; /* DPLL okay; verify the cdclock * * Some BIOS versions leave an incorrect decimal frequency value and * set reserved MBZ bits in CDCLK_CTL at least during exiting from S4, * so sanitize this register. */ cdctl = intel_de_read(dev_priv, CDCLK_CTL); /* * Let's ignore the pipe field, since BIOS could have configured the * dividers both synching to an active pipe, or asynchronously * (PIPE_NONE). */ cdctl &= ~bxt_cdclk_cd2x_pipe(dev_priv, INVALID_PIPE); /* Make sure this is a legal cdclk value for the platform */ cdclk = bxt_calc_cdclk(dev_priv, dev_priv->cdclk.hw.cdclk); if (cdclk != dev_priv->cdclk.hw.cdclk) goto sanitize; /* Make sure the VCO is correct for the cdclk */ vco = bxt_calc_cdclk_pll_vco(dev_priv, cdclk); if (vco != dev_priv->cdclk.hw.vco) goto sanitize; expected = skl_cdclk_decimal(cdclk); /* Figure out what CD2X divider we should be using for this cdclk */ expected |= bxt_cdclk_cd2x_div_sel(dev_priv, dev_priv->cdclk.hw.cdclk, dev_priv->cdclk.hw.vco); /* * Disable SSA Precharge when CD clock frequency < 500 MHz, * enable otherwise. */ if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) && dev_priv->cdclk.hw.cdclk >= 500000) expected |= BXT_CDCLK_SSA_PRECHARGE_ENABLE; if (cdctl == expected) /* All well; nothing to sanitize */ return; sanitize: drm_dbg_kms(&dev_priv->drm, "Sanitizing cdclk programmed by pre-os\n"); /* force cdclk programming */ dev_priv->cdclk.hw.cdclk = 0; /* force full PLL disable + enable */ dev_priv->cdclk.hw.vco = -1; } static void bxt_cdclk_init_hw(struct drm_i915_private *dev_priv) { struct intel_cdclk_config cdclk_config; bxt_sanitize_cdclk(dev_priv); if (dev_priv->cdclk.hw.cdclk != 0 && dev_priv->cdclk.hw.vco != 0) return; cdclk_config = dev_priv->cdclk.hw; /* * FIXME: * - The initial CDCLK needs to be read from VBT. * Need to make this change after VBT has changes for BXT. */ cdclk_config.cdclk = bxt_calc_cdclk(dev_priv, 0); cdclk_config.vco = bxt_calc_cdclk_pll_vco(dev_priv, cdclk_config.cdclk); cdclk_config.voltage_level = dev_priv->display.calc_voltage_level(cdclk_config.cdclk); bxt_set_cdclk(dev_priv, &cdclk_config, INVALID_PIPE); } static void bxt_cdclk_uninit_hw(struct drm_i915_private *dev_priv) { struct intel_cdclk_config cdclk_config = dev_priv->cdclk.hw; cdclk_config.cdclk = cdclk_config.bypass; cdclk_config.vco = 0; cdclk_config.voltage_level = dev_priv->display.calc_voltage_level(cdclk_config.cdclk); bxt_set_cdclk(dev_priv, &cdclk_config, INVALID_PIPE); } /** * intel_cdclk_init_hw - Initialize CDCLK hardware * @i915: i915 device * * Initialize CDCLK. This consists mainly of initializing dev_priv->cdclk.hw and * sanitizing the state of the hardware if needed. This is generally done only * during the display core initialization sequence, after which the DMC will * take care of turning CDCLK off/on as needed. */ void intel_cdclk_init_hw(struct drm_i915_private *i915) { if (DISPLAY_VER(i915) >= 10 || IS_BROXTON(i915)) bxt_cdclk_init_hw(i915); else if (DISPLAY_VER(i915) == 9) skl_cdclk_init_hw(i915); } /** * intel_cdclk_uninit_hw - Uninitialize CDCLK hardware * @i915: i915 device * * Uninitialize CDCLK. This is done only during the display core * uninitialization sequence. */ void intel_cdclk_uninit_hw(struct drm_i915_private *i915) { if (DISPLAY_VER(i915) >= 10 || IS_BROXTON(i915)) bxt_cdclk_uninit_hw(i915); else if (DISPLAY_VER(i915) == 9) skl_cdclk_uninit_hw(i915); } /** * intel_cdclk_needs_modeset - Determine if changong between the CDCLK * configurations requires a modeset on all pipes * @a: first CDCLK configuration * @b: second CDCLK configuration * * Returns: * True if changing between the two CDCLK configurations * requires all pipes to be off, false if not. */ bool intel_cdclk_needs_modeset(const struct intel_cdclk_config *a, const struct intel_cdclk_config *b) { return a->cdclk != b->cdclk || a->vco != b->vco || a->ref != b->ref; } /** * intel_cdclk_can_cd2x_update - Determine if changing between the two CDCLK * configurations requires only a cd2x divider update * @dev_priv: i915 device * @a: first CDCLK configuration * @b: second CDCLK configuration * * Returns: * True if changing between the two CDCLK configurations * can be done with just a cd2x divider update, false if not. */ static bool intel_cdclk_can_cd2x_update(struct drm_i915_private *dev_priv, const struct intel_cdclk_config *a, const struct intel_cdclk_config *b) { /* Older hw doesn't have the capability */ if (DISPLAY_VER(dev_priv) < 10 && !IS_BROXTON(dev_priv)) return false; return a->cdclk != b->cdclk && a->vco == b->vco && a->ref == b->ref; } /** * intel_cdclk_changed - Determine if two CDCLK configurations are different * @a: first CDCLK configuration * @b: second CDCLK configuration * * Returns: * True if the CDCLK configurations don't match, false if they do. */ static bool intel_cdclk_changed(const struct intel_cdclk_config *a, const struct intel_cdclk_config *b) { return intel_cdclk_needs_modeset(a, b) || a->voltage_level != b->voltage_level; } void intel_dump_cdclk_config(const struct intel_cdclk_config *cdclk_config, const char *context) { DRM_DEBUG_DRIVER("%s %d kHz, VCO %d kHz, ref %d kHz, bypass %d kHz, voltage level %d\n", context, cdclk_config->cdclk, cdclk_config->vco, cdclk_config->ref, cdclk_config->bypass, cdclk_config->voltage_level); } /** * intel_set_cdclk - Push the CDCLK configuration to the hardware * @dev_priv: i915 device * @cdclk_config: new CDCLK configuration * @pipe: pipe with which to synchronize the update * * Program the hardware based on the passed in CDCLK state, * if necessary. */ static void intel_set_cdclk(struct drm_i915_private *dev_priv, const struct intel_cdclk_config *cdclk_config, enum pipe pipe) { struct intel_encoder *encoder; if (!intel_cdclk_changed(&dev_priv->cdclk.hw, cdclk_config)) return; if (drm_WARN_ON_ONCE(&dev_priv->drm, !dev_priv->display.set_cdclk)) return; intel_dump_cdclk_config(cdclk_config, "Changing CDCLK to"); /* * Lock aux/gmbus while we change cdclk in case those * functions use cdclk. Not all platforms/ports do, * but we'll lock them all for simplicity. */ mutex_lock(&dev_priv->gmbus_mutex); for_each_intel_dp(&dev_priv->drm, encoder) { struct intel_dp *intel_dp = enc_to_intel_dp(encoder); mutex_lock_nest_lock(&intel_dp->aux.hw_mutex, &dev_priv->gmbus_mutex); } dev_priv->display.set_cdclk(dev_priv, cdclk_config, pipe); for_each_intel_dp(&dev_priv->drm, encoder) { struct intel_dp *intel_dp = enc_to_intel_dp(encoder); mutex_unlock(&intel_dp->aux.hw_mutex); } mutex_unlock(&dev_priv->gmbus_mutex); if (drm_WARN(&dev_priv->drm, intel_cdclk_changed(&dev_priv->cdclk.hw, cdclk_config), "cdclk state doesn't match!\n")) { intel_dump_cdclk_config(&dev_priv->cdclk.hw, "[hw state]"); intel_dump_cdclk_config(cdclk_config, "[sw state]"); } } /** * intel_set_cdclk_pre_plane_update - Push the CDCLK state to the hardware * @state: intel atomic state * * Program the hardware before updating the HW plane state based on the * new CDCLK state, if necessary. */ void intel_set_cdclk_pre_plane_update(struct intel_atomic_state *state) { struct drm_i915_private *dev_priv = to_i915(state->base.dev); const struct intel_cdclk_state *old_cdclk_state = intel_atomic_get_old_cdclk_state(state); const struct intel_cdclk_state *new_cdclk_state = intel_atomic_get_new_cdclk_state(state); enum pipe pipe = new_cdclk_state->pipe; if (!intel_cdclk_changed(&old_cdclk_state->actual, &new_cdclk_state->actual)) return; if (pipe == INVALID_PIPE || old_cdclk_state->actual.cdclk <= new_cdclk_state->actual.cdclk) { drm_WARN_ON(&dev_priv->drm, !new_cdclk_state->base.changed); intel_set_cdclk(dev_priv, &new_cdclk_state->actual, pipe); } } /** * intel_set_cdclk_post_plane_update - Push the CDCLK state to the hardware * @state: intel atomic state * * Program the hardware after updating the HW plane state based on the * new CDCLK state, if necessary. */ void intel_set_cdclk_post_plane_update(struct intel_atomic_state *state) { struct drm_i915_private *dev_priv = to_i915(state->base.dev); const struct intel_cdclk_state *old_cdclk_state = intel_atomic_get_old_cdclk_state(state); const struct intel_cdclk_state *new_cdclk_state = intel_atomic_get_new_cdclk_state(state); enum pipe pipe = new_cdclk_state->pipe; if (!intel_cdclk_changed(&old_cdclk_state->actual, &new_cdclk_state->actual)) return; if (pipe != INVALID_PIPE && old_cdclk_state->actual.cdclk > new_cdclk_state->actual.cdclk) { drm_WARN_ON(&dev_priv->drm, !new_cdclk_state->base.changed); intel_set_cdclk(dev_priv, &new_cdclk_state->actual, pipe); } } static int intel_pixel_rate_to_cdclk(const struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); int pixel_rate = crtc_state->pixel_rate; if (DISPLAY_VER(dev_priv) >= 10) return DIV_ROUND_UP(pixel_rate, 2); else if (DISPLAY_VER(dev_priv) == 9 || IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) return pixel_rate; else if (IS_CHERRYVIEW(dev_priv)) return DIV_ROUND_UP(pixel_rate * 100, 95); else if (crtc_state->double_wide) return DIV_ROUND_UP(pixel_rate * 100, 90 * 2); else return DIV_ROUND_UP(pixel_rate * 100, 90); } static int intel_planes_min_cdclk(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct intel_plane *plane; int min_cdclk = 0; for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) min_cdclk = max(crtc_state->min_cdclk[plane->id], min_cdclk); return min_cdclk; } int intel_crtc_compute_min_cdclk(const struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); int min_cdclk; if (!crtc_state->hw.enable) return 0; min_cdclk = intel_pixel_rate_to_cdclk(crtc_state); /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */ if (IS_BROADWELL(dev_priv) && hsw_crtc_state_ips_capable(crtc_state)) min_cdclk = DIV_ROUND_UP(min_cdclk * 100, 95); /* BSpec says "Do not use DisplayPort with CDCLK less than 432 MHz, * audio enabled, port width x4, and link rate HBR2 (5.4 GHz), or else * there may be audio corruption or screen corruption." This cdclk * restriction for GLK is 316.8 MHz. */ if (intel_crtc_has_dp_encoder(crtc_state) && crtc_state->has_audio && crtc_state->port_clock >= 540000 && crtc_state->lane_count == 4) { if (DISPLAY_VER(dev_priv) == 10) { /* Display WA #1145: glk,cnl */ min_cdclk = max(316800, min_cdclk); } else if (DISPLAY_VER(dev_priv) == 9 || IS_BROADWELL(dev_priv)) { /* Display WA #1144: skl,bxt */ min_cdclk = max(432000, min_cdclk); } } /* * According to BSpec, "The CD clock frequency must be at least twice * the frequency of the Azalia BCLK." and BCLK is 96 MHz by default. */ if (crtc_state->has_audio && DISPLAY_VER(dev_priv) >= 9) min_cdclk = max(2 * 96000, min_cdclk); /* * "For DP audio configuration, cdclk frequency shall be set to * meet the following requirements: * DP Link Frequency(MHz) | Cdclk frequency(MHz) * 270 | 320 or higher * 162 | 200 or higher" */ if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && intel_crtc_has_dp_encoder(crtc_state) && crtc_state->has_audio) min_cdclk = max(crtc_state->port_clock, min_cdclk); /* * On Valleyview some DSI panels lose (v|h)sync when the clock is lower * than 320000KHz. */ if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI) && IS_VALLEYVIEW(dev_priv)) min_cdclk = max(320000, min_cdclk); /* * On Geminilake once the CDCLK gets as low as 79200 * picture gets unstable, despite that values are * correct for DSI PLL and DE PLL. */ if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI) && IS_GEMINILAKE(dev_priv)) min_cdclk = max(158400, min_cdclk); /* Account for additional needs from the planes */ min_cdclk = max(intel_planes_min_cdclk(crtc_state), min_cdclk); /* * HACK. Currently for TGL platforms we calculate * min_cdclk initially based on pixel_rate divided * by 2, accounting for also plane requirements, * however in some cases the lowest possible CDCLK * doesn't work and causing the underruns. * Explicitly stating here that this seems to be currently * rather a Hack, than final solution. */ if (IS_TIGERLAKE(dev_priv)) { /* * Clamp to max_cdclk_freq in case pixel rate is higher, * in order not to break an 8K, but still leave W/A at place. */ min_cdclk = max_t(int, min_cdclk, min_t(int, crtc_state->pixel_rate, dev_priv->max_cdclk_freq)); } if (min_cdclk > dev_priv->max_cdclk_freq) { drm_dbg_kms(&dev_priv->drm, "required cdclk (%d kHz) exceeds max (%d kHz)\n", min_cdclk, dev_priv->max_cdclk_freq); return -EINVAL; } return min_cdclk; } static int intel_compute_min_cdclk(struct intel_cdclk_state *cdclk_state) { struct intel_atomic_state *state = cdclk_state->base.state; struct drm_i915_private *dev_priv = to_i915(state->base.dev); struct intel_bw_state *bw_state = NULL; struct intel_crtc *crtc; struct intel_crtc_state *crtc_state; int min_cdclk, i; enum pipe pipe; for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { int ret; min_cdclk = intel_crtc_compute_min_cdclk(crtc_state); if (min_cdclk < 0) return min_cdclk; bw_state = intel_atomic_get_bw_state(state); if (IS_ERR(bw_state)) return PTR_ERR(bw_state); if (cdclk_state->min_cdclk[crtc->pipe] == min_cdclk) continue; cdclk_state->min_cdclk[crtc->pipe] = min_cdclk; ret = intel_atomic_lock_global_state(&cdclk_state->base); if (ret) return ret; } min_cdclk = cdclk_state->force_min_cdclk; for_each_pipe(dev_priv, pipe) { min_cdclk = max(cdclk_state->min_cdclk[pipe], min_cdclk); if (!bw_state) continue; min_cdclk = max(bw_state->min_cdclk, min_cdclk); } return min_cdclk; } /* * Account for port clock min voltage level requirements. * This only really does something on CNL+ but can be * called on earlier platforms as well. * * Note that this functions assumes that 0 is * the lowest voltage value, and higher values * correspond to increasingly higher voltages. * * Should that relationship no longer hold on * future platforms this code will need to be * adjusted. */ static int bxt_compute_min_voltage_level(struct intel_cdclk_state *cdclk_state) { struct intel_atomic_state *state = cdclk_state->base.state; struct drm_i915_private *dev_priv = to_i915(state->base.dev); struct intel_crtc *crtc; struct intel_crtc_state *crtc_state; u8 min_voltage_level; int i; enum pipe pipe; for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { int ret; if (crtc_state->hw.enable) min_voltage_level = crtc_state->min_voltage_level; else min_voltage_level = 0; if (cdclk_state->min_voltage_level[crtc->pipe] == min_voltage_level) continue; cdclk_state->min_voltage_level[crtc->pipe] = min_voltage_level; ret = intel_atomic_lock_global_state(&cdclk_state->base); if (ret) return ret; } min_voltage_level = 0; for_each_pipe(dev_priv, pipe) min_voltage_level = max(cdclk_state->min_voltage_level[pipe], min_voltage_level); return min_voltage_level; } static int vlv_modeset_calc_cdclk(struct intel_cdclk_state *cdclk_state) { struct intel_atomic_state *state = cdclk_state->base.state; struct drm_i915_private *dev_priv = to_i915(state->base.dev); int min_cdclk, cdclk; min_cdclk = intel_compute_min_cdclk(cdclk_state); if (min_cdclk < 0) return min_cdclk; cdclk = vlv_calc_cdclk(dev_priv, min_cdclk); cdclk_state->logical.cdclk = cdclk; cdclk_state->logical.voltage_level = vlv_calc_voltage_level(dev_priv, cdclk); if (!cdclk_state->active_pipes) { cdclk = vlv_calc_cdclk(dev_priv, cdclk_state->force_min_cdclk); cdclk_state->actual.cdclk = cdclk; cdclk_state->actual.voltage_level = vlv_calc_voltage_level(dev_priv, cdclk); } else { cdclk_state->actual = cdclk_state->logical; } return 0; } static int bdw_modeset_calc_cdclk(struct intel_cdclk_state *cdclk_state) { int min_cdclk, cdclk; min_cdclk = intel_compute_min_cdclk(cdclk_state); if (min_cdclk < 0) return min_cdclk; /* * FIXME should also account for plane ratio * once 64bpp pixel formats are supported. */ cdclk = bdw_calc_cdclk(min_cdclk); cdclk_state->logical.cdclk = cdclk; cdclk_state->logical.voltage_level = bdw_calc_voltage_level(cdclk); if (!cdclk_state->active_pipes) { cdclk = bdw_calc_cdclk(cdclk_state->force_min_cdclk); cdclk_state->actual.cdclk = cdclk; cdclk_state->actual.voltage_level = bdw_calc_voltage_level(cdclk); } else { cdclk_state->actual = cdclk_state->logical; } return 0; } static int skl_dpll0_vco(struct intel_cdclk_state *cdclk_state) { struct intel_atomic_state *state = cdclk_state->base.state; struct drm_i915_private *dev_priv = to_i915(state->base.dev); struct intel_crtc *crtc; struct intel_crtc_state *crtc_state; int vco, i; vco = cdclk_state->logical.vco; if (!vco) vco = dev_priv->skl_preferred_vco_freq; for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { if (!crtc_state->hw.enable) continue; if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP)) continue; /* * DPLL0 VCO may need to be adjusted to get the correct * clock for eDP. This will affect cdclk as well. */ switch (crtc_state->port_clock / 2) { case 108000: case 216000: vco = 8640000; break; default: vco = 8100000; break; } } return vco; } static int skl_modeset_calc_cdclk(struct intel_cdclk_state *cdclk_state) { int min_cdclk, cdclk, vco; min_cdclk = intel_compute_min_cdclk(cdclk_state); if (min_cdclk < 0) return min_cdclk; vco = skl_dpll0_vco(cdclk_state); /* * FIXME should also account for plane ratio * once 64bpp pixel formats are supported. */ cdclk = skl_calc_cdclk(min_cdclk, vco); cdclk_state->logical.vco = vco; cdclk_state->logical.cdclk = cdclk; cdclk_state->logical.voltage_level = skl_calc_voltage_level(cdclk); if (!cdclk_state->active_pipes) { cdclk = skl_calc_cdclk(cdclk_state->force_min_cdclk, vco); cdclk_state->actual.vco = vco; cdclk_state->actual.cdclk = cdclk; cdclk_state->actual.voltage_level = skl_calc_voltage_level(cdclk); } else { cdclk_state->actual = cdclk_state->logical; } return 0; } static int bxt_modeset_calc_cdclk(struct intel_cdclk_state *cdclk_state) { struct intel_atomic_state *state = cdclk_state->base.state; struct drm_i915_private *dev_priv = to_i915(state->base.dev); int min_cdclk, min_voltage_level, cdclk, vco; min_cdclk = intel_compute_min_cdclk(cdclk_state); if (min_cdclk < 0) return min_cdclk; min_voltage_level = bxt_compute_min_voltage_level(cdclk_state); if (min_voltage_level < 0) return min_voltage_level; cdclk = bxt_calc_cdclk(dev_priv, min_cdclk); vco = bxt_calc_cdclk_pll_vco(dev_priv, cdclk); cdclk_state->logical.vco = vco; cdclk_state->logical.cdclk = cdclk; cdclk_state->logical.voltage_level = max_t(int, min_voltage_level, dev_priv->display.calc_voltage_level(cdclk)); if (!cdclk_state->active_pipes) { cdclk = bxt_calc_cdclk(dev_priv, cdclk_state->force_min_cdclk); vco = bxt_calc_cdclk_pll_vco(dev_priv, cdclk); cdclk_state->actual.vco = vco; cdclk_state->actual.cdclk = cdclk; cdclk_state->actual.voltage_level = dev_priv->display.calc_voltage_level(cdclk); } else { cdclk_state->actual = cdclk_state->logical; } return 0; } static int fixed_modeset_calc_cdclk(struct intel_cdclk_state *cdclk_state) { int min_cdclk; /* * We can't change the cdclk frequency, but we still want to * check that the required minimum frequency doesn't exceed * the actual cdclk frequency. */ min_cdclk = intel_compute_min_cdclk(cdclk_state); if (min_cdclk < 0) return min_cdclk; return 0; } static struct intel_global_state *intel_cdclk_duplicate_state(struct intel_global_obj *obj) { struct intel_cdclk_state *cdclk_state; cdclk_state = kmemdup(obj->state, sizeof(*cdclk_state), GFP_KERNEL); if (!cdclk_state) return NULL; cdclk_state->pipe = INVALID_PIPE; return &cdclk_state->base; } static void intel_cdclk_destroy_state(struct intel_global_obj *obj, struct intel_global_state *state) { kfree(state); } static const struct intel_global_state_funcs intel_cdclk_funcs = { .atomic_duplicate_state = intel_cdclk_duplicate_state, .atomic_destroy_state = intel_cdclk_destroy_state, }; struct intel_cdclk_state * intel_atomic_get_cdclk_state(struct intel_atomic_state *state) { struct drm_i915_private *dev_priv = to_i915(state->base.dev); struct intel_global_state *cdclk_state; cdclk_state = intel_atomic_get_global_obj_state(state, &dev_priv->cdclk.obj); if (IS_ERR(cdclk_state)) return ERR_CAST(cdclk_state); return to_intel_cdclk_state(cdclk_state); } int intel_cdclk_init(struct drm_i915_private *dev_priv) { struct intel_cdclk_state *cdclk_state; cdclk_state = kzalloc(sizeof(*cdclk_state), GFP_KERNEL); if (!cdclk_state) return -ENOMEM; intel_atomic_global_obj_init(dev_priv, &dev_priv->cdclk.obj, &cdclk_state->base, &intel_cdclk_funcs); return 0; } int intel_modeset_calc_cdclk(struct intel_atomic_state *state) { struct drm_i915_private *dev_priv = to_i915(state->base.dev); const struct intel_cdclk_state *old_cdclk_state; struct intel_cdclk_state *new_cdclk_state; enum pipe pipe; int ret; new_cdclk_state = intel_atomic_get_cdclk_state(state); if (IS_ERR(new_cdclk_state)) return PTR_ERR(new_cdclk_state); old_cdclk_state = intel_atomic_get_old_cdclk_state(state); new_cdclk_state->active_pipes = intel_calc_active_pipes(state, old_cdclk_state->active_pipes); ret = dev_priv->display.modeset_calc_cdclk(new_cdclk_state); if (ret) return ret; if (intel_cdclk_changed(&old_cdclk_state->actual, &new_cdclk_state->actual)) { /* * Also serialize commits across all crtcs * if the actual hw needs to be poked. */ ret = intel_atomic_serialize_global_state(&new_cdclk_state->base); if (ret) return ret; } else if (old_cdclk_state->active_pipes != new_cdclk_state->active_pipes || old_cdclk_state->force_min_cdclk != new_cdclk_state->force_min_cdclk || intel_cdclk_changed(&old_cdclk_state->logical, &new_cdclk_state->logical)) { ret = intel_atomic_lock_global_state(&new_cdclk_state->base); if (ret) return ret; } else { return 0; } if (is_power_of_2(new_cdclk_state->active_pipes) && intel_cdclk_can_cd2x_update(dev_priv, &old_cdclk_state->actual, &new_cdclk_state->actual)) { struct intel_crtc *crtc; struct intel_crtc_state *crtc_state; pipe = ilog2(new_cdclk_state->active_pipes); crtc = intel_get_crtc_for_pipe(dev_priv, pipe); crtc_state = intel_atomic_get_crtc_state(&state->base, crtc); if (IS_ERR(crtc_state)) return PTR_ERR(crtc_state); if (drm_atomic_crtc_needs_modeset(&crtc_state->uapi)) pipe = INVALID_PIPE; } else { pipe = INVALID_PIPE; } if (pipe != INVALID_PIPE) { new_cdclk_state->pipe = pipe; drm_dbg_kms(&dev_priv->drm, "Can change cdclk with pipe %c active\n", pipe_name(pipe)); } else if (intel_cdclk_needs_modeset(&old_cdclk_state->actual, &new_cdclk_state->actual)) { /* All pipes must be switched off while we change the cdclk. */ ret = intel_modeset_all_pipes(state); if (ret) return ret; new_cdclk_state->pipe = INVALID_PIPE; drm_dbg_kms(&dev_priv->drm, "Modeset required for cdclk change\n"); } drm_dbg_kms(&dev_priv->drm, "New cdclk calculated to be logical %u kHz, actual %u kHz\n", new_cdclk_state->logical.cdclk, new_cdclk_state->actual.cdclk); drm_dbg_kms(&dev_priv->drm, "New voltage level calculated to be logical %u, actual %u\n", new_cdclk_state->logical.voltage_level, new_cdclk_state->actual.voltage_level); return 0; } static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv) { int max_cdclk_freq = dev_priv->max_cdclk_freq; if (DISPLAY_VER(dev_priv) >= 10) return 2 * max_cdclk_freq; else if (DISPLAY_VER(dev_priv) == 9 || IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) return max_cdclk_freq; else if (IS_CHERRYVIEW(dev_priv)) return max_cdclk_freq*95/100; else if (DISPLAY_VER(dev_priv) < 4) return 2*max_cdclk_freq*90/100; else return max_cdclk_freq*90/100; } /** * intel_update_max_cdclk - Determine the maximum support CDCLK frequency * @dev_priv: i915 device * * Determine the maximum CDCLK frequency the platform supports, and also * derive the maximum dot clock frequency the maximum CDCLK frequency * allows. */ void intel_update_max_cdclk(struct drm_i915_private *dev_priv) { if (IS_JSL_EHL(dev_priv)) { if (dev_priv->cdclk.hw.ref == 24000) dev_priv->max_cdclk_freq = 552000; else dev_priv->max_cdclk_freq = 556800; } else if (DISPLAY_VER(dev_priv) >= 11) { if (dev_priv->cdclk.hw.ref == 24000) dev_priv->max_cdclk_freq = 648000; else dev_priv->max_cdclk_freq = 652800; } else if (IS_CANNONLAKE(dev_priv)) { dev_priv->max_cdclk_freq = 528000; } else if (IS_GEMINILAKE(dev_priv)) { dev_priv->max_cdclk_freq = 316800; } else if (IS_BROXTON(dev_priv)) { dev_priv->max_cdclk_freq = 624000; } else if (DISPLAY_VER(dev_priv) == 9) { u32 limit = intel_de_read(dev_priv, SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK; int max_cdclk, vco; vco = dev_priv->skl_preferred_vco_freq; drm_WARN_ON(&dev_priv->drm, vco != 8100000 && vco != 8640000); /* * Use the lower (vco 8640) cdclk values as a * first guess. skl_calc_cdclk() will correct it * if the preferred vco is 8100 instead. */ if (limit == SKL_DFSM_CDCLK_LIMIT_675) max_cdclk = 617143; else if (limit == SKL_DFSM_CDCLK_LIMIT_540) max_cdclk = 540000; else if (limit == SKL_DFSM_CDCLK_LIMIT_450) max_cdclk = 432000; else max_cdclk = 308571; dev_priv->max_cdclk_freq = skl_calc_cdclk(max_cdclk, vco); } else if (IS_BROADWELL(dev_priv)) { /* * FIXME with extra cooling we can allow * 540 MHz for ULX and 675 Mhz for ULT. * How can we know if extra cooling is * available? PCI ID, VTB, something else? */ if (intel_de_read(dev_priv, FUSE_STRAP) & HSW_CDCLK_LIMIT) dev_priv->max_cdclk_freq = 450000; else if (IS_BDW_ULX(dev_priv)) dev_priv->max_cdclk_freq = 450000; else if (IS_BDW_ULT(dev_priv)) dev_priv->max_cdclk_freq = 540000; else dev_priv->max_cdclk_freq = 675000; } else if (IS_CHERRYVIEW(dev_priv)) { dev_priv->max_cdclk_freq = 320000; } else if (IS_VALLEYVIEW(dev_priv)) { dev_priv->max_cdclk_freq = 400000; } else { /* otherwise assume cdclk is fixed */ dev_priv->max_cdclk_freq = dev_priv->cdclk.hw.cdclk; } dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv); drm_dbg(&dev_priv->drm, "Max CD clock rate: %d kHz\n", dev_priv->max_cdclk_freq); drm_dbg(&dev_priv->drm, "Max dotclock rate: %d kHz\n", dev_priv->max_dotclk_freq); } /** * intel_update_cdclk - Determine the current CDCLK frequency * @dev_priv: i915 device * * Determine the current CDCLK frequency. */ void intel_update_cdclk(struct drm_i915_private *dev_priv) { dev_priv->display.get_cdclk(dev_priv, &dev_priv->cdclk.hw); /* * 9:0 CMBUS [sic] CDCLK frequency (cdfreq): * Programmng [sic] note: bit[9:2] should be programmed to the number * of cdclk that generates 4MHz reference clock freq which is used to * generate GMBus clock. This will vary with the cdclk freq. */ if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) intel_de_write(dev_priv, GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk.hw.cdclk, 1000)); } static int dg1_rawclk(struct drm_i915_private *dev_priv) { /* * DG1 always uses a 38.4 MHz rawclk. The bspec tells us * "Program Numerator=2, Denominator=4, Divider=37 decimal." */ intel_de_write(dev_priv, PCH_RAWCLK_FREQ, CNP_RAWCLK_DEN(4) | CNP_RAWCLK_DIV(37) | ICP_RAWCLK_NUM(2)); return 38400; } static int cnp_rawclk(struct drm_i915_private *dev_priv) { u32 rawclk; int divider, fraction; if (intel_de_read(dev_priv, SFUSE_STRAP) & SFUSE_STRAP_RAW_FREQUENCY) { /* 24 MHz */ divider = 24000; fraction = 0; } else { /* 19.2 MHz */ divider = 19000; fraction = 200; } rawclk = CNP_RAWCLK_DIV(divider / 1000); if (fraction) { int numerator = 1; rawclk |= CNP_RAWCLK_DEN(DIV_ROUND_CLOSEST(numerator * 1000, fraction) - 1); if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP) rawclk |= ICP_RAWCLK_NUM(numerator); } intel_de_write(dev_priv, PCH_RAWCLK_FREQ, rawclk); return divider + fraction; } static int pch_rawclk(struct drm_i915_private *dev_priv) { return (intel_de_read(dev_priv, PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK) * 1000; } static int vlv_hrawclk(struct drm_i915_private *dev_priv) { /* RAWCLK_FREQ_VLV register updated from power well code */ return vlv_get_cck_clock_hpll(dev_priv, "hrawclk", CCK_DISPLAY_REF_CLOCK_CONTROL); } static int i9xx_hrawclk(struct drm_i915_private *dev_priv) { u32 clkcfg; /* * hrawclock is 1/4 the FSB frequency * * Note that this only reads the state of the FSB * straps, not the actual FSB frequency. Some BIOSen * let you configure each independently. Ideally we'd * read out the actual FSB frequency but sadly we * don't know which registers have that information, * and all the relevant docs have gone to bit heaven :( */ clkcfg = intel_de_read(dev_priv, CLKCFG) & CLKCFG_FSB_MASK; if (IS_MOBILE(dev_priv)) { switch (clkcfg) { case CLKCFG_FSB_400: return 100000; case CLKCFG_FSB_533: return 133333; case CLKCFG_FSB_667: return 166667; case CLKCFG_FSB_800: return 200000; case CLKCFG_FSB_1067: return 266667; case CLKCFG_FSB_1333: return 333333; default: MISSING_CASE(clkcfg); return 133333; } } else { switch (clkcfg) { case CLKCFG_FSB_400_ALT: return 100000; case CLKCFG_FSB_533: return 133333; case CLKCFG_FSB_667: return 166667; case CLKCFG_FSB_800: return 200000; case CLKCFG_FSB_1067_ALT: return 266667; case CLKCFG_FSB_1333_ALT: return 333333; case CLKCFG_FSB_1600_ALT: return 400000; default: return 133333; } } } /** * intel_read_rawclk - Determine the current RAWCLK frequency * @dev_priv: i915 device * * Determine the current RAWCLK frequency. RAWCLK is a fixed * frequency clock so this needs to done only once. */ u32 intel_read_rawclk(struct drm_i915_private *dev_priv) { u32 freq; if (INTEL_PCH_TYPE(dev_priv) >= PCH_DG1) freq = dg1_rawclk(dev_priv); else if (INTEL_PCH_TYPE(dev_priv) >= PCH_CNP) freq = cnp_rawclk(dev_priv); else if (HAS_PCH_SPLIT(dev_priv)) freq = pch_rawclk(dev_priv); else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) freq = vlv_hrawclk(dev_priv); else if (DISPLAY_VER(dev_priv) >= 3) freq = i9xx_hrawclk(dev_priv); else /* no rawclk on other platforms, or no need to know it */ return 0; return freq; } /** * intel_init_cdclk_hooks - Initialize CDCLK related modesetting hooks * @dev_priv: i915 device */ void intel_init_cdclk_hooks(struct drm_i915_private *dev_priv) { if (IS_ALDERLAKE_P(dev_priv)) { dev_priv->display.set_cdclk = bxt_set_cdclk; dev_priv->display.bw_calc_min_cdclk = skl_bw_calc_min_cdclk; dev_priv->display.modeset_calc_cdclk = bxt_modeset_calc_cdclk; dev_priv->display.calc_voltage_level = tgl_calc_voltage_level; /* Wa_22011320316:adlp[a0] */ if (IS_ADLP_DISPLAY_STEP(dev_priv, STEP_A0, STEP_A0)) dev_priv->cdclk.table = adlp_a_step_cdclk_table; else dev_priv->cdclk.table = adlp_cdclk_table; } else if (IS_ROCKETLAKE(dev_priv)) { dev_priv->display.set_cdclk = bxt_set_cdclk; dev_priv->display.bw_calc_min_cdclk = skl_bw_calc_min_cdclk; dev_priv->display.modeset_calc_cdclk = bxt_modeset_calc_cdclk; dev_priv->display.calc_voltage_level = tgl_calc_voltage_level; dev_priv->cdclk.table = rkl_cdclk_table; } else if (DISPLAY_VER(dev_priv) >= 12) { dev_priv->display.set_cdclk = bxt_set_cdclk; dev_priv->display.bw_calc_min_cdclk = skl_bw_calc_min_cdclk; dev_priv->display.modeset_calc_cdclk = bxt_modeset_calc_cdclk; dev_priv->display.calc_voltage_level = tgl_calc_voltage_level; dev_priv->cdclk.table = icl_cdclk_table; } else if (IS_JSL_EHL(dev_priv)) { dev_priv->display.set_cdclk = bxt_set_cdclk; dev_priv->display.bw_calc_min_cdclk = skl_bw_calc_min_cdclk; dev_priv->display.modeset_calc_cdclk = bxt_modeset_calc_cdclk; dev_priv->display.calc_voltage_level = ehl_calc_voltage_level; dev_priv->cdclk.table = icl_cdclk_table; } else if (DISPLAY_VER(dev_priv) >= 11) { dev_priv->display.set_cdclk = bxt_set_cdclk; dev_priv->display.bw_calc_min_cdclk = skl_bw_calc_min_cdclk; dev_priv->display.modeset_calc_cdclk = bxt_modeset_calc_cdclk; dev_priv->display.calc_voltage_level = icl_calc_voltage_level; dev_priv->cdclk.table = icl_cdclk_table; } else if (IS_CANNONLAKE(dev_priv)) { dev_priv->display.bw_calc_min_cdclk = skl_bw_calc_min_cdclk; dev_priv->display.set_cdclk = bxt_set_cdclk; dev_priv->display.modeset_calc_cdclk = bxt_modeset_calc_cdclk; dev_priv->display.calc_voltage_level = cnl_calc_voltage_level; dev_priv->cdclk.table = cnl_cdclk_table; } else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) { dev_priv->display.bw_calc_min_cdclk = skl_bw_calc_min_cdclk; dev_priv->display.set_cdclk = bxt_set_cdclk; dev_priv->display.modeset_calc_cdclk = bxt_modeset_calc_cdclk; dev_priv->display.calc_voltage_level = bxt_calc_voltage_level; if (IS_GEMINILAKE(dev_priv)) dev_priv->cdclk.table = glk_cdclk_table; else dev_priv->cdclk.table = bxt_cdclk_table; } else if (DISPLAY_VER(dev_priv) == 9) { dev_priv->display.bw_calc_min_cdclk = skl_bw_calc_min_cdclk; dev_priv->display.set_cdclk = skl_set_cdclk; dev_priv->display.modeset_calc_cdclk = skl_modeset_calc_cdclk; } else if (IS_BROADWELL(dev_priv)) { dev_priv->display.bw_calc_min_cdclk = intel_bw_calc_min_cdclk; dev_priv->display.set_cdclk = bdw_set_cdclk; dev_priv->display.modeset_calc_cdclk = bdw_modeset_calc_cdclk; } else if (IS_CHERRYVIEW(dev_priv)) { dev_priv->display.bw_calc_min_cdclk = intel_bw_calc_min_cdclk; dev_priv->display.set_cdclk = chv_set_cdclk; dev_priv->display.modeset_calc_cdclk = vlv_modeset_calc_cdclk; } else if (IS_VALLEYVIEW(dev_priv)) { dev_priv->display.bw_calc_min_cdclk = intel_bw_calc_min_cdclk; dev_priv->display.set_cdclk = vlv_set_cdclk; dev_priv->display.modeset_calc_cdclk = vlv_modeset_calc_cdclk; } else { dev_priv->display.bw_calc_min_cdclk = intel_bw_calc_min_cdclk; dev_priv->display.modeset_calc_cdclk = fixed_modeset_calc_cdclk; } if (DISPLAY_VER(dev_priv) >= 10 || IS_BROXTON(dev_priv)) dev_priv->display.get_cdclk = bxt_get_cdclk; else if (DISPLAY_VER(dev_priv) == 9) dev_priv->display.get_cdclk = skl_get_cdclk; else if (IS_BROADWELL(dev_priv)) dev_priv->display.get_cdclk = bdw_get_cdclk; else if (IS_HASWELL(dev_priv)) dev_priv->display.get_cdclk = hsw_get_cdclk; else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) dev_priv->display.get_cdclk = vlv_get_cdclk; else if (IS_SANDYBRIDGE(dev_priv) || IS_IVYBRIDGE(dev_priv)) dev_priv->display.get_cdclk = fixed_400mhz_get_cdclk; else if (IS_IRONLAKE(dev_priv)) dev_priv->display.get_cdclk = fixed_450mhz_get_cdclk; else if (IS_GM45(dev_priv)) dev_priv->display.get_cdclk = gm45_get_cdclk; else if (IS_G45(dev_priv)) dev_priv->display.get_cdclk = g33_get_cdclk; else if (IS_I965GM(dev_priv)) dev_priv->display.get_cdclk = i965gm_get_cdclk; else if (IS_I965G(dev_priv)) dev_priv->display.get_cdclk = fixed_400mhz_get_cdclk; else if (IS_PINEVIEW(dev_priv)) dev_priv->display.get_cdclk = pnv_get_cdclk; else if (IS_G33(dev_priv)) dev_priv->display.get_cdclk = g33_get_cdclk; else if (IS_I945GM(dev_priv)) dev_priv->display.get_cdclk = i945gm_get_cdclk; else if (IS_I945G(dev_priv)) dev_priv->display.get_cdclk = fixed_400mhz_get_cdclk; else if (IS_I915GM(dev_priv)) dev_priv->display.get_cdclk = i915gm_get_cdclk; else if (IS_I915G(dev_priv)) dev_priv->display.get_cdclk = fixed_333mhz_get_cdclk; else if (IS_I865G(dev_priv)) dev_priv->display.get_cdclk = fixed_266mhz_get_cdclk; else if (IS_I85X(dev_priv)) dev_priv->display.get_cdclk = i85x_get_cdclk; else if (IS_I845G(dev_priv)) dev_priv->display.get_cdclk = fixed_200mhz_get_cdclk; else if (IS_I830(dev_priv)) dev_priv->display.get_cdclk = fixed_133mhz_get_cdclk; if (drm_WARN(&dev_priv->drm, !dev_priv->display.get_cdclk, "Unknown platform. Assuming 133 MHz CDCLK\n")) dev_priv->display.get_cdclk = fixed_133mhz_get_cdclk; }