// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2005-2007 Kristian Hoegsberg */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "core.h" #define define_fw_printk_level(func, kern_level) \ void func(const struct fw_card *card, const char *fmt, ...) \ { \ struct va_format vaf; \ va_list args; \ \ va_start(args, fmt); \ vaf.fmt = fmt; \ vaf.va = &args; \ printk(kern_level KBUILD_MODNAME " %s: %pV", \ dev_name(card->device), &vaf); \ va_end(args); \ } define_fw_printk_level(fw_err, KERN_ERR); define_fw_printk_level(fw_notice, KERN_NOTICE); int fw_compute_block_crc(__be32 *block) { int length; u16 crc; length = (be32_to_cpu(block[0]) >> 16) & 0xff; crc = crc_itu_t(0, (u8 *)&block[1], length * 4); *block |= cpu_to_be32(crc); return length; } static DEFINE_MUTEX(card_mutex); static LIST_HEAD(card_list); static LIST_HEAD(descriptor_list); static int descriptor_count; static __be32 tmp_config_rom[256]; /* ROM header, bus info block, root dir header, capabilities = 7 quadlets */ static size_t config_rom_length = 1 + 4 + 1 + 1; #define BIB_CRC(v) ((v) << 0) #define BIB_CRC_LENGTH(v) ((v) << 16) #define BIB_INFO_LENGTH(v) ((v) << 24) #define BIB_BUS_NAME 0x31333934 /* "1394" */ #define BIB_LINK_SPEED(v) ((v) << 0) #define BIB_GENERATION(v) ((v) << 4) #define BIB_MAX_ROM(v) ((v) << 8) #define BIB_MAX_RECEIVE(v) ((v) << 12) #define BIB_CYC_CLK_ACC(v) ((v) << 16) #define BIB_PMC ((1) << 27) #define BIB_BMC ((1) << 28) #define BIB_ISC ((1) << 29) #define BIB_CMC ((1) << 30) #define BIB_IRMC ((1) << 31) #define NODE_CAPABILITIES 0x0c0083c0 /* per IEEE 1394 clause 8.3.2.6.5.2 */ /* * IEEE-1394 specifies a default SPLIT_TIMEOUT value of 800 cycles (100 ms), * but we have to make it longer because there are many devices whose firmware * is just too slow for that. */ #define DEFAULT_SPLIT_TIMEOUT (2 * 8000) #define CANON_OUI 0x000085 static void generate_config_rom(struct fw_card *card, __be32 *config_rom) { struct fw_descriptor *desc; int i, j, k, length; /* * Initialize contents of config rom buffer. On the OHCI * controller, block reads to the config rom accesses the host * memory, but quadlet read access the hardware bus info block * registers. That's just crack, but it means we should make * sure the contents of bus info block in host memory matches * the version stored in the OHCI registers. */ config_rom[0] = cpu_to_be32( BIB_CRC_LENGTH(4) | BIB_INFO_LENGTH(4) | BIB_CRC(0)); config_rom[1] = cpu_to_be32(BIB_BUS_NAME); config_rom[2] = cpu_to_be32( BIB_LINK_SPEED(card->link_speed) | BIB_GENERATION(card->config_rom_generation++ % 14 + 2) | BIB_MAX_ROM(2) | BIB_MAX_RECEIVE(card->max_receive) | BIB_BMC | BIB_ISC | BIB_CMC | BIB_IRMC); config_rom[3] = cpu_to_be32(card->guid >> 32); config_rom[4] = cpu_to_be32(card->guid); /* Generate root directory. */ config_rom[6] = cpu_to_be32(NODE_CAPABILITIES); i = 7; j = 7 + descriptor_count; /* Generate root directory entries for descriptors. */ list_for_each_entry (desc, &descriptor_list, link) { if (desc->immediate > 0) config_rom[i++] = cpu_to_be32(desc->immediate); config_rom[i] = cpu_to_be32(desc->key | (j - i)); i++; j += desc->length; } /* Update root directory length. */ config_rom[5] = cpu_to_be32((i - 5 - 1) << 16); /* End of root directory, now copy in descriptors. */ list_for_each_entry (desc, &descriptor_list, link) { for (k = 0; k < desc->length; k++) config_rom[i + k] = cpu_to_be32(desc->data[k]); i += desc->length; } /* Calculate CRCs for all blocks in the config rom. This * assumes that CRC length and info length are identical for * the bus info block, which is always the case for this * implementation. */ for (i = 0; i < j; i += length + 1) length = fw_compute_block_crc(config_rom + i); WARN_ON(j != config_rom_length); } static void update_config_roms(void) { struct fw_card *card; list_for_each_entry (card, &card_list, link) { generate_config_rom(card, tmp_config_rom); card->driver->set_config_rom(card, tmp_config_rom, config_rom_length); } } static size_t required_space(struct fw_descriptor *desc) { /* descriptor + entry into root dir + optional immediate entry */ return desc->length + 1 + (desc->immediate > 0 ? 1 : 0); } int fw_core_add_descriptor(struct fw_descriptor *desc) { size_t i; int ret; /* * Check descriptor is valid; the length of all blocks in the * descriptor has to add up to exactly the length of the * block. */ i = 0; while (i < desc->length) i += (desc->data[i] >> 16) + 1; if (i != desc->length) return -EINVAL; mutex_lock(&card_mutex); if (config_rom_length + required_space(desc) > 256) { ret = -EBUSY; } else { list_add_tail(&desc->link, &descriptor_list); config_rom_length += required_space(desc); descriptor_count++; if (desc->immediate > 0) descriptor_count++; update_config_roms(); ret = 0; } mutex_unlock(&card_mutex); return ret; } EXPORT_SYMBOL(fw_core_add_descriptor); void fw_core_remove_descriptor(struct fw_descriptor *desc) { mutex_lock(&card_mutex); list_del(&desc->link); config_rom_length -= required_space(desc); descriptor_count--; if (desc->immediate > 0) descriptor_count--; update_config_roms(); mutex_unlock(&card_mutex); } EXPORT_SYMBOL(fw_core_remove_descriptor); static int reset_bus(struct fw_card *card, bool short_reset) { int reg = short_reset ? 5 : 1; int bit = short_reset ? PHY_BUS_SHORT_RESET : PHY_BUS_RESET; return card->driver->update_phy_reg(card, reg, 0, bit); } void fw_schedule_bus_reset(struct fw_card *card, bool delayed, bool short_reset) { /* We don't try hard to sort out requests of long vs. short resets. */ card->br_short = short_reset; /* Use an arbitrary short delay to combine multiple reset requests. */ fw_card_get(card); if (!queue_delayed_work(fw_workqueue, &card->br_work, delayed ? DIV_ROUND_UP(HZ, 100) : 0)) fw_card_put(card); } EXPORT_SYMBOL(fw_schedule_bus_reset); static void br_work(struct work_struct *work) { struct fw_card *card = container_of(work, struct fw_card, br_work.work); /* Delay for 2s after last reset per IEEE 1394 clause 8.2.1. */ if (card->reset_jiffies != 0 && time_before64(get_jiffies_64(), card->reset_jiffies + 2 * HZ)) { if (!queue_delayed_work(fw_workqueue, &card->br_work, 2 * HZ)) fw_card_put(card); return; } fw_send_phy_config(card, FW_PHY_CONFIG_NO_NODE_ID, card->generation, FW_PHY_CONFIG_CURRENT_GAP_COUNT); reset_bus(card, card->br_short); fw_card_put(card); } static void allocate_broadcast_channel(struct fw_card *card, int generation) { int channel, bandwidth = 0; if (!card->broadcast_channel_allocated) { fw_iso_resource_manage(card, generation, 1ULL << 31, &channel, &bandwidth, true); if (channel != 31) { fw_notice(card, "failed to allocate broadcast channel\n"); return; } card->broadcast_channel_allocated = true; } device_for_each_child(card->device, (void *)(long)generation, fw_device_set_broadcast_channel); } static const char gap_count_table[] = { 63, 5, 7, 8, 10, 13, 16, 18, 21, 24, 26, 29, 32, 35, 37, 40 }; void fw_schedule_bm_work(struct fw_card *card, unsigned long delay) { fw_card_get(card); if (!schedule_delayed_work(&card->bm_work, delay)) fw_card_put(card); } static void bm_work(struct work_struct *work) { struct fw_card *card = container_of(work, struct fw_card, bm_work.work); struct fw_device *root_device, *irm_device; struct fw_node *root_node; int root_id, new_root_id, irm_id, bm_id, local_id; int gap_count, generation, grace, rcode; bool do_reset = false; bool root_device_is_running; bool root_device_is_cmc; bool irm_is_1394_1995_only; bool keep_this_irm; __be32 transaction_data[2]; spin_lock_irq(&card->lock); if (card->local_node == NULL) { spin_unlock_irq(&card->lock); goto out_put_card; } generation = card->generation; root_node = card->root_node; fw_node_get(root_node); root_device = root_node->data; root_device_is_running = root_device && atomic_read(&root_device->state) == FW_DEVICE_RUNNING; root_device_is_cmc = root_device && root_device->cmc; irm_device = card->irm_node->data; irm_is_1394_1995_only = irm_device && irm_device->config_rom && (irm_device->config_rom[2] & 0x000000f0) == 0; /* Canon MV5i works unreliably if it is not root node. */ keep_this_irm = irm_device && irm_device->config_rom && irm_device->config_rom[3] >> 8 == CANON_OUI; root_id = root_node->node_id; irm_id = card->irm_node->node_id; local_id = card->local_node->node_id; grace = time_after64(get_jiffies_64(), card->reset_jiffies + DIV_ROUND_UP(HZ, 8)); if ((is_next_generation(generation, card->bm_generation) && !card->bm_abdicate) || (card->bm_generation != generation && grace)) { /* * This first step is to figure out who is IRM and * then try to become bus manager. If the IRM is not * well defined (e.g. does not have an active link * layer or does not responds to our lock request, we * will have to do a little vigilante bus management. * In that case, we do a goto into the gap count logic * so that when we do the reset, we still optimize the * gap count. That could well save a reset in the * next generation. */ if (!card->irm_node->link_on) { new_root_id = local_id; fw_notice(card, "%s, making local node (%02x) root\n", "IRM has link off", new_root_id); goto pick_me; } if (irm_is_1394_1995_only && !keep_this_irm) { new_root_id = local_id; fw_notice(card, "%s, making local node (%02x) root\n", "IRM is not 1394a compliant", new_root_id); goto pick_me; } transaction_data[0] = cpu_to_be32(0x3f); transaction_data[1] = cpu_to_be32(local_id); spin_unlock_irq(&card->lock); rcode = fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP, irm_id, generation, SCODE_100, CSR_REGISTER_BASE + CSR_BUS_MANAGER_ID, transaction_data, 8); if (rcode == RCODE_GENERATION) /* Another bus reset, BM work has been rescheduled. */ goto out; bm_id = be32_to_cpu(transaction_data[0]); spin_lock_irq(&card->lock); if (rcode == RCODE_COMPLETE && generation == card->generation) card->bm_node_id = bm_id == 0x3f ? local_id : 0xffc0 | bm_id; spin_unlock_irq(&card->lock); if (rcode == RCODE_COMPLETE && bm_id != 0x3f) { /* Somebody else is BM. Only act as IRM. */ if (local_id == irm_id) allocate_broadcast_channel(card, generation); goto out; } if (rcode == RCODE_SEND_ERROR) { /* * We have been unable to send the lock request due to * some local problem. Let's try again later and hope * that the problem has gone away by then. */ fw_schedule_bm_work(card, DIV_ROUND_UP(HZ, 8)); goto out; } spin_lock_irq(&card->lock); if (rcode != RCODE_COMPLETE && !keep_this_irm) { /* * The lock request failed, maybe the IRM * isn't really IRM capable after all. Let's * do a bus reset and pick the local node as * root, and thus, IRM. */ new_root_id = local_id; fw_notice(card, "BM lock failed (%s), making local node (%02x) root\n", fw_rcode_string(rcode), new_root_id); goto pick_me; } } else if (card->bm_generation != generation) { /* * We weren't BM in the last generation, and the last * bus reset is less than 125ms ago. Reschedule this job. */ spin_unlock_irq(&card->lock); fw_schedule_bm_work(card, DIV_ROUND_UP(HZ, 8)); goto out; } /* * We're bus manager for this generation, so next step is to * make sure we have an active cycle master and do gap count * optimization. */ card->bm_generation = generation; if (card->gap_count == 0) { /* * If self IDs have inconsistent gap counts, do a * bus reset ASAP. The config rom read might never * complete, so don't wait for it. However, still * send a PHY configuration packet prior to the * bus reset. The PHY configuration packet might * fail, but 1394-2008 8.4.5.2 explicitly permits * it in this case, so it should be safe to try. */ new_root_id = local_id; /* * We must always send a bus reset if the gap count * is inconsistent, so bypass the 5-reset limit. */ card->bm_retries = 0; } else if (root_device == NULL) { /* * Either link_on is false, or we failed to read the * config rom. In either case, pick another root. */ new_root_id = local_id; } else if (!root_device_is_running) { /* * If we haven't probed this device yet, bail out now * and let's try again once that's done. */ spin_unlock_irq(&card->lock); goto out; } else if (root_device_is_cmc) { /* * We will send out a force root packet for this * node as part of the gap count optimization. */ new_root_id = root_id; } else { /* * Current root has an active link layer and we * successfully read the config rom, but it's not * cycle master capable. */ new_root_id = local_id; } pick_me: /* * Pick a gap count from 1394a table E-1. The table doesn't cover * the typically much larger 1394b beta repeater delays though. */ if (!card->beta_repeaters_present && root_node->max_hops < ARRAY_SIZE(gap_count_table)) gap_count = gap_count_table[root_node->max_hops]; else gap_count = 63; /* * Finally, figure out if we should do a reset or not. If we have * done less than 5 resets with the same physical topology and we * have either a new root or a new gap count setting, let's do it. */ if (card->bm_retries++ < 5 && (card->gap_count != gap_count || new_root_id != root_id)) do_reset = true; spin_unlock_irq(&card->lock); if (do_reset) { fw_notice(card, "phy config: new root=%x, gap_count=%d\n", new_root_id, gap_count); fw_send_phy_config(card, new_root_id, generation, gap_count); reset_bus(card, true); /* Will allocate broadcast channel after the reset. */ goto out; } if (root_device_is_cmc) { /* * Make sure that the cycle master sends cycle start packets. */ transaction_data[0] = cpu_to_be32(CSR_STATE_BIT_CMSTR); rcode = fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST, root_id, generation, SCODE_100, CSR_REGISTER_BASE + CSR_STATE_SET, transaction_data, 4); if (rcode == RCODE_GENERATION) goto out; } if (local_id == irm_id) allocate_broadcast_channel(card, generation); out: fw_node_put(root_node); out_put_card: fw_card_put(card); } void fw_card_initialize(struct fw_card *card, const struct fw_card_driver *driver, struct device *device) { static atomic_t index = ATOMIC_INIT(-1); card->index = atomic_inc_return(&index); card->driver = driver; card->device = device; card->current_tlabel = 0; card->tlabel_mask = 0; card->split_timeout_hi = DEFAULT_SPLIT_TIMEOUT / 8000; card->split_timeout_lo = (DEFAULT_SPLIT_TIMEOUT % 8000) << 19; card->split_timeout_cycles = DEFAULT_SPLIT_TIMEOUT; card->split_timeout_jiffies = DIV_ROUND_UP(DEFAULT_SPLIT_TIMEOUT * HZ, 8000); card->color = 0; card->broadcast_channel = BROADCAST_CHANNEL_INITIAL; kref_init(&card->kref); init_completion(&card->done); INIT_LIST_HEAD(&card->transaction_list); INIT_LIST_HEAD(&card->phy_receiver_list); spin_lock_init(&card->lock); card->local_node = NULL; INIT_DELAYED_WORK(&card->br_work, br_work); INIT_DELAYED_WORK(&card->bm_work, bm_work); } EXPORT_SYMBOL(fw_card_initialize); int fw_card_add(struct fw_card *card, u32 max_receive, u32 link_speed, u64 guid) { int ret; card->max_receive = max_receive; card->link_speed = link_speed; card->guid = guid; mutex_lock(&card_mutex); generate_config_rom(card, tmp_config_rom); ret = card->driver->enable(card, tmp_config_rom, config_rom_length); if (ret == 0) list_add_tail(&card->link, &card_list); mutex_unlock(&card_mutex); return ret; } EXPORT_SYMBOL(fw_card_add); /* * The next few functions implement a dummy driver that is used once a card * driver shuts down an fw_card. This allows the driver to cleanly unload, * as all IO to the card will be handled (and failed) by the dummy driver * instead of calling into the module. Only functions for iso context * shutdown still need to be provided by the card driver. * * .read/write_csr() should never be called anymore after the dummy driver * was bound since they are only used within request handler context. * .set_config_rom() is never called since the card is taken out of card_list * before switching to the dummy driver. */ static int dummy_read_phy_reg(struct fw_card *card, int address) { return -ENODEV; } static int dummy_update_phy_reg(struct fw_card *card, int address, int clear_bits, int set_bits) { return -ENODEV; } static void dummy_send_request(struct fw_card *card, struct fw_packet *packet) { packet->callback(packet, card, RCODE_CANCELLED); } static void dummy_send_response(struct fw_card *card, struct fw_packet *packet) { packet->callback(packet, card, RCODE_CANCELLED); } static int dummy_cancel_packet(struct fw_card *card, struct fw_packet *packet) { return -ENOENT; } static int dummy_enable_phys_dma(struct fw_card *card, int node_id, int generation) { return -ENODEV; } static struct fw_iso_context *dummy_allocate_iso_context(struct fw_card *card, int type, int channel, size_t header_size) { return ERR_PTR(-ENODEV); } static u32 dummy_read_csr(struct fw_card *card, int csr_offset) { return 0; } static void dummy_write_csr(struct fw_card *card, int csr_offset, u32 value) { } static int dummy_start_iso(struct fw_iso_context *ctx, s32 cycle, u32 sync, u32 tags) { return -ENODEV; } static int dummy_set_iso_channels(struct fw_iso_context *ctx, u64 *channels) { return -ENODEV; } static int dummy_queue_iso(struct fw_iso_context *ctx, struct fw_iso_packet *p, struct fw_iso_buffer *buffer, unsigned long payload) { return -ENODEV; } static void dummy_flush_queue_iso(struct fw_iso_context *ctx) { } static int dummy_flush_iso_completions(struct fw_iso_context *ctx) { return -ENODEV; } static const struct fw_card_driver dummy_driver_template = { .read_phy_reg = dummy_read_phy_reg, .update_phy_reg = dummy_update_phy_reg, .send_request = dummy_send_request, .send_response = dummy_send_response, .cancel_packet = dummy_cancel_packet, .enable_phys_dma = dummy_enable_phys_dma, .read_csr = dummy_read_csr, .write_csr = dummy_write_csr, .allocate_iso_context = dummy_allocate_iso_context, .start_iso = dummy_start_iso, .set_iso_channels = dummy_set_iso_channels, .queue_iso = dummy_queue_iso, .flush_queue_iso = dummy_flush_queue_iso, .flush_iso_completions = dummy_flush_iso_completions, }; void fw_card_release(struct kref *kref) { struct fw_card *card = container_of(kref, struct fw_card, kref); complete(&card->done); } EXPORT_SYMBOL_GPL(fw_card_release); void fw_core_remove_card(struct fw_card *card) { struct fw_card_driver dummy_driver = dummy_driver_template; unsigned long flags; card->driver->update_phy_reg(card, 4, PHY_LINK_ACTIVE | PHY_CONTENDER, 0); fw_schedule_bus_reset(card, false, true); mutex_lock(&card_mutex); list_del_init(&card->link); mutex_unlock(&card_mutex); /* Switch off most of the card driver interface. */ dummy_driver.free_iso_context = card->driver->free_iso_context; dummy_driver.stop_iso = card->driver->stop_iso; card->driver = &dummy_driver; spin_lock_irqsave(&card->lock, flags); fw_destroy_nodes(card); spin_unlock_irqrestore(&card->lock, flags); /* Wait for all users, especially device workqueue jobs, to finish. */ fw_card_put(card); wait_for_completion(&card->done); WARN_ON(!list_empty(&card->transaction_list)); } EXPORT_SYMBOL(fw_core_remove_card); /** * fw_card_read_cycle_time: read from Isochronous Cycle Timer Register of 1394 OHCI in MMIO region * for controller card. * @card: The instance of card for 1394 OHCI controller. * @cycle_time: The mutual reference to value of cycle time for the read operation. * * Read value from Isochronous Cycle Timer Register of 1394 OHCI in MMIO region for the given * controller card. This function accesses the region without any lock primitives or IRQ mask. * When returning successfully, the content of @value argument has value aligned to host endianness, * formetted by CYCLE_TIME CSR Register of IEEE 1394 std. * * Context: Any context. * Return: * * 0 - Read successfully. * * -ENODEV - The controller is unavailable due to being removed or unbound. */ int fw_card_read_cycle_time(struct fw_card *card, u32 *cycle_time) { if (card->driver->read_csr == dummy_read_csr) return -ENODEV; // It's possible to switch to dummy driver between the above and the below. This is the best // effort to return -ENODEV. *cycle_time = card->driver->read_csr(card, CSR_CYCLE_TIME); return 0; } EXPORT_SYMBOL_GPL(fw_card_read_cycle_time);