Age | Commit message (Collapse) | Author | Files | Lines |
|
zonelists_mutex was introduced by commit 4eaf3f64397c ("mem-hotplug: fix
potential race while building zonelist for new populated zone") to
protect zonelist building from races. This is no longer needed though
because both memory online and offline are fully serialized. New users
have grown since then.
Notably setup_per_zone_wmarks wants to prevent from races between memory
hotplug, khugepaged setup and manual min_free_kbytes update via sysctl
(see cfd3da1e49bb ("mm: Serialize access to min_free_kbytes"). Let's
add a private lock for that purpose. This will not prevent from seeing
halfway through memory hotplug operation but that shouldn't be a big
deal becuse memory hotplug will update watermarks explicitly so we will
eventually get a full picture. The lock just makes sure we won't race
when updating watermarks leading to weird results.
Also __build_all_zonelists manipulates global data so add a private lock
for it as well. This doesn't seem to be necessary today but it is more
robust to have a lock there.
While we are at it make sure we document that memory online/offline
depends on a full serialization either via mem_hotplug_begin() or
device_lock.
Link: http://lkml.kernel.org/r/20170721143915.14161-9-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Shaohua Li <shaohua.li@intel.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Haicheng Li <haicheng.li@linux.intel.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
build_all_zonelists has been (ab)using stop_machine to make sure that
zonelists do not change while somebody is looking at them. This is is
just a gross hack because a) it complicates the context from which we
can call build_all_zonelists (see 3f906ba23689 ("mm/memory-hotplug:
switch locking to a percpu rwsem")) and b) is is not really necessary
especially after "mm, page_alloc: simplify zonelist initialization" and
c) it doesn't really provide the protection it claims (see below).
Updates of the zonelists happen very seldom, basically only when a zone
becomes populated during memory online or when it loses all the memory
during offline. A racing iteration over zonelists could either miss a
zone or try to work on one zone twice. Both of these are something we
can live with occasionally because there will always be at least one
zone visible so we are not likely to fail allocation too easily for
example.
Please note that the original stop_machine approach doesn't really
provide a better exclusion because the iteration might be interrupted
half way (unless the whole iteration is preempt disabled which is not
the case in most cases) so the some zones could still be seen twice or a
zone missed.
I have run the pathological online/offline of the single memblock in the
movable zone while stressing the same small node with some memory
pressure.
Node 1, zone DMA
pages free 0
min 0
low 0
high 0
spanned 0
present 0
managed 0
protection: (0, 943, 943, 943)
Node 1, zone DMA32
pages free 227310
min 8294
low 10367
high 12440
spanned 262112
present 262112
managed 241436
protection: (0, 0, 0, 0)
Node 1, zone Normal
pages free 0
min 0
low 0
high 0
spanned 0
present 0
managed 0
protection: (0, 0, 0, 1024)
Node 1, zone Movable
pages free 32722
min 85
low 117
high 149
spanned 32768
present 32768
managed 32768
protection: (0, 0, 0, 0)
root@test1:/sys/devices/system/node/node1# while true
do
echo offline > memory34/state
echo online_movable > memory34/state
done
root@test1:/mnt/data/test/linux-3.7-rc5# numactl --preferred=1 make -j4
and it survived without any unexpected behavior. While this is not
really a great testing coverage it should exercise the allocation path
quite a lot.
Link: http://lkml.kernel.org/r/20170721143915.14161-8-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Shaohua Li <shaohua.li@intel.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
build_zonelists gradually builds zonelists from the nearest to the most
distant node. As we do not know how many populated zones we will have
in each node we rely on the _zoneref to terminate initialized part of
the zonelist by a NULL zone. While this is functionally correct it is
quite suboptimal because we cannot allow updaters to race with zonelists
users because they could see an empty zonelist and fail the allocation
or hit the OOM killer in the worst case.
We can do much better, though. We can store the node ordering into an
already existing node_order array and then give this array to
build_zonelists_in_node_order and do the whole initialization at once.
zonelists consumers still might see halfway initialized state but that
should be much more tolerateable because the list will not be empty and
they would either see some zone twice or skip over some zone(s) in the
worst case which shouldn't lead to immediate failures.
While at it let's simplify build_zonelists_node which is rather
confusing now. It gets an index into the zoneref array and returns the
updated index for the next iteration. Let's rename the function to
build_zonerefs_node to better reflect its purpose and give it zoneref
array to update. The function doesn't the index anymore. It just
returns the number of added zones so that the caller can advance the
zonered array start for the next update.
This patch alone doesn't introduce any functional change yet, though, it
is merely a preparatory work for later changes.
Link: http://lkml.kernel.org/r/20170721143915.14161-7-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Shaohua Li <shaohua.li@intel.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
try_online_node calls hotadd_new_pgdat which already calls
build_all_zonelists. So the additional call is redundant. Even though
hotadd_new_pgdat will only initialize zonelists of the new node this is
the right thing to do because such a node doesn't have any memory so
other zonelists would ignore all the zones from this node anyway.
Link: http://lkml.kernel.org/r/20170721143915.14161-6-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Shaohua Li <shaohua.li@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
build_all_zonelists gets a zone parameter to initialize zone's pagesets.
There is only a single user which gives a non-NULL zone parameter and
that one doesn't really need the rest of the build_all_zonelists (see
commit 6dcd73d7011b ("memory-hotplug: allocate zone's pcp before
onlining pages")).
Therefore remove setup_zone_pageset from build_all_zonelists and call it
from its only user directly. This will also remove a pointless zonlists
rebuilding which is always good.
Link: http://lkml.kernel.org/r/20170721143915.14161-5-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Shaohua Li <shaohua.li@intel.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Wen Congyang <wency@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
__build_all_zonelists reinitializes each online cpu local node for
CONFIG_HAVE_MEMORYLESS_NODES. This makes sense because previously
memory less nodes could gain some memory during memory hotplug and so
the local node should be changed for CPUs close to such a node. It
makes less sense to do that unconditionally for a newly creaded NUMA
node which is still offline and without any memory.
Let's also simplify the cpu loop and use for_each_online_cpu instead of
an explicit cpu_online check for all possible cpus.
Link: http://lkml.kernel.org/r/20170721143915.14161-4-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Shaohua Li <shaohua.li@intel.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
boot_pageset is a boot time hack which gets superseded by normal
pagesets later in the boot process. It makes zero sense to reinitialize
it again and again during memory hotplug.
Link: http://lkml.kernel.org/r/20170721143915.14161-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Shaohua Li <shaohua.li@intel.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Patch series "cleanup zonelists initialization", v1.
This is aimed at cleaning up the zonelists initialization code we have
but the primary motivation was bug report [2] which got resolved but the
usage of stop_machine is just too ugly to live. Most patches are
straightforward but 3 of them need a special consideration.
Patch 1 removes zone ordered zonelists completely. I am CCing linux-api
because this is a user visible change. As I argue in the patch
description I do not think we have a strong usecase for it these days.
I have kept sysctl in place and warn into the log if somebody tries to
configure zone lists ordering. If somebody has a real usecase for it we
can revert this patch but I do not expect anybody will actually notice
runtime differences. This patch is not strictly needed for the rest but
it made patch 6 easier to implement.
Patch 7 removes stop_machine from build_all_zonelists without adding any
special synchronization between iterators and updater which I _believe_
is acceptable as explained in the changelog. I hope I am not missing
anything.
Patch 8 then removes zonelists_mutex which is kind of ugly as well and
not really needed AFAICS but a care should be taken when double checking
my thinking.
This patch (of 9):
Supporting zone ordered zonelists costs us just a lot of code while the
usefulness is arguable if existent at all. Mel has already made node
ordering default on 64b systems. 32b systems are still using
ZONELIST_ORDER_ZONE because it is considered better to fallback to a
different NUMA node rather than consume precious lowmem zones.
This argument is, however, weaken by the fact that the memory reclaim
has been reworked to be node rather than zone oriented. This means that
lowmem requests have to skip over all highmem pages on LRUs already and
so zone ordering doesn't save the reclaim time much. So the only
advantage of the zone ordering is under a light memory pressure when
highmem requests do not ever hit into lowmem zones and the lowmem
pressure doesn't need to reclaim.
Considering that 32b NUMA systems are rather suboptimal already and it
is generally advisable to use 64b kernel on such a HW I believe we
should rather care about the code maintainability and just get rid of
ZONELIST_ORDER_ZONE altogether. Keep systcl in place and warn if
somebody tries to set zone ordering either from kernel command line or
the sysctl.
[mhocko@suse.com: reading vm.numa_zonelist_order will never terminate]
Link: http://lkml.kernel.org/r/20170721143915.14161-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Shaohua Li <shaohua.li@intel.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Abdul Haleem <abdhalee@linux.vnet.ibm.com>
Cc: <linux-api@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Historically we have enforced that any kernel zone (e.g ZONE_NORMAL) has
to precede the Movable zone in the physical memory range. The purpose
of the movable zone is, however, not bound to any physical memory
restriction. It merely defines a class of migrateable and reclaimable
memory.
There are users (e.g. CMA) who might want to reserve specific physical
memory ranges for their own purpose. Moreover our pfn walkers have to
be prepared for zones overlapping in the physical range already because
we do support interleaving NUMA nodes and therefore zones can interleave
as well. This means we can allow each memory block to be associated
with a different zone.
Loosen the current onlining semantic and allow explicit onlining type on
any memblock. That means that online_{kernel,movable} will be allowed
regardless of the physical address of the memblock as long as it is
offline of course. This might result in moveble zone overlapping with
other kernel zones. Default onlining then becomes a bit tricky but
still sensible. echo online > memoryXY/state will online the given
block to
1) the default zone if the given range is outside of any zone
2) the enclosing zone if such a zone doesn't interleave with
any other zone
3) the default zone if more zones interleave for this range
where default zone is movable zone only if movable_node is enabled
otherwise it is a kernel zone.
Here is an example of the semantic with (movable_node is not present but
it work in an analogous way). We start with following memblocks, all of
them offline:
memory34/valid_zones:Normal Movable
memory35/valid_zones:Normal Movable
memory36/valid_zones:Normal Movable
memory37/valid_zones:Normal Movable
memory38/valid_zones:Normal Movable
memory39/valid_zones:Normal Movable
memory40/valid_zones:Normal Movable
memory41/valid_zones:Normal Movable
Now, we online block 34 in default mode and block 37 as movable
root@test1:/sys/devices/system/node/node1# echo online > memory34/state
root@test1:/sys/devices/system/node/node1# echo online_movable > memory37/state
memory34/valid_zones:Normal
memory35/valid_zones:Normal Movable
memory36/valid_zones:Normal Movable
memory37/valid_zones:Movable
memory38/valid_zones:Normal Movable
memory39/valid_zones:Normal Movable
memory40/valid_zones:Normal Movable
memory41/valid_zones:Normal Movable
As we can see all other blocks can still be onlined both into Normal and
Movable zones and the Normal is default because the Movable zone spans
only block37 now.
root@test1:/sys/devices/system/node/node1# echo online_movable > memory41/state
memory34/valid_zones:Normal
memory35/valid_zones:Normal Movable
memory36/valid_zones:Normal Movable
memory37/valid_zones:Movable
memory38/valid_zones:Movable Normal
memory39/valid_zones:Movable Normal
memory40/valid_zones:Movable Normal
memory41/valid_zones:Movable
Now the default zone for blocks 37-41 has changed because movable zone
spans that range.
root@test1:/sys/devices/system/node/node1# echo online_kernel > memory39/state
memory34/valid_zones:Normal
memory35/valid_zones:Normal Movable
memory36/valid_zones:Normal Movable
memory37/valid_zones:Movable
memory38/valid_zones:Normal Movable
memory39/valid_zones:Normal
memory40/valid_zones:Movable Normal
memory41/valid_zones:Movable
Note that the block 39 now belongs to the zone Normal and so block38
falls into Normal by default as well.
For completness
root@test1:/sys/devices/system/node/node1# for i in memory[34]?
do
echo online > $i/state 2>/dev/null
done
memory34/valid_zones:Normal
memory35/valid_zones:Normal
memory36/valid_zones:Normal
memory37/valid_zones:Movable
memory38/valid_zones:Normal
memory39/valid_zones:Normal
memory40/valid_zones:Movable
memory41/valid_zones:Movable
Implementation wise the change is quite straightforward. We can get rid
of allow_online_pfn_range altogether. online_pages allows only offline
nodes already. The original default_zone_for_pfn will become
default_kernel_zone_for_pfn. New default_zone_for_pfn implements the
above semantic. zone_for_pfn_range is slightly reorganized to implement
kernel and movable online type explicitly and MMOP_ONLINE_KEEP becomes a
catch all default behavior.
Link: http://lkml.kernel.org/r/20170714121233.16861-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Yasuaki Ishimatsu <yasu.isimatu@gmail.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Kani Toshimitsu <toshi.kani@hpe.com>
Cc: <slaoub@gmail.com>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: <linux-api@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Prior to commit f1dd2cd13c4b ("mm, memory_hotplug: do not associate
hotadded memory to zones until online") we used to allow to change the
valid zone types of a memory block if it is adjacent to a different zone
type.
This fact was reflected in memoryNN/valid_zones by the ordering of
printed zones. The first one was default (echo online > memoryNN/state)
and the other one could be onlined explicitly by online_{movable,kernel}.
This behavior was removed by the said patch and as such the ordering was
not all that important. In most cases a kernel zone would be default
anyway. The only exception is movable_node handled by "mm,
memory_hotplug: support movable_node for hotpluggable nodes".
Let's reintroduce this behavior again because later patch will remove
the zone overlap restriction and so user will be allowed to online
kernel resp. movable block regardless of its placement. Original
behavior will then become significant again because it would be
non-trivial for users to see what is the default zone to online into.
Implementation is really simple. Pull out zone selection out of
move_pfn_range into zone_for_pfn_range helper and use it in
show_valid_zones to display the zone for default onlining and then both
kernel and movable if they are allowed. Default online zone is not
duplicated.
Link: http://lkml.kernel.org/r/20170714121233.16861-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Yasuaki Ishimatsu <yasu.isimatu@gmail.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Kani Toshimitsu <toshi.kani@hpe.com>
Cc: <slaoub@gmail.com>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Commit 9adb62a5df9c ("mm/hotplug: correctly setup fallback zonelists
when creating new pgdat") tries to build the correct zonelist for a
newly added node, while it is not necessary to rebuild it for already
exist nodes.
In build_zonelists(), it will iterate on nodes with memory. For a newly
added node, it will have memory until node_states_set_node() is called
in online_pages().
This patch avoids rebuilding the zonelists for already existing nodes.
build_zonelists_node() uses managed_zone(zone) checks, so it should not
include empty zones anyway. So effectively we avoid some pointless work
under stop_machine().
[akpm@linux-foundation.org: tweak comment text]
[akpm@linux-foundation.org: coding-style tweak, per Vlastimil]
Link: http://lkml.kernel.org/r/20170626035822.50155-1-richard.weiyang@gmail.com
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jiang Liu <liuj97@gmail.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Some shrinkers may only be able to free a bunch of objects at a time,
and so free more than the requested nr_to_scan in one pass.
Whilst other shrinkers may find themselves even unable to scan as many
objects as they counted, and so underreport. Account for the extra
freed/scanned objects against the total number of objects we intend to
scan, otherwise we may end up penalising the slab far more than
intended. Similarly, we want to add the underperforming scan to the
deferred pass so that we try harder and harder in future passes.
Link: http://lkml.kernel.org/r/20170822135325.9191-1-chris@chris-wilson.co.uk
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Shaohua Li <shli@fb.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Add an assertion similar to "fasttop" check in GNU C Library allocator
as a part of SLAB_FREELIST_HARDENED feature. An object added to a
singly linked freelist should not point to itself. That helps to detect
some double free errors (e.g. CVE-2017-2636) without slub_debug and
KASAN.
Link: http://lkml.kernel.org/r/1502468246-1262-1-git-send-email-alex.popov@linux.com
Signed-off-by: Alexander Popov <alex.popov@linux.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Paul E McKenney <paulmck@linux.vnet.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Nicolas Pitre <nicolas.pitre@linaro.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Tycho Andersen <tycho@docker.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This SLUB free list pointer obfuscation code is modified from Brad
Spengler/PaX Team's code in the last public patch of grsecurity/PaX
based on my understanding of the code. Changes or omissions from the
original code are mine and don't reflect the original grsecurity/PaX
code.
This adds a per-cache random value to SLUB caches that is XORed with
their freelist pointer address and value. This adds nearly zero
overhead and frustrates the very common heap overflow exploitation
method of overwriting freelist pointers.
A recent example of the attack is written up here:
http://cyseclabs.com/blog/cve-2016-6187-heap-off-by-one-exploit
and there is a section dedicated to the technique the book "A Guide to
Kernel Exploitation: Attacking the Core".
This is based on patches by Daniel Micay, and refactored to minimize the
use of #ifdef.
With 200-count cycles of "hackbench -g 20 -l 1000" I saw the following
run times:
before:
mean 10.11882499999999999995
variance .03320378329145728642
stdev .18221905304181911048
after:
mean 10.12654000000000000014
variance .04700556623115577889
stdev .21680767106160192064
The difference gets lost in the noise, but if the above is to be taken
literally, using CONFIG_FREELIST_HARDENED is 0.07% slower.
Link: http://lkml.kernel.org/r/20170802180609.GA66807@beast
Signed-off-by: Kees Cook <keescook@chromium.org>
Suggested-by: Daniel Micay <danielmicay@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Tycho Andersen <tycho@docker.com>
Cc: Alexander Popov <alex.popov@linux.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
- free_kmem_cache_nodes() frees the cache node before nulling out a
reference to it
- init_kmem_cache_nodes() publishes the cache node before initializing
it
Neither of these matter at runtime because the cache nodes cannot be
looked up by any other thread. But it's neater and more consistent to
reorder these.
Link: http://lkml.kernel.org/r/20170707083408.40410-1-glider@google.com
Signed-off-by: Alexander Potapenko <glider@google.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Now that we no longer insert struct page pointers in DAX radix trees we
can remove the special casing for DAX in page_cache_tree_insert().
This also allows us to make dax_wake_mapping_entry_waiter() local to
fs/dax.c, removing it from dax.h.
Link: http://lkml.kernel.org/r/20170724170616.25810-5-ross.zwisler@linux.intel.com
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Suggested-by: Jan Kara <jack@suse.cz>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: "Darrick J. Wong" <darrick.wong@oracle.com>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andreas Dilger <adilger.kernel@dilger.ca>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
When servicing mmap() reads from file holes the current DAX code
allocates a page cache page of all zeroes and places the struct page
pointer in the mapping->page_tree radix tree. This has three major
drawbacks:
1) It consumes memory unnecessarily. For every 4k page that is read via
a DAX mmap() over a hole, we allocate a new page cache page. This
means that if you read 1GiB worth of pages, you end up using 1GiB of
zeroed memory.
2) It is slower than using a common zero page because each page fault
has more work to do. Instead of just inserting a common zero page we
have to allocate a page cache page, zero it, and then insert it.
3) The fact that we had to check for both DAX exceptional entries and
for page cache pages in the radix tree made the DAX code more
complex.
This series solves these issues by following the lead of the DAX PMD
code and using a common 4k zero page instead. This reduces memory usage
and decreases latencies for some workloads, and it simplifies the DAX
code, removing over 100 lines in total.
This patch (of 5):
To be able to use the common 4k zero page in DAX we need to have our PTE
fault path look more like our PMD fault path where a PTE entry can be
marked as dirty and writeable as it is first inserted rather than
waiting for a follow-up dax_pfn_mkwrite() => finish_mkwrite_fault()
call.
Right now we can rely on having a dax_pfn_mkwrite() call because we can
distinguish between these two cases in do_wp_page():
case 1: 4k zero page => writable DAX storage
case 2: read-only DAX storage => writeable DAX storage
This distinction is made by via vm_normal_page(). vm_normal_page()
returns false for the common 4k zero page, though, just as it does for
DAX ptes. Instead of special casing the DAX + 4k zero page case we will
simplify our DAX PTE page fault sequence so that it matches our DAX PMD
sequence, and get rid of the dax_pfn_mkwrite() helper. We will instead
use dax_iomap_fault() to handle write-protection faults.
This means that insert_pfn() needs to follow the lead of
insert_pfn_pmd() and allow us to pass in a 'mkwrite' flag. If 'mkwrite'
is set insert_pfn() will do the work that was previously done by
wp_page_reuse() as part of the dax_pfn_mkwrite() call path.
Link: http://lkml.kernel.org/r/20170724170616.25810-2-ross.zwisler@linux.intel.com
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: "Darrick J. Wong" <darrick.wong@oracle.com>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andreas Dilger <adilger.kernel@dilger.ca>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 mm changes from Ingo Molnar:
"PCID support, 5-level paging support, Secure Memory Encryption support
The main changes in this cycle are support for three new, complex
hardware features of x86 CPUs:
- Add 5-level paging support, which is a new hardware feature on
upcoming Intel CPUs allowing up to 128 PB of virtual address space
and 4 PB of physical RAM space - a 512-fold increase over the old
limits. (Supercomputers of the future forecasting hurricanes on an
ever warming planet can certainly make good use of more RAM.)
Many of the necessary changes went upstream in previous cycles,
v4.14 is the first kernel that can enable 5-level paging.
This feature is activated via CONFIG_X86_5LEVEL=y - disabled by
default.
(By Kirill A. Shutemov)
- Add 'encrypted memory' support, which is a new hardware feature on
upcoming AMD CPUs ('Secure Memory Encryption', SME) allowing system
RAM to be encrypted and decrypted (mostly) transparently by the
CPU, with a little help from the kernel to transition to/from
encrypted RAM. Such RAM should be more secure against various
attacks like RAM access via the memory bus and should make the
radio signature of memory bus traffic harder to intercept (and
decrypt) as well.
This feature is activated via CONFIG_AMD_MEM_ENCRYPT=y - disabled
by default.
(By Tom Lendacky)
- Enable PCID optimized TLB flushing on newer Intel CPUs: PCID is a
hardware feature that attaches an address space tag to TLB entries
and thus allows to skip TLB flushing in many cases, even if we
switch mm's.
(By Andy Lutomirski)
All three of these features were in the works for a long time, and
it's coincidence of the three independent development paths that they
are all enabled in v4.14 at once"
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (65 commits)
x86/mm: Enable RCU based page table freeing (CONFIG_HAVE_RCU_TABLE_FREE=y)
x86/mm: Use pr_cont() in dump_pagetable()
x86/mm: Fix SME encryption stack ptr handling
kvm/x86: Avoid clearing the C-bit in rsvd_bits()
x86/CPU: Align CR3 defines
x86/mm, mm/hwpoison: Clear PRESENT bit for kernel 1:1 mappings of poison pages
acpi, x86/mm: Remove encryption mask from ACPI page protection type
x86/mm, kexec: Fix memory corruption with SME on successive kexecs
x86/mm/pkeys: Fix typo in Documentation/x86/protection-keys.txt
x86/mm/dump_pagetables: Speed up page tables dump for CONFIG_KASAN=y
x86/mm: Implement PCID based optimization: try to preserve old TLB entries using PCID
x86: Enable 5-level paging support via CONFIG_X86_5LEVEL=y
x86/mm: Allow userspace have mappings above 47-bit
x86/mm: Prepare to expose larger address space to userspace
x86/mpx: Do not allow MPX if we have mappings above 47-bit
x86/mm: Rename tasksize_32bit/64bit to task_size_32bit/64bit()
x86/xen: Redefine XEN_ELFNOTE_INIT_P2M using PUD_SIZE * PTRS_PER_PUD
x86/mm/dump_pagetables: Fix printout of p4d level
x86/mm/dump_pagetables: Generalize address normalization
x86/boot: Fix memremap() related build failure
...
|
|
Conflicts:
mm/page_alloc.c
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Merge more fixes from Andrew Morton:
"6 fixes"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>:
scripts/dtc: fix '%zx' warning
include/linux/compiler.h: don't perform compiletime_assert with -O0
mm, madvise: ensure poisoned pages are removed from per-cpu lists
mm, uprobes: fix multiple free of ->uprobes_state.xol_area
kernel/kthread.c: kthread_worker: don't hog the cpu
mm,page_alloc: don't call __node_reclaim() with oom_lock held.
|
|
Wendy Wang reported off-list that a RAS HWPOISON-SOFT test case failed
and bisected it to the commit 479f854a207c ("mm, page_alloc: defer
debugging checks of pages allocated from the PCP").
The problem is that a page that was poisoned with madvise() is reused.
The commit removed a check that would trigger if DEBUG_VM was enabled
but re-enabling the check only fixes the problem as a side-effect by
printing a bad_page warning and recovering.
The root of the problem is that an madvise() can leave a poisoned page
on the per-cpu list. This patch drains all per-cpu lists after pages
are poisoned so that they will not be reused. Wendy reports that the
test case in question passes with this patch applied. While this could
be done in a targeted fashion, it is over-complicated for such a rare
operation.
Link: http://lkml.kernel.org/r/20170828133414.7qro57jbepdcyz5x@techsingularity.net
Fixes: 479f854a207c ("mm, page_alloc: defer debugging checks of pages allocated from the PCP")
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reported-by: Wang, Wendy <wendy.wang@intel.com>
Tested-by: Wang, Wendy <wendy.wang@intel.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: "Hansen, Dave" <dave.hansen@intel.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Naoya Horiguchi <nao.horiguchi@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
We are doing a last second memory allocation attempt before calling
out_of_memory(). But since slab shrinker functions might indirectly
wait for other thread's __GFP_DIRECT_RECLAIM && !__GFP_NORETRY memory
allocations via sleeping locks, calling slab shrinker functions from
node_reclaim() from get_page_from_freelist() with oom_lock held has
possibility of deadlock. Therefore, make sure that last second memory
allocation attempt does not call slab shrinker functions.
Link: http://lkml.kernel.org/r/1503577106-9196-1-git-send-email-penguin-kernel@I-love.SAKURA.ne.jp
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The invalidate_page callback suffered from two pitfalls. First it used
to happen after the page table lock was release and thus a new page
might have setup before the call to invalidate_page() happened.
This is in a weird way fixed by commit c7ab0d2fdc84 ("mm: convert
try_to_unmap_one() to use page_vma_mapped_walk()") that moved the
callback under the page table lock but this also broke several existing
users of the mmu_notifier API that assumed they could sleep inside this
callback.
The second pitfall was invalidate_page() being the only callback not
taking a range of address in respect to invalidation but was giving an
address and a page. Lots of the callback implementers assumed this
could never be THP and thus failed to invalidate the appropriate range
for THP.
By killing this callback we unify the mmu_notifier callback API to
always take a virtual address range as input.
Finally this also simplifies the end user life as there is now two clear
choices:
- invalidate_range_start()/end() callback (which allow you to sleep)
- invalidate_range() where you can not sleep but happen right after
page table update under page table lock
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Cc: Bernhard Held <berny156@gmx.de>
Cc: Adam Borowski <kilobyte@angband.pl>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Wanpeng Li <kernellwp@gmail.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Takashi Iwai <tiwai@suse.de>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: axie <axie@amd.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Replace all mmu_notifier_invalidate_page() calls by *_invalidate_range()
and make sure it is bracketed by calls to *_invalidate_range_start()/end().
Note that because we can not presume the pmd value or pte value we have
to assume the worst and unconditionaly report an invalidation as
happening.
Changed since v2:
- try_to_unmap_one() only one call to mmu_notifier_invalidate_range()
- compute end with PAGE_SIZE << compound_order(page)
- fix PageHuge() case in try_to_unmap_one()
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Bernhard Held <berny156@gmx.de>
Cc: Adam Borowski <kilobyte@angband.pl>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Wanpeng Li <kernellwp@gmail.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Takashi Iwai <tiwai@suse.de>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: axie <axie@amd.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Replace all mmu_notifier_invalidate_page() calls by *_invalidate_range()
and make sure it is bracketed by calls to *_invalidate_range_start()/end().
Note that because we can not presume the pmd value or pte value we have
to assume the worst and unconditionaly report an invalidation as
happening.
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Bernhard Held <berny156@gmx.de>
Cc: Adam Borowski <kilobyte@angband.pl>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Wanpeng Li <kernellwp@gmail.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Takashi Iwai <tiwai@suse.de>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: axie <axie@amd.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This reverts commit aac2fea94f7a3df8ad1eeb477eb2643f81fd5393.
It turns out that that patch was complete and utter garbage, and broke
KVM, resulting in odd oopses.
Quoting Andrea Arcangeli:
"The aforementioned commit has 3 bugs.
1) mmu_notifier_invalidate_range cannot be used in replacement of
mmu_notifier_invalidate_range_start/end.
For KVM mmu_notifier_invalidate_range is a noop and rightfully so.
A MMU notifier implementation has to implement either
->invalidate_range method or the invalidate_range_start/end
methods, not both. And if you implement invalidate_range_start/end
like KVM is forced to do, calling mmu_notifier_invalidate_range in
common code is a noop for KVM.
For those MMU notifiers that can get away only implementing
->invalidate_range, the ->invalidate_range is implicitly called by
mmu_notifier_invalidate_range_end(). And only those secondary MMUs
that share the same pagetable with the primary MMU (like AMD
iommuv2) can get away only implementing ->invalidate_range.
So all cases (THP on/off) are broken right now.
To fix this is enough to replace mmu_notifier_invalidate_range with
mmu_notifier_invalidate_range_start;mmu_notifier_invalidate_range_end.
Either that or call multiple mmu_notifier_invalidate_page like
before.
2) address + (1UL << compound_order(page) is buggy, it should be
PAGE_SIZE << compound_order(page), it's bytes not pages, 2M not
512.
3) The whole invalidate_range thing was an attempt to call a single
invalidate while walking multiple 4k ptes that maps the same THP
(after a pmd virtual split without physical compound page THP
split).
It's unclear if the rmap_walk will always provide an address that
is 2M aligned as parameter to try_to_unmap_one, in presence of THP.
I think it needs also an address &= (PAGE_SIZE <<
compound_order(page)) - 1 to be safe"
In general, we should stop making excuses for horrible MMU notifier
users. It's much more important that the core VM is sane and safe, than
letting MMU notifiers sleep.
So if some MMU notifier is sleeping under a spinlock, we need to fix the
notifier, not try to make excuses for that garbage in the core VM.
Reported-and-tested-by: Bernhard Held <berny156@gmx.de>
Reported-and-tested-by: Adam Borowski <kilobyte@angband.pl>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Wanpeng Li <kernellwp@gmail.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Takashi Iwai <tiwai@suse.de>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: axie <axie@amd.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Commit 3510ca20ece0 ("Minor page waitqueue cleanups") made the page
queue code always add new waiters to the back of the queue, which helps
upcoming patches to batch the wakeups for some horrid loads where the
wait queues grow to thousands of entries.
However, I forgot about the nasrt add_page_wait_queue() special case
code that is only used by the cachefiles code. That one still continued
to add the new wait queue entries at the beginning of the list.
Fix it, because any sane batched wakeup will require that we don't
suddenly start getting new entries at the beginning of the list that we
already handled in a previous batch.
[ The current code always does the whole list while holding the lock, so
wait queue ordering doesn't matter for correctness, but even then it's
better to add later entries at the end from a fairness standpoint ]
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The "lock_page_killable()" function waits for exclusive access to the
page lock bit using the WQ_FLAG_EXCLUSIVE bit in the waitqueue entry
set.
That means that if it gets woken up, other waiters may have been
skipped.
That, in turn, means that if it sees the page being unlocked, it *must*
take that lock and return success, even if a lethal signal is also
pending.
So instead of checking for lethal signals first, we need to check for
them after we've checked the actual bit that we were waiting for. Even
if that might then delay the killing of the process.
This matches the order of the old "wait_on_bit_lock()" infrastructure
that the page locking used to use (and is still used in a few other
areas).
Note that if we still return an error after having unsuccessfully tried
to acquire the page lock, that is ok: that means that some other thread
was able to get ahead of us and lock the page, and when that other
thread then unlocks the page, the wakeup event will be repeated. So any
other pending waiters will now get properly woken up.
Fixes: 62906027091f ("mm: add PageWaiters indicating tasks are waiting for a page bit")
Cc: Nick Piggin <npiggin@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Jan Kara <jack@suse.cz>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Tim Chen and Kan Liang have been battling a customer load that shows
extremely long page wakeup lists. The cause seems to be constant NUMA
migration of a hot page that is shared across a lot of threads, but the
actual root cause for the exact behavior has not been found.
Tim has a patch that batches the wait list traversal at wakeup time, so
that we at least don't get long uninterruptible cases where we traverse
and wake up thousands of processes and get nasty latency spikes. That
is likely 4.14 material, but we're still discussing the page waitqueue
specific parts of it.
In the meantime, I've tried to look at making the page wait queues less
expensive, and failing miserably. If you have thousands of threads
waiting for the same page, it will be painful. We'll need to try to
figure out the NUMA balancing issue some day, in addition to avoiding
the excessive spinlock hold times.
That said, having tried to rewrite the page wait queues, I can at least
fix up some of the braindamage in the current situation. In particular:
(a) we don't want to continue walking the page wait list if the bit
we're waiting for already got set again (which seems to be one of
the patterns of the bad load). That makes no progress and just
causes pointless cache pollution chasing the pointers.
(b) we don't want to put the non-locking waiters always on the front of
the queue, and the locking waiters always on the back. Not only is
that unfair, it means that we wake up thousands of reading threads
that will just end up being blocked by the writer later anyway.
Also add a comment about the layout of 'struct wait_page_key' - there is
an external user of it in the cachefiles code that means that it has to
match the layout of 'struct wait_bit_key' in the two first members. It
so happens to match, because 'struct page *' and 'unsigned long *' end
up having the same values simply because the page flags are the first
member in struct page.
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Kan Liang <kan.liang@intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Christopher Lameter <cl@linux.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Conflicts:
arch/x86/kernel/head64.c
arch/x86/mm/mmap.c
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
In recently introduced memblock_discard() there is a reversed logic bug.
Memory is freed of static array instead of dynamically allocated one.
Link: http://lkml.kernel.org/r/1503511441-95478-2-git-send-email-pasha.tatashin@oracle.com
Fixes: 3010f876500f ("mm: discard memblock data later")
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Reported-by: Woody Suwalski <terraluna977@gmail.com>
Tested-by: Woody Suwalski <terraluna977@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
If madvise(..., MADV_FREE) split a transparent hugepage, it called
put_page() before unlock_page().
This was wrong because put_page() can free the page, e.g. if a
concurrent madvise(..., MADV_DONTNEED) has removed it from the memory
mapping. put_page() then rightfully complained about freeing a locked
page.
Fix this by moving the unlock_page() before put_page().
This bug was found by syzkaller, which encountered the following splat:
BUG: Bad page state in process syzkaller412798 pfn:1bd800
page:ffffea0006f60000 count:0 mapcount:0 mapping: (null) index:0x20a00
flags: 0x200000000040019(locked|uptodate|dirty|swapbacked)
raw: 0200000000040019 0000000000000000 0000000000020a00 00000000ffffffff
raw: ffffea0006f60020 ffffea0006f60020 0000000000000000 0000000000000000
page dumped because: PAGE_FLAGS_CHECK_AT_FREE flag(s) set
bad because of flags: 0x1(locked)
Modules linked in:
CPU: 1 PID: 3037 Comm: syzkaller412798 Not tainted 4.13.0-rc5+ #35
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
Call Trace:
__dump_stack lib/dump_stack.c:16 [inline]
dump_stack+0x194/0x257 lib/dump_stack.c:52
bad_page+0x230/0x2b0 mm/page_alloc.c:565
free_pages_check_bad+0x1f0/0x2e0 mm/page_alloc.c:943
free_pages_check mm/page_alloc.c:952 [inline]
free_pages_prepare mm/page_alloc.c:1043 [inline]
free_pcp_prepare mm/page_alloc.c:1068 [inline]
free_hot_cold_page+0x8cf/0x12b0 mm/page_alloc.c:2584
__put_single_page mm/swap.c:79 [inline]
__put_page+0xfb/0x160 mm/swap.c:113
put_page include/linux/mm.h:814 [inline]
madvise_free_pte_range+0x137a/0x1ec0 mm/madvise.c:371
walk_pmd_range mm/pagewalk.c:50 [inline]
walk_pud_range mm/pagewalk.c:108 [inline]
walk_p4d_range mm/pagewalk.c:134 [inline]
walk_pgd_range mm/pagewalk.c:160 [inline]
__walk_page_range+0xc3a/0x1450 mm/pagewalk.c:249
walk_page_range+0x200/0x470 mm/pagewalk.c:326
madvise_free_page_range.isra.9+0x17d/0x230 mm/madvise.c:444
madvise_free_single_vma+0x353/0x580 mm/madvise.c:471
madvise_dontneed_free mm/madvise.c:555 [inline]
madvise_vma mm/madvise.c:664 [inline]
SYSC_madvise mm/madvise.c:832 [inline]
SyS_madvise+0x7d3/0x13c0 mm/madvise.c:760
entry_SYSCALL_64_fastpath+0x1f/0xbe
Here is a C reproducer:
#define _GNU_SOURCE
#include <pthread.h>
#include <sys/mman.h>
#include <unistd.h>
#define MADV_FREE 8
#define PAGE_SIZE 4096
static void *mapping;
static const size_t mapping_size = 0x1000000;
static void *madvise_thrproc(void *arg)
{
madvise(mapping, mapping_size, (long)arg);
}
int main(void)
{
pthread_t t[2];
for (;;) {
mapping = mmap(NULL, mapping_size, PROT_WRITE,
MAP_POPULATE|MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
munmap(mapping + mapping_size / 2, PAGE_SIZE);
pthread_create(&t[0], 0, madvise_thrproc, (void*)MADV_DONTNEED);
pthread_create(&t[1], 0, madvise_thrproc, (void*)MADV_FREE);
pthread_join(t[0], NULL);
pthread_join(t[1], NULL);
munmap(mapping, mapping_size);
}
}
Note: to see the splat, CONFIG_TRANSPARENT_HUGEPAGE=y and
CONFIG_DEBUG_VM=y are needed.
Google Bug Id: 64696096
Link: http://lkml.kernel.org/r/20170823205235.132061-1-ebiggers3@gmail.com
Fixes: 854e9ed09ded ("mm: support madvise(MADV_FREE)")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: <stable@vger.kernel.org> [v4.5+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
/sys/kernel/mm/transparent_hugepage/shmem_enabled controls if we want
to allocate huge pages when allocate pages for private in-kernel shmem
mount.
Unfortunately, as Dan noticed, I've screwed it up and the only way to
make kernel allocate huge page for the mount is to use "force" there.
All other values will be effectively ignored.
Link: http://lkml.kernel.org/r/20170822144254.66431-1-kirill.shutemov@linux.intel.com
Fixes: 5a6e75f8110c ("shmem: prepare huge= mount option and sysfs knob")
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Cc: stable <stable@vger.kernel.org> [4.8+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
There is a problem that when counting the pages for creating the
hibernation snapshot will take significant amount of time, especially on
system with large memory. Since the counting job is performed with irq
disabled, this might lead to NMI lockup. The following warning were
found on a system with 1.5TB DRAM:
Freezing user space processes ... (elapsed 0.002 seconds) done.
OOM killer disabled.
PM: Preallocating image memory...
NMI watchdog: Watchdog detected hard LOCKUP on cpu 27
CPU: 27 PID: 3128 Comm: systemd-sleep Not tainted 4.13.0-0.rc2.git0.1.fc27.x86_64 #1
task: ffff9f01971ac000 task.stack: ffffb1a3f325c000
RIP: 0010:memory_bm_find_bit+0xf4/0x100
Call Trace:
swsusp_set_page_free+0x2b/0x30
mark_free_pages+0x147/0x1c0
count_data_pages+0x41/0xa0
hibernate_preallocate_memory+0x80/0x450
hibernation_snapshot+0x58/0x410
hibernate+0x17c/0x310
state_store+0xdf/0xf0
kobj_attr_store+0xf/0x20
sysfs_kf_write+0x37/0x40
kernfs_fop_write+0x11c/0x1a0
__vfs_write+0x37/0x170
vfs_write+0xb1/0x1a0
SyS_write+0x55/0xc0
entry_SYSCALL_64_fastpath+0x1a/0xa5
...
done (allocated 6590003 pages)
PM: Allocated 26360012 kbytes in 19.89 seconds (1325.28 MB/s)
It has taken nearly 20 seconds(2.10GHz CPU) thus the NMI lockup was
triggered. In case the timeout of the NMI watch dog has been set to 1
second, a safe interval should be 6590003/20 = 320k pages in theory.
However there might also be some platforms running at a lower frequency,
so feed the watchdog every 100k pages.
[yu.c.chen@intel.com: simplification]
Link: http://lkml.kernel.org/r/1503460079-29721-1-git-send-email-yu.c.chen@intel.com
[yu.c.chen@intel.com: use interval of 128k instead of 100k to avoid modulus]
Link: http://lkml.kernel.org/r/1503328098-5120-1-git-send-email-yu.c.chen@intel.com
Signed-off-by: Chen Yu <yu.c.chen@intel.com>
Reported-by: Jan Filipcewicz <jan.filipcewicz@intel.com>
Suggested-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Michal Hocko <mhocko@suse.com>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Len Brown <lenb@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
The 'move_paghes()' system call was introduced long long ago with the
same permission checks as for sending a signal (except using
CAP_SYS_NICE instead of CAP_SYS_KILL for the overriding capability).
That turns out to not be a great choice - while the system call really
only moves physical page allocations around (and you need other
capabilities to do a lot of it), you can check the return value to map
out some the virtual address choices and defeat ASLR of a binary that
still shares your uid.
So change the access checks to the more common 'ptrace_may_access()'
model instead.
This tightens the access checks for the uid, and also effectively
changes the CAP_SYS_NICE check to CAP_SYS_PTRACE, but it's unlikely that
anybody really _uses_ this legacy system call any more (we hav ebetter
NUMA placement models these days), so I expect nobody to notice.
Famous last words.
Reported-by: Otto Ebeling <otto.ebeling@iki.fi>
Acked-by: Eric W. Biederman <ebiederm@xmission.com>
Cc: Willy Tarreau <w@1wt.eu>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Commit 19809c2da28a ("mm, vmalloc: use __GFP_HIGHMEM implicitly") added
use of __GFP_HIGHMEM for allocations. vmalloc_32 may use
GFP_DMA/GFP_DMA32 which does not play nice with __GFP_HIGHMEM and will
trigger a BUG in gfp_zone.
Only add __GFP_HIGHMEM if we aren't using GFP_DMA/GFP_DMA32.
Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=1482249
Link: http://lkml.kernel.org/r/20170816220705.31374-1-labbott@redhat.com
Fixes: 19809c2da28a ("mm, vmalloc: use __GFP_HIGHMEM implicitly")
Signed-off-by: Laura Abbott <labbott@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
I hit a use after free issue when executing trinity and repoduced it
with KASAN enabled. The related call trace is as follows.
BUG: KASan: use after free in SyS_get_mempolicy+0x3c8/0x960 at addr ffff8801f582d766
Read of size 2 by task syz-executor1/798
INFO: Allocated in mpol_new.part.2+0x74/0x160 age=3 cpu=1 pid=799
__slab_alloc+0x768/0x970
kmem_cache_alloc+0x2e7/0x450
mpol_new.part.2+0x74/0x160
mpol_new+0x66/0x80
SyS_mbind+0x267/0x9f0
system_call_fastpath+0x16/0x1b
INFO: Freed in __mpol_put+0x2b/0x40 age=4 cpu=1 pid=799
__slab_free+0x495/0x8e0
kmem_cache_free+0x2f3/0x4c0
__mpol_put+0x2b/0x40
SyS_mbind+0x383/0x9f0
system_call_fastpath+0x16/0x1b
INFO: Slab 0xffffea0009cb8dc0 objects=23 used=8 fp=0xffff8801f582de40 flags=0x200000000004080
INFO: Object 0xffff8801f582d760 @offset=5984 fp=0xffff8801f582d600
Bytes b4 ffff8801f582d750: ae 01 ff ff 00 00 00 00 5a 5a 5a 5a 5a 5a 5a 5a ........ZZZZZZZZ
Object ffff8801f582d760: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk
Object ffff8801f582d770: 6b 6b 6b 6b 6b 6b 6b a5 kkkkkkk.
Redzone ffff8801f582d778: bb bb bb bb bb bb bb bb ........
Padding ffff8801f582d8b8: 5a 5a 5a 5a 5a 5a 5a 5a ZZZZZZZZ
Memory state around the buggy address:
ffff8801f582d600: fb fb fb fc fc fc fc fc fc fc fc fc fc fc fc fc
ffff8801f582d680: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
>ffff8801f582d700: fc fc fc fc fc fc fc fc fc fc fc fc fb fb fb fc
!shared memory policy is not protected against parallel removal by other
thread which is normally protected by the mmap_sem. do_get_mempolicy,
however, drops the lock midway while we can still access it later.
Early premature up_read is a historical artifact from times when
put_user was called in this path see https://lwn.net/Articles/124754/
but that is gone since 8bccd85ffbaf ("[PATCH] Implement sys_* do_*
layering in the memory policy layer."). but when we have the the
current mempolicy ref count model. The issue was introduced
accordingly.
Fix the issue by removing the premature release.
Link: http://lkml.kernel.org/r/1502950924-27521-1-git-send-email-zhongjiang@huawei.com
Signed-off-by: zhong jiang <zhongjiang@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: <stable@vger.kernel.org> [2.6+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
name[] in cma_debugfs_add_one() can only accommodate 16 chars including
NULL to store sprintf output. It's common for cma device name to be
larger than 15 chars. This can cause stack corrpution. If the gcc
stack protector is turned on, this can cause a panic due to stack
corruption.
Below is one example trace:
Kernel panic - not syncing: stack-protector: Kernel stack is corrupted in:
ffffff8e69a75730
Call trace:
dump_backtrace+0x0/0x2c4
show_stack+0x20/0x28
dump_stack+0xb8/0xf4
panic+0x154/0x2b0
print_tainted+0x0/0xc0
cma_debugfs_init+0x274/0x290
do_one_initcall+0x5c/0x168
kernel_init_freeable+0x1c8/0x280
Fix the short sprintf buffer in cma_debugfs_add_one() by using
scnprintf() instead of sprintf().
Link: http://lkml.kernel.org/r/1502446217-21840-1-git-send-email-guptap@codeaurora.org
Fixes: f318dd083c81 ("cma: Store a name in the cma structure")
Signed-off-by: Prakash Gupta <guptap@codeaurora.org>
Acked-by: Laura Abbott <labbott@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Wenwei Tao has noticed that our current assumption that the oom victim
is dying and never doing any visible changes after it dies, and so the
oom_reaper can tear it down, is not entirely true.
__task_will_free_mem consider a task dying when SIGNAL_GROUP_EXIT is set
but do_group_exit sends SIGKILL to all threads _after_ the flag is set.
So there is a race window when some threads won't have
fatal_signal_pending while the oom_reaper could start unmapping the
address space. Moreover some paths might not check for fatal signals
before each PF/g-u-p/copy_from_user.
We already have a protection for oom_reaper vs. PF races by checking
MMF_UNSTABLE. This has been, however, checked only for kernel threads
(use_mm users) which can outlive the oom victim. A simple fix would be
to extend the current check in handle_mm_fault for all tasks but that
wouldn't be sufficient because the current check assumes that a kernel
thread would bail out after EFAULT from get_user*/copy_from_user and
never re-read the same address which would succeed because the PF path
has established page tables already. This seems to be the case for the
only existing use_mm user currently (virtio driver) but it is rather
fragile in general.
This is even more fragile in general for more complex paths such as
generic_perform_write which can re-read the same address more times
(e.g. iov_iter_copy_from_user_atomic to fail and then
iov_iter_fault_in_readable on retry).
Therefore we have to implement MMF_UNSTABLE protection in a robust way
and never make a potentially corrupted content visible. That requires
to hook deeper into the PF path and check for the flag _every time_
before a pte for anonymous memory is established (that means all
!VM_SHARED mappings).
The corruption can be triggered artificially
(http://lkml.kernel.org/r/201708040646.v746kkhC024636@www262.sakura.ne.jp)
but there doesn't seem to be any real life bug report. The race window
should be quite tight to trigger most of the time.
Link: http://lkml.kernel.org/r/20170807113839.16695-3-mhocko@kernel.org
Fixes: aac453635549 ("mm, oom: introduce oom reaper")
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Wenwei Tao <wenwei.tww@alibaba-inc.com>
Tested-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Andrea Argangeli <andrea@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Tetsuo Handa has noticed that MMF_UNSTABLE SIGBUS path in
handle_mm_fault causes a lockdep splat
Out of memory: Kill process 1056 (a.out) score 603 or sacrifice child
Killed process 1056 (a.out) total-vm:4268108kB, anon-rss:2246048kB, file-rss:0kB, shmem-rss:0kB
a.out (1169) used greatest stack depth: 11664 bytes left
DEBUG_LOCKS_WARN_ON(depth <= 0)
------------[ cut here ]------------
WARNING: CPU: 6 PID: 1339 at kernel/locking/lockdep.c:3617 lock_release+0x172/0x1e0
CPU: 6 PID: 1339 Comm: a.out Not tainted 4.13.0-rc3-next-20170803+ #142
Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 07/02/2015
RIP: 0010:lock_release+0x172/0x1e0
Call Trace:
up_read+0x1a/0x40
__do_page_fault+0x28e/0x4c0
do_page_fault+0x30/0x80
page_fault+0x28/0x30
The reason is that the page fault path might have dropped the mmap_sem
and returned with VM_FAULT_RETRY. MMF_UNSTABLE check however rewrites
the error path to VM_FAULT_SIGBUS and we always expect mmap_sem taken in
that path. Fix this by taking mmap_sem when VM_FAULT_RETRY is held in
the MMF_UNSTABLE path.
We cannot simply add VM_FAULT_SIGBUS to the existing error code because
all arch specific page fault handlers and g-u-p would have to learn a
new error code combination.
Link: http://lkml.kernel.org/r/20170807113839.16695-2-mhocko@kernel.org
Fixes: 3f70dc38cec2 ("mm: make sure that kthreads will not refault oom reaped memory")
Reported-by: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Andrea Argangeli <andrea@kernel.org>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Wenwei Tao <wenwei.tww@alibaba-inc.com>
Cc: <stable@vger.kernel.org> [4.9+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
To avoid a possible deadlock, sysfs_slab_remove() schedules an
asynchronous work to delete sysfs entries corresponding to the kmem
cache. To ensure the cache isn't freed before the work function is
called, it takes a reference to the cache kobject. The reference is
supposed to be released by the work function.
However, the work function (sysfs_slab_remove_workfn()) does nothing in
case the cache sysfs entry has already been deleted, leaking the kobject
and the corresponding cache.
This may happen on a per memcg cache destruction, because sysfs entries
of a per memcg cache are deleted on memcg offline if the cache is empty
(see __kmemcg_cache_deactivate()).
The kmemleak report looks like this:
unreferenced object 0xffff9f798a79f540 (size 32):
comm "kworker/1:4", pid 15416, jiffies 4307432429 (age 28687.554s)
hex dump (first 32 bytes):
6b 6d 61 6c 6c 6f 63 2d 31 36 28 31 35 39 39 3a kmalloc-16(1599:
6e 65 77 72 6f 6f 74 29 00 23 6b c0 ff ff ff ff newroot).#k.....
backtrace:
kmemleak_alloc+0x4a/0xa0
__kmalloc_track_caller+0x148/0x2c0
kvasprintf+0x66/0xd0
kasprintf+0x49/0x70
memcg_create_kmem_cache+0xe6/0x160
memcg_kmem_cache_create_func+0x20/0x110
process_one_work+0x205/0x5d0
worker_thread+0x4e/0x3a0
kthread+0x109/0x140
ret_from_fork+0x2a/0x40
unreferenced object 0xffff9f79b6136840 (size 416):
comm "kworker/1:4", pid 15416, jiffies 4307432429 (age 28687.573s)
hex dump (first 32 bytes):
40 fb 80 c2 3e 33 00 00 00 00 00 40 00 00 00 00 @...>3.....@....
00 00 00 00 00 00 00 00 10 00 00 00 10 00 00 00 ................
backtrace:
kmemleak_alloc+0x4a/0xa0
kmem_cache_alloc+0x128/0x280
create_cache+0x3b/0x1e0
memcg_create_kmem_cache+0x118/0x160
memcg_kmem_cache_create_func+0x20/0x110
process_one_work+0x205/0x5d0
worker_thread+0x4e/0x3a0
kthread+0x109/0x140
ret_from_fork+0x2a/0x40
Fix the leak by adding the missing call to kobject_put() to
sysfs_slab_remove_workfn().
Link: http://lkml.kernel.org/r/20170812181134.25027-1-vdavydov.dev@gmail.com
Fixes: 3b7b314053d02 ("slub: make sysfs file removal asynchronous")
Signed-off-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Reported-by: Andrei Vagin <avagin@gmail.com>
Tested-by: Andrei Vagin <avagin@gmail.com>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: <stable@vger.kernel.org> [4.12.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
There is existing use after free bug when deferred struct pages are
enabled:
The memblock_add() allocates memory for the memory array if more than
128 entries are needed. See comment in e820__memblock_setup():
* The bootstrap memblock region count maximum is 128 entries
* (INIT_MEMBLOCK_REGIONS), but EFI might pass us more E820 entries
* than that - so allow memblock resizing.
This memblock memory is freed here:
free_low_memory_core_early()
We access the freed memblock.memory later in boot when deferred pages
are initialized in this path:
deferred_init_memmap()
for_each_mem_pfn_range()
__next_mem_pfn_range()
type = &memblock.memory;
One possible explanation for why this use-after-free hasn't been hit
before is that the limit of INIT_MEMBLOCK_REGIONS has never been
exceeded at least on systems where deferred struct pages were enabled.
Tested by reducing INIT_MEMBLOCK_REGIONS down to 4 from the current 128,
and verifying in qemu that this code is getting excuted and that the
freed pages are sane.
Link: http://lkml.kernel.org/r/1502485554-318703-2-git-send-email-pasha.tatashin@oracle.com
Fixes: 7e18adb4f80b ("mm: meminit: initialise remaining struct pages in parallel with kswapd")
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Reviewed-by: Steven Sistare <steven.sistare@oracle.com>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Reviewed-by: Bob Picco <bob.picco@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Jaegeuk and Brad report a NULL pointer crash when writeback ending tries
to update the memcg stats:
BUG: unable to handle kernel NULL pointer dereference at 00000000000003b0
IP: test_clear_page_writeback+0x12e/0x2c0
[...]
RIP: 0010:test_clear_page_writeback+0x12e/0x2c0
Call Trace:
<IRQ>
end_page_writeback+0x47/0x70
f2fs_write_end_io+0x76/0x180 [f2fs]
bio_endio+0x9f/0x120
blk_update_request+0xa8/0x2f0
scsi_end_request+0x39/0x1d0
scsi_io_completion+0x211/0x690
scsi_finish_command+0xd9/0x120
scsi_softirq_done+0x127/0x150
__blk_mq_complete_request_remote+0x13/0x20
flush_smp_call_function_queue+0x56/0x110
generic_smp_call_function_single_interrupt+0x13/0x30
smp_call_function_single_interrupt+0x27/0x40
call_function_single_interrupt+0x89/0x90
RIP: 0010:native_safe_halt+0x6/0x10
(gdb) l *(test_clear_page_writeback+0x12e)
0xffffffff811bae3e is in test_clear_page_writeback (./include/linux/memcontrol.h:619).
614 mod_node_page_state(page_pgdat(page), idx, val);
615 if (mem_cgroup_disabled() || !page->mem_cgroup)
616 return;
617 mod_memcg_state(page->mem_cgroup, idx, val);
618 pn = page->mem_cgroup->nodeinfo[page_to_nid(page)];
619 this_cpu_add(pn->lruvec_stat->count[idx], val);
620 }
621
622 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
623 gfp_t gfp_mask,
The issue is that writeback doesn't hold a page reference and the page
might get freed after PG_writeback is cleared (and the mapping is
unlocked) in test_clear_page_writeback(). The stat functions looking up
the page's node or zone are safe, as those attributes are static across
allocation and free cycles. But page->mem_cgroup is not, and it will
get cleared if we race with truncation or migration.
It appears this race window has been around for a while, but less likely
to trigger when the memcg stats were updated first thing after
PG_writeback is cleared. Recent changes reshuffled this code to update
the global node stats before the memcg ones, though, stretching the race
window out to an extent where people can reproduce the problem.
Update test_clear_page_writeback() to look up and pin page->mem_cgroup
before clearing PG_writeback, then not use that pointer afterward. It
is a partial revert of 62cccb8c8e7a ("mm: simplify lock_page_memcg()")
but leaves the pageref-holding callsites that aren't affected alone.
Link: http://lkml.kernel.org/r/20170809183825.GA26387@cmpxchg.org
Fixes: 62cccb8c8e7a ("mm: simplify lock_page_memcg()")
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Jaegeuk Kim <jaegeuk@kernel.org>
Tested-by: Jaegeuk Kim <jaegeuk@kernel.org>
Reported-by: Bradley Bolen <bradleybolen@gmail.com>
Tested-by: Brad Bolen <bradleybolen@gmail.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: <stable@vger.kernel.org> [4.6+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Speculative processor accesses may reference any memory that has a
valid page table entry. While a speculative access won't generate
a machine check, it will log the error in a machine check bank. That
could cause escalation of a subsequent error since the overflow bit
will be then set in the machine check bank status register.
Code has to be double-plus-tricky to avoid mentioning the 1:1 virtual
address of the page we want to map out otherwise we may trigger the
very problem we are trying to avoid. We use a non-canonical address
that passes through the usual Linux table walking code to get to the
same "pte".
Thanks to Dave Hansen for reviewing several iterations of this.
Also see:
http://marc.info/?l=linux-mm&m=149860136413338&w=2
Signed-off-by: Tony Luck <tony.luck@intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Elliott, Robert (Persistent Memory) <elliott@hpe.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/20170816171803.28342-1-tony.luck@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Merge commit:
040cca3ab2f6 ("Merge branch 'linus' into locking/core, to resolve conflicts")
overlooked the fact that do_huge_pmd_numa_page() now does two TLB
flushes. Commit:
8b1b436dd1cc ("mm, locking: Rework {set,clear,mm}_tlb_flush_pending()")
and commit:
a9b802500ebb ("Revert "mm: numa: defer TLB flush for THP migration as long as possible"")
Both moved the TLB flush around but slightly different, the end result
being that what was one became two.
Clean this up.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David S. Miller <davem@davemloft.net>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Conflicts:
include/linux/mm_types.h
mm/huge_memory.c
I removed the smp_mb__before_spinlock() like the following commit does:
8b1b436dd1cc ("mm, locking: Rework {set,clear,mm}_tlb_flush_pending()")
and fixed up the affected commits.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
MMU notifiers can sleep, but in page_mkclean_one() we call
mmu_notifier_invalidate_page() under page table lock.
Let's instead use mmu_notifier_invalidate_range() outside
page_vma_mapped_walk() loop.
[jglisse@redhat.com: try_to_unmap_one() do not call mmu_notifier under ptl]
Link: http://lkml.kernel.org/r/20170809204333.27485-1-jglisse@redhat.com
Link: http://lkml.kernel.org/r/20170804134928.l4klfcnqatni7vsc@black.fi.intel.com
Fixes: c7ab0d2fdc84 ("mm: convert try_to_unmap_one() to use page_vma_mapped_walk()")
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Reported-by: axie <axie@amd.com>
Cc: Alex Deucher <alexander.deucher@amd.com>
Cc: "Writer, Tim" <Tim.Writer@amd.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
We saw many list corruption warnings on shmem shrinklist:
WARNING: CPU: 18 PID: 177 at lib/list_debug.c:59 __list_del_entry+0x9e/0xc0
list_del corruption. prev->next should be ffff9ae5694b82d8, but was ffff9ae5699ba960
Modules linked in: intel_rapl sb_edac edac_core x86_pkg_temp_thermal coretemp iTCO_wdt iTCO_vendor_support crct10dif_pclmul crc32_pclmul ghash_clmulni_intel raid0 dcdbas shpchp wmi hed i2c_i801 ioatdma lpc_ich i2c_smbus acpi_cpufreq tcp_diag inet_diag sch_fq_codel ipmi_si ipmi_devintf ipmi_msghandler igb ptp crc32c_intel pps_core i2c_algo_bit i2c_core dca ipv6 crc_ccitt
CPU: 18 PID: 177 Comm: kswapd1 Not tainted 4.9.34-t3.el7.twitter.x86_64 #1
Hardware name: Dell Inc. PowerEdge C6220/0W6W6G, BIOS 2.2.3 11/07/2013
Call Trace:
dump_stack+0x4d/0x66
__warn+0xcb/0xf0
warn_slowpath_fmt+0x4f/0x60
__list_del_entry+0x9e/0xc0
shmem_unused_huge_shrink+0xfa/0x2e0
shmem_unused_huge_scan+0x20/0x30
super_cache_scan+0x193/0x1a0
shrink_slab.part.41+0x1e3/0x3f0
shrink_slab+0x29/0x30
shrink_node+0xf9/0x2f0
kswapd+0x2d8/0x6c0
kthread+0xd7/0xf0
ret_from_fork+0x22/0x30
WARNING: CPU: 23 PID: 639 at lib/list_debug.c:33 __list_add+0x89/0xb0
list_add corruption. prev->next should be next (ffff9ae5699ba960), but was ffff9ae5694b82d8. (prev=ffff9ae5694b82d8).
Modules linked in: intel_rapl sb_edac edac_core x86_pkg_temp_thermal coretemp iTCO_wdt iTCO_vendor_support crct10dif_pclmul crc32_pclmul ghash_clmulni_intel raid0 dcdbas shpchp wmi hed i2c_i801 ioatdma lpc_ich i2c_smbus acpi_cpufreq tcp_diag inet_diag sch_fq_codel ipmi_si ipmi_devintf ipmi_msghandler igb ptp crc32c_intel pps_core i2c_algo_bit i2c_core dca ipv6 crc_ccitt
CPU: 23 PID: 639 Comm: systemd-udevd Tainted: G W 4.9.34-t3.el7.twitter.x86_64 #1
Hardware name: Dell Inc. PowerEdge C6220/0W6W6G, BIOS 2.2.3 11/07/2013
Call Trace:
dump_stack+0x4d/0x66
__warn+0xcb/0xf0
warn_slowpath_fmt+0x4f/0x60
__list_add+0x89/0xb0
shmem_setattr+0x204/0x230
notify_change+0x2ef/0x440
do_truncate+0x5d/0x90
path_openat+0x331/0x1190
do_filp_open+0x7e/0xe0
do_sys_open+0x123/0x200
SyS_open+0x1e/0x20
do_syscall_64+0x61/0x170
entry_SYSCALL64_slow_path+0x25/0x25
The problem is that shmem_unused_huge_shrink() moves entries from the
global sbinfo->shrinklist to its local lists and then releases the
spinlock. However, a parallel shmem_setattr() could access one of these
entries directly and add it back to the global shrinklist if it is
removed, with the spinlock held.
The logic itself looks solid since an entry could be either in a local
list or the global list, otherwise it is removed from one of them by
list_del_init(). So probably the race condition is that, one CPU is in
the middle of INIT_LIST_HEAD() but the other CPU calls list_empty()
which returns true too early then the following list_add_tail() sees a
corrupted entry.
list_empty_careful() is designed to fix this situation.
[akpm@linux-foundation.org: add comments]
Link: http://lkml.kernel.org/r/20170803054630.18775-1-xiyou.wangcong@gmail.com
Fixes: 779750d20b93 ("shmem: split huge pages beyond i_size under memory pressure")
Signed-off-by: Cong Wang <xiyou.wangcong@gmail.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Revert commit bb01b64cfab7 ("mm/balloon_compaction.c: enqueue zero page
to balloon device")'
Zeroing ballon pages is rather time consuming, especially when a lot of
pages are in flight. E.g. 7GB worth of ballooned memory takes 2.8s with
__GFP_ZERO while it takes ~491ms without it.
The original commit argued that zeroing will help ksmd to merge these
pages on the host but this argument is assuming that the host actually
marks balloon pages for ksm which is not universally true. So we pay
performance penalty for something that even might not be used in the end
which is wrong. The host can zero out pages on its own when there is a
need.
[mhocko@kernel.org: new changelog text]
Link: http://lkml.kernel.org/r/1501761557-9758-1-git-send-email-wei.w.wang@intel.com
Fixes: bb01b64cfab7 ("mm/balloon_compaction.c: enqueue zero page to balloon device")
Signed-off-by: Wei Wang <wei.w.wang@intel.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: zhenwei.pi <zhenwei.pi@youruncloud.com>
Cc: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|