summaryrefslogtreecommitdiff
path: root/mm/vmscan.c
AgeCommit message (Collapse)AuthorFilesLines
2021-02-24mm/vmscan: restore zone_reclaim_mode ABIDave Hansen1-2/+7
I went to go add a new RECLAIM_* mode for the zone_reclaim_mode sysctl. Like a good kernel developer, I also went to go update the documentation. I noticed that the bits in the documentation didn't match the bits in the #defines. The VM never explicitly checks the RECLAIM_ZONE bit. The bit is, however implicitly checked when checking 'node_reclaim_mode==0'. The RECLAIM_ZONE #define was removed in a cleanup. That, by itself is fine. But, when the bit was removed (bit 0) the _other_ bit locations also got changed. That's not OK because the bit values are documented to mean one specific thing. Users surely do not expect the meaning to change from kernel to kernel. The end result is that if someone had a script that did: sysctl vm.zone_reclaim_mode=1 it would have gone from enabling node reclaim for clean unmapped pages to writing out pages during node reclaim after the commit in question. That's not great. Put the bits back the way they were and add a comment so something like this is a bit harder to do again. Update the documentation to make it clear that the first bit is ignored. Link: https://lkml.kernel.org/r/20210219172555.FF0CDF23@viggo.jf.intel.com Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Fixes: 648b5cf368e0 ("mm/vmscan: remove unused RECLAIM_OFF/RECLAIM_ZONE") Reviewed-by: Ben Widawsky <ben.widawsky@intel.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Daniel Wagner <dwagner@suse.de> Cc: "Tobin C. Harding" <tobin@kernel.org> Cc: Christoph Lameter <cl@linux.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Huang Ying <ying.huang@intel.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Qian Cai <cai@lca.pw> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-24mm/vmscan.c: make lruvec_lru_size() staticYu Zhao1-1/+2
All other references to the function were removed after commit b910718a948a ("mm: vmscan: detect file thrashing at the reclaim root"). Link: https://lore.kernel.org/linux-mm/20201207220949.830352-11-yuzhao@google.com/ Link: https://lkml.kernel.org/r/20210122220600.906146-11-yuzhao@google.com Signed-off-by: Yu Zhao <yuzhao@google.com> Reviewed-by: Alex Shi <alex.shi@linux.alibaba.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Roman Gushchin <guro@fb.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-24mm: VM_BUG_ON lru page flagsYu Zhao1-1/+0
Move scattered VM_BUG_ONs to two essential places that cover all lru list additions and deletions. Link: https://lore.kernel.org/linux-mm/20201207220949.830352-8-yuzhao@google.com/ Link: https://lkml.kernel.org/r/20210122220600.906146-8-yuzhao@google.com Signed-off-by: Yu Zhao <yuzhao@google.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Roman Gushchin <guro@fb.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-24mm: add __clear_page_lru_flags() to replace page_off_lru()Yu Zhao1-2/+1
Similar to page_off_lru(), the new function does non-atomic clearing of PageLRU() in addition to PageActive() and PageUnevictable(), on a page that has no references left. If PageActive() and PageUnevictable() are both set, refuse to clear either and leave them to bad_page(). This is a behavior change that is meant to help debug. Link: https://lore.kernel.org/linux-mm/20201207220949.830352-7-yuzhao@google.com/ Link: https://lkml.kernel.org/r/20210122220600.906146-7-yuzhao@google.com Signed-off-by: Yu Zhao <yuzhao@google.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Roman Gushchin <guro@fb.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-24mm/swap.c: don't pass "enum lru_list" to del_page_from_lru_list()Yu Zhao1-2/+2
The parameter is redundant in the sense that it can be potentially extracted from the "struct page" parameter by page_lru(). We need to make sure that existing PageActive() or PageUnevictable() remains until the function returns. A few places don't conform, and simple reordering fixes them. This patch may have left page_off_lru() seemingly odd, and we'll take care of it in the next patch. Link: https://lore.kernel.org/linux-mm/20201207220949.830352-6-yuzhao@google.com/ Link: https://lkml.kernel.org/r/20210122220600.906146-6-yuzhao@google.com Signed-off-by: Yu Zhao <yuzhao@google.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Roman Gushchin <guro@fb.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-24mm: don't pass "enum lru_list" to lru list addition functionsYu Zhao1-4/+2
The "enum lru_list" parameter to add_page_to_lru_list() and add_page_to_lru_list_tail() is redundant in the sense that it can be extracted from the "struct page" parameter by page_lru(). A caveat is that we need to make sure PageActive() or PageUnevictable() is correctly set or cleared before calling these two functions. And they are indeed. Link: https://lore.kernel.org/linux-mm/20201207220949.830352-4-yuzhao@google.com/ Link: https://lkml.kernel.org/r/20210122220600.906146-4-yuzhao@google.com Signed-off-by: Yu Zhao <yuzhao@google.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Roman Gushchin <guro@fb.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-24mm/vmscan.c: use add_page_to_lru_list()Yu Zhao1-5/+1
Patch series "mm: lru related cleanups", v2. The cleanups are intended to reduce the verbosity in lru list operations and make them less error-prone. A typical example would be how the patches change __activate_page(): static void __activate_page(struct page *page, struct lruvec *lruvec) { if (!PageActive(page) && !PageUnevictable(page)) { - int lru = page_lru_base_type(page); int nr_pages = thp_nr_pages(page); - del_page_from_lru_list(page, lruvec, lru); + del_page_from_lru_list(page, lruvec); SetPageActive(page); - lru += LRU_ACTIVE; - add_page_to_lru_list(page, lruvec, lru); + add_page_to_lru_list(page, lruvec); trace_mm_lru_activate(page); There are a few more places like __activate_page() and they are unnecessarily repetitive in terms of figuring out which list a page should be added onto or deleted from. And with the duplicated code removed, they are easier to read, IMO. Patch 1 to 5 basically cover the above. Patch 6 and 7 make code more robust by improving bug reporting. Patch 8, 9 and 10 take care of some dangling helpers left in header files. This patch (of 10): There is add_page_to_lru_list(), and move_pages_to_lru() should reuse it, not duplicate it. Link: https://lkml.kernel.org/r/20210122220600.906146-1-yuzhao@google.com Link: https://lore.kernel.org/linux-mm/20201207220949.830352-2-yuzhao@google.com/ Link: https://lkml.kernel.org/r/20210122220600.906146-2-yuzhao@google.com Signed-off-by: Yu Zhao <yuzhao@google.com> Reviewed-by: Alex Shi <alex.shi@linux.alibaba.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Miaohe Lin <linmiaohe@huawei.com> Cc: Hugh Dickins <hughd@google.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Roman Gushchin <guro@fb.com> Cc: Matthew Wilcox <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-24mm/vmscan: __isolate_lru_page_prepare() cleanupAlex Shi1-37/+31
The function just returns 2 results, so using a 'switch' to deal with its result is unnecessary. Also simplify it to a bool func as Vlastimil suggested. Also remove 'goto' by reusing list_move(), and take Matthew Wilcox's suggestion to update comments in function. Link: https://lkml.kernel.org/r/728874d7-2d93-4049-68c1-dcc3b2d52ccd@linux.alibaba.com Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Matthew Wilcox <willy@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-01-17mm: don't put pinned pages into the swap cacheLinus Torvalds1-0/+2
So technically there is nothing wrong with adding a pinned page to the swap cache, but the pinning obviously means that the page can't actually be free'd right now anyway, so it's a bit pointless. However, the real problem is not with it being a bit pointless: the real issue is that after we've added it to the swap cache, we'll try to unmap the page. That will succeed, because the code in mm/rmap.c doesn't know or care about pinned pages. Even the unmapping isn't fatal per se, since the page will stay around in memory due to the pinning, and we do hold the connection to it using the swap cache. But when we then touch it next and take a page fault, the logic in do_swap_page() will map it back into the process as a possibly read-only page, and we'll then break the page association on the next COW fault. Honestly, this issue could have been fixed in any of those other places: (a) we could refuse to unmap a pinned page (which makes conceptual sense), or (b) we could make sure to re-map a pinned page writably in do_swap_page(), or (c) we could just make do_wp_page() not COW the pinned page (which was what we historically did before that "mm: do_wp_page() simplification" commit). But while all of them are equally valid models for breaking this chain, not putting pinned pages into the swap cache in the first place is the simplest one by far. It's also the safest one: the reason why do_wp_page() was changed in the first place was that getting the "can I re-use this page" wrong is so fraught with errors. If you do it wrong, you end up with an incorrectly shared page. As a result, using "page_maybe_dma_pinned()" in either do_wp_page() or do_swap_page() would be a serious bug since it is only a (very good) heuristic. Re-using the page requires a hard black-and-white rule with no room for ambiguity. In contrast, saying "this page is very likely dma pinned, so let's not add it to the swap cache and try to unmap it" is an obviously safe thing to do, and if the heuristic might very rarely be a false positive, no harm is done. Fixes: 09854ba94c6a ("mm: do_wp_page() simplification") Reported-and-tested-by: Martin Raiber <martin@urbackup.org> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Peter Xu <peterx@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-15mm/lru: revise the comments of lru_lockHugh Dickins1-18/+23
Since we changed the pgdat->lru_lock to lruvec->lru_lock, it's time to fix the incorrect comments in code. Also fixed some zone->lru_lock comment error from ancient time. etc. I struggled to understand the comment above move_pages_to_lru() (surely it never calls page_referenced()), and eventually realized that most of it had got separated from shrink_active_list(): move that comment back. Link: https://lkml.kernel.org/r/1604566549-62481-20-git-send-email-alex.shi@linux.alibaba.com Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Tejun Heo <tj@kernel.org> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Jann Horn <jannh@google.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Matthew Wilcox <willy@infradead.org> Cc: Alexander Duyck <alexander.duyck@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Chen, Rong A" <rong.a.chen@intel.com> Cc: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Cc: Michal Hocko <mhocko@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Mika Penttilä <mika.penttila@nextfour.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-15mm/lru: introduce relock_page_lruvec()Alexander Duyck1-10/+2
Add relock_page_lruvec() to replace repeated same code, no functional change. When testing for relock we can avoid the need for RCU locking if we simply compare the page pgdat and memcg pointers versus those that the lruvec is holding. By doing this we can avoid the extra pointer walks and accesses of the memory cgroup. In addition we can avoid the checks entirely if lruvec is currently NULL. [alex.shi@linux.alibaba.com: use page_memcg()] Link: https://lkml.kernel.org/r/66d8e79d-7ec6-bfbc-1c82-bf32db3ae5b7@linux.alibaba.com Link: https://lkml.kernel.org/r/1604566549-62481-19-git-send-email-alex.shi@linux.alibaba.com Signed-off-by: Alexander Duyck <alexander.h.duyck@linux.intel.com> Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com> Acked-by: Hugh Dickins <hughd@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Cc: Tejun Heo <tj@kernel.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Chen, Rong A" <rong.a.chen@intel.com> Cc: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Jann Horn <jannh@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Michal Hocko <mhocko@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Mika Penttilä <mika.penttila@nextfour.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-15mm/lru: replace pgdat lru_lock with lruvec lockAlex Shi1-30/+25
This patch moves per node lru_lock into lruvec, thus bring a lru_lock for each of memcg per node. So on a large machine, each of memcg don't have to suffer from per node pgdat->lru_lock competition. They could go fast with their self lru_lock. After move memcg charge before lru inserting, page isolation could serialize page's memcg, then per memcg lruvec lock is stable and could replace per node lru lock. In isolate_migratepages_block(), compact_unlock_should_abort and lock_page_lruvec_irqsave are open coded to work with compact_control. Also add a debug func in locking which may give some clues if there are sth out of hands. Daniel Jordan's testing show 62% improvement on modified readtwice case on his 2P * 10 core * 2 HT broadwell box. https://lore.kernel.org/lkml/20200915165807.kpp7uhiw7l3loofu@ca-dmjordan1.us.oracle.com/ Hugh Dickins helped on the patch polish, thanks! [alex.shi@linux.alibaba.com: fix comment typo] Link: https://lkml.kernel.org/r/5b085715-292a-4b43-50b3-d73dc90d1de5@linux.alibaba.com [alex.shi@linux.alibaba.com: use page_memcg()] Link: https://lkml.kernel.org/r/5a4c2b72-7ee8-2478-fc0e-85eb83aafec4@linux.alibaba.com Link: https://lkml.kernel.org/r/1604566549-62481-18-git-send-email-alex.shi@linux.alibaba.com Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com> Acked-by: Hugh Dickins <hughd@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Rong Chen <rong.a.chen@intel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Yang Shi <yang.shi@linux.alibaba.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Cc: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: Alexander Duyck <alexander.duyck@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Jann Horn <jannh@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Mika Penttilä <mika.penttila@nextfour.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wei Yang <richard.weiyang@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-15mm/compaction: do page isolation first in compactionAlex Shi1-21/+22
Currently, compaction would get the lru_lock and then do page isolation which works fine with pgdat->lru_lock, since any page isoltion would compete for the lru_lock. If we want to change to memcg lru_lock, we have to isolate the page before getting lru_lock, thus isoltion would block page's memcg change which relay on page isoltion too. Then we could safely use per memcg lru_lock later. The new page isolation use previous introduced TestClearPageLRU() + pgdat lru locking which will be changed to memcg lru lock later. Hugh Dickins <hughd@google.com> fixed following bugs in this patch's early version: Fix lots of crashes under compaction load: isolate_migratepages_block() must clean up appropriately when rejecting a page, setting PageLRU again if it had been cleared; and a put_page() after get_page_unless_zero() cannot safely be done while holding locked_lruvec - it may turn out to be the final put_page(), which will take an lruvec lock when PageLRU. And move __isolate_lru_page_prepare back after get_page_unless_zero to make trylock_page() safe: trylock_page() is not safe to use at this time: its setting PG_locked can race with the page being freed or allocated ("Bad page"), and can also erase flags being set by one of those "sole owners" of a freshly allocated page who use non-atomic __SetPageFlag(). Link: https://lkml.kernel.org/r/1604566549-62481-16-git-send-email-alex.shi@linux.alibaba.com Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com> Acked-by: Hugh Dickins <hughd@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Matthew Wilcox <willy@infradead.org> Cc: Alexander Duyck <alexander.duyck@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: "Chen, Rong A" <rong.a.chen@intel.com> Cc: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Jann Horn <jannh@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Mika Penttilä <mika.penttila@nextfour.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-15mm/lru: introduce TestClearPageLRU()Alex Shi1-20/+19
Currently lru_lock still guards both lru list and page's lru bit, that's ok. but if we want to use specific lruvec lock on the page, we need to pin down the page's lruvec/memcg during locking. Just taking lruvec lock first may be undermined by the page's memcg charge/migration. To fix this problem, we will clear the lru bit out of locking and use it as pin down action to block the page isolation in memcg changing. So now a standard steps of page isolation is following: 1, get_page(); #pin the page avoid to be free 2, TestClearPageLRU(); #block other isolation like memcg change 3, spin_lock on lru_lock; #serialize lru list access 4, delete page from lru list; This patch start with the first part: TestClearPageLRU, which combines PageLRU check and ClearPageLRU into a macro func TestClearPageLRU. This function will be used as page isolation precondition to prevent other isolations some where else. Then there are may !PageLRU page on lru list, need to remove BUG() checking accordingly. There 2 rules for lru bit now: 1, the lru bit still indicate if a page on lru list, just in some temporary moment(isolating), the page may have no lru bit when it's on lru list. but the page still must be on lru list when the lru bit set. 2, have to remove lru bit before delete it from lru list. As Andrew Morton mentioned this change would dirty cacheline for a page which isn't on the LRU. But the loss would be acceptable in Rong Chen <rong.a.chen@intel.com> report: https://lore.kernel.org/lkml/20200304090301.GB5972@shao2-debian/ Link: https://lkml.kernel.org/r/1604566549-62481-15-git-send-email-alex.shi@linux.alibaba.com Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com> Acked-by: Hugh Dickins <hughd@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Alexander Duyck <alexander.duyck@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Jann Horn <jannh@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Mika Penttilä <mika.penttila@nextfour.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-15mm/vmscan: remove lruvec reget in move_pages_to_lruAlex Shi1-1/+6
Isolated page shouldn't be recharged by memcg since the memcg migration isn't possible at the time. All pages were isolated from the same lruvec (and isolation inhibits memcg migration). So remove unnecessary regetting. Thanks to Alexander Duyck for pointing this out. Link: https://lkml.kernel.org/r/1604566549-62481-12-git-send-email-alex.shi@linux.alibaba.com Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com> Acked-by: Hugh Dickins <hughd@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Cc: Michal Hocko <mhocko@kernel.org> Cc: Alexander Duyck <alexander.duyck@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: "Chen, Rong A" <rong.a.chen@intel.com> Cc: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Jann Horn <jannh@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Mika Penttilä <mika.penttila@nextfour.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-15mm/lru: move lock into lru_note_costAlex Shi1-3/+1
We have to move lru_lock into lru_note_cost, since it cycle up on memcg tree, for future per lruvec lru_lock replace. It's a bit ugly and may cost a bit more locking, but benefit from multiple memcg locking could cover the lost. Link: https://lkml.kernel.org/r/1604566549-62481-11-git-send-email-alex.shi@linux.alibaba.com Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com> Acked-by: Hugh Dickins <hughd@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Alexander Duyck <alexander.duyck@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: "Chen, Rong A" <rong.a.chen@intel.com> Cc: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Jann Horn <jannh@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Mika Penttilä <mika.penttila@nextfour.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-15mm/vmscan: remove unnecessary lruvec addingAlex Shi1-13/+25
We don't have to add a freeable page into lru and then remove from it. This change saves a couple of actions and makes the moving more clear. The SetPageLRU needs to be kept before put_page_testzero for list integrity, otherwise: #0 move_pages_to_lru #1 release_pages if !put_page_testzero if (put_page_testzero()) !PageLRU //skip lru_lock SetPageLRU() list_add(&page->lru,) list_add(&page->lru,) [akpm@linux-foundation.org: coding style fixes] Link: https://lkml.kernel.org/r/1604566549-62481-6-git-send-email-alex.shi@linux.alibaba.com Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com> Acked-by: Hugh Dickins <hughd@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Tejun Heo <tj@kernel.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Alexander Duyck <alexander.duyck@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: "Chen, Rong A" <rong.a.chen@intel.com> Cc: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Jann Horn <jannh@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Mika Penttilä <mika.penttila@nextfour.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-15mm: fix fall-through warnings for ClangGustavo A. R. Silva1-0/+1
In preparation to enable -Wimplicit-fallthrough for Clang, fix a couple of warnings by explicitly adding a break statement instead of just letting the code fall through to the next, and by adding a fallthrough pseudo-keyword in places where the code is intended to fall through. Link: https://github.com/KSPP/linux/issues/115 Link: https://lkml.kernel.org/r/f5756988b8842a3f10008fbc5b0a654f828920a9.1605896059.git.gustavoars@kernel.org Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-15mm: truncate_complete_page() does not exist any moreYang Shi1-1/+1
Patch series "mm: misc migrate cleanup and improvement", v3. This patch (of 5): The commit 9f4e41f4717832e ("mm: refactor truncate_complete_page()") refactored truncate_complete_page(), and it is not existed anymore, correct the comment in vmscan and migrate to avoid confusion. Link: https://lkml.kernel.org/r/20201113205359.556831-1-shy828301@gmail.com Link: https://lkml.kernel.org/r/20201113205359.556831-2-shy828301@gmail.com Signed-off-by: Yang Shi <shy828301@gmail.com> Reviewed-by: Jan Kara <jack@suse.cz> Cc: Michal Hocko <mhocko@suse.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Song Liu <songliubraving@fb.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Matthew Wilcox <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-15mm/vmscan.c: remove the filename in the top of file commentlogic.yu1-2/+0
No point in having the filename inside the file. Link: https://lkml.kernel.org/r/20201115141541.3878-1-hymmsx.yu@gmail.com Signed-off-by: logic.yu <hymmsx.yu@gmail.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-15mm/vmscan: drop unneeded assignment in kswapd()Lukas Bulwahn1-1/+1
The refactoring to kswapd() in commit e716f2eb24de ("mm, vmscan: prevent kswapd sleeping prematurely due to mismatched classzone_idx") turned an assignment to reclaim_order into a dead store, as in all further paths, reclaim_order will be assigned again before it is used. make clang-analyzer on x86_64 tinyconfig caught my attention with: mm/vmscan.c: warning: Although the value stored to 'reclaim_order' is used in the enclosing expression, the value is never actually read from 'reclaim_order' [clang-analyzer-deadcode.DeadStores] Compilers will detect this unneeded assignment and optimize this anyway. So, the resulting binary is identical before and after this change. Simplify the code and remove unneeded assignment to make clang-analyzer happy. No functional change. No change in binary code. Link: https://lkml.kernel.org/r/20201004125827.17679-1-lukas.bulwahn@gmail.com Signed-off-by: Lukas Bulwahn <lukas.bulwahn@gmail.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Michal Hocko <mhocko@suse.com> Cc: Nathan Chancellor <natechancellor@gmail.com> Cc: Nick Desaulniers <ndesaulniers@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-15mm/rmap: always do TTU_IGNORE_ACCESSShakeel Butt1-9/+5
Since commit 369ea8242c0f ("mm/rmap: update to new mmu_notifier semantic v2"), the code to check the secondary MMU's page table access bit is broken for !(TTU_IGNORE_ACCESS) because the page is unmapped from the secondary MMU's page table before the check. More specifically for those secondary MMUs which unmap the memory in mmu_notifier_invalidate_range_start() like kvm. However memory reclaim is the only user of !(TTU_IGNORE_ACCESS) or the absence of TTU_IGNORE_ACCESS and it explicitly performs the page table access check before trying to unmap the page. So, at worst the reclaim will miss accesses in a very short window if we remove page table access check in unmapping code. There is an unintented consequence of !(TTU_IGNORE_ACCESS) for the memcg reclaim. From memcg reclaim the page_referenced() only account the accesses from the processes which are in the same memcg of the target page but the unmapping code is considering accesses from all the processes, so, decreasing the effectiveness of memcg reclaim. The simplest solution is to always assume TTU_IGNORE_ACCESS in unmapping code. Link: https://lkml.kernel.org/r/20201104231928.1494083-1-shakeelb@google.com Fixes: 369ea8242c0f ("mm/rmap: update to new mmu_notifier semantic v2") Signed-off-by: Shakeel Butt <shakeelb@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Hugh Dickins <hughd@google.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Michal Hocko <mhocko@kernel.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-11-14mm/vmscan: fix NR_ISOLATED_FILE corruption on 64-bitNicholas Piggin1-2/+3
Previously the negated unsigned long would be cast back to signed long which would have the correct negative value. After commit 730ec8c01a2b ("mm/vmscan.c: change prototype for shrink_page_list"), the large unsigned int converts to a large positive signed long. Symptoms include CMA allocations hanging forever holding the cma_mutex due to alloc_contig_range->...->isolate_migratepages_block waiting forever in "while (unlikely(too_many_isolated(pgdat)))". [akpm@linux-foundation.org: fix -stat.nr_lazyfree_fail as well, per Michal] Fixes: 730ec8c01a2b ("mm/vmscan.c: change prototype for shrink_page_list") Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Vaneet Narang <v.narang@samsung.com> Cc: Maninder Singh <maninder1.s@samsung.com> Cc: Amit Sahrawat <a.sahrawat@samsung.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: <stable@vger.kernel.org> Link: https://lkml.kernel.org/r/20201029032320.1448441-1-npiggin@gmail.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-16mm: use self-explanatory macros rather than "2"Yu Zhao1-1/+1
Signed-off-by: Yu Zhao <yuzhao@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Alex Shi <alex.shi@linux.alibaba.com> Link: http://lkml.kernel.org/r/20200831175042.3527153-2-yuzhao@google.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-16mm/vmscan: allow arbitrary sized pages to be paged outMatthew Wilcox (Oracle)1-2/+1
Remove the assumption that a compound page has HPAGE_PMD_NR pins from the page cache. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: SeongJae Park <sjpark@amazon.de> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: "Huang, Ying" <ying.huang@intel.com> Link: https://lkml.kernel.org/r/20200908195539.25896-12-willy@infradead.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-13mm/vmscan: fix comments for isolate_lru_page()Hui Su1-1/+1
fix comments for isolate_lru_page(): s/fundamentnal/fundamental Signed-off-by: Hui Su <sh_def@163.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Link: https://lkml.kernel.org/r/20200927173923.GA8058@rlk Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-13mm/vmscan: fix infinite loop in drop_slab_nodeChunxin Zang1-0/+3
We have observed that drop_caches can take a considerable amount of time (<put data here>). Especially when there are many memcgs involved because they are adding an additional overhead. It is quite unfortunate that the operation cannot be interrupted by a signal currently. Add a check for fatal signals into the main loop so that userspace can control early bailout. There are two reasons: 1. We have too many memcgs, even though one object freed in one memcg, the sum of object is bigger than 10. 2. We spend a lot of time in traverse memcg once. So, the memcg who traversed at the first have been freed many objects. Traverse memcg next time, the freed count bigger than 10 again. We can get the following info through 'ps': root:~# ps -aux | grep drop root 357956 ... R Aug25 21119854:55 echo 3 > /proc/sys/vm/drop_caches root 1771385 ... R Aug16 21146421:17 echo 3 > /proc/sys/vm/drop_caches root 1986319 ... R 18:56 117:27 echo 3 > /proc/sys/vm/drop_caches root 2002148 ... R Aug24 5720:39 echo 3 > /proc/sys/vm/drop_caches root 2564666 ... R 18:59 113:58 echo 3 > /proc/sys/vm/drop_caches root 2639347 ... R Sep03 2383:39 echo 3 > /proc/sys/vm/drop_caches root 3904747 ... R 03:35 993:31 echo 3 > /proc/sys/vm/drop_caches root 4016780 ... R Aug21 7882:18 echo 3 > /proc/sys/vm/drop_caches Use bpftrace follow 'freed' value in drop_slab_node: root:~# bpftrace -e 'kprobe:drop_slab_node+70 {@ret=hist(reg("bp")); }' Attaching 1 probe... ^B^C @ret: [64, 128) 1 | | [128, 256) 28 | | [256, 512) 107 |@ | [512, 1K) 298 |@@@ | [1K, 2K) 613 |@@@@@@@ | [2K, 4K) 4435 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@| [4K, 8K) 442 |@@@@@ | [8K, 16K) 299 |@@@ | [16K, 32K) 100 |@ | [32K, 64K) 139 |@ | [64K, 128K) 56 | | [128K, 256K) 26 | | [256K, 512K) 2 | | In the while loop, we can check whether the TASK_KILLABLE signal is set, if so, we should break the loop. Signed-off-by: Chunxin Zang <zangchunxin@bytedance.com> Signed-off-by: Muchun Song <songmuchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Chris Down <chris@chrisdown.name> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Matthew Wilcox <willy@infradead.org> Link: https://lkml.kernel.org/r/20200909152047.27905-1-zangchunxin@bytedance.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-09-19mm: fix check_move_unevictable_pages() on THPHugh Dickins1-2/+8
check_move_unevictable_pages() is used in making unevictable shmem pages evictable: by shmem_unlock_mapping(), drm_gem_check_release_pagevec() and i915/gem check_release_pagevec(). Those may pass down subpages of a huge page, when /sys/kernel/mm/transparent_hugepage/shmem_enabled is "force". That does not crash or warn at present, but the accounting of vmstats unevictable_pgs_scanned and unevictable_pgs_rescued is inconsistent: scanned being incremented on each subpage, rescued only on the head (since tails already appear evictable once the head has been updated). 5.8 commit 5d91f31faf8e ("mm: swap: fix vmstats for huge page") has established that vm_events in general (and unevictable_pgs_rescued in particular) should count every subpage: so follow that precedent here. Do this in such a way that if mem_cgroup_page_lruvec() is made stricter (to check page->mem_cgroup is always set), no problem: skip the tails before calling it, and add thp_nr_pages() to vmstats on the head. Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Yang Shi <shy828301@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Qian Cai <cai@lca.pw> Link: http://lkml.kernel.org/r/alpine.LSU.2.11.2008301405000.5954@eggly.anvils Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-09-05mm: memcg: fix memcg reclaim soft lockupXunlei Pang1-0/+8
We've met softlockup with "CONFIG_PREEMPT_NONE=y", when the target memcg doesn't have any reclaimable memory. It can be easily reproduced as below: watchdog: BUG: soft lockup - CPU#0 stuck for 111s![memcg_test:2204] CPU: 0 PID: 2204 Comm: memcg_test Not tainted 5.9.0-rc2+ #12 Call Trace: shrink_lruvec+0x49f/0x640 shrink_node+0x2a6/0x6f0 do_try_to_free_pages+0xe9/0x3e0 try_to_free_mem_cgroup_pages+0xef/0x1f0 try_charge+0x2c1/0x750 mem_cgroup_charge+0xd7/0x240 __add_to_page_cache_locked+0x2fd/0x370 add_to_page_cache_lru+0x4a/0xc0 pagecache_get_page+0x10b/0x2f0 filemap_fault+0x661/0xad0 ext4_filemap_fault+0x2c/0x40 __do_fault+0x4d/0xf9 handle_mm_fault+0x1080/0x1790 It only happens on our 1-vcpu instances, because there's no chance for oom reaper to run to reclaim the to-be-killed process. Add a cond_resched() at the upper shrink_node_memcgs() to solve this issue, this will mean that we will get a scheduling point for each memcg in the reclaimed hierarchy without any dependency on the reclaimable memory in that memcg thus making it more predictable. Suggested-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Xunlei Pang <xlpang@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Chris Down <chris@chrisdown.name> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Link: http://lkml.kernel.org/r/1598495549-67324-1-git-send-email-xlpang@linux.alibaba.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-14mm: replace hpage_nr_pages with thp_nr_pagesMatthew Wilcox (Oracle)1-3/+3
The thp prefix is more frequently used than hpage and we should be consistent between the various functions. [akpm@linux-foundation.org: fix mm/migrate.c] Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: William Kucharski <william.kucharski@oracle.com> Reviewed-by: Zi Yan <ziy@nvidia.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: David Hildenbrand <david@redhat.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Link: http://lkml.kernel.org/r/20200629151959.15779-6-willy@infradead.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-12mm/vmscan.c: delete or fix duplicated wordsRandy Dunlap1-2/+2
Drop the repeated word "marked". Change "time time" to "same time". Signed-off-by: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Zi Yan <ziy@nvidia.com> Link: http://lkml.kernel.org/r/20200801173822.14973-14-rdunlap@infradead.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-12mm/vmscan: restore active/inactive ratio for anonymous LRUJoonsoo Kim1-1/+1
Now that workingset detection is implemented for anonymous LRU, we don't need large inactive list to allow detecting frequently accessed pages before they are reclaimed, anymore. This effectively reverts the temporary measure put in by commit "mm/vmscan: make active/inactive ratio as 1:1 for anon lru". Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hugh Dickins <hughd@google.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Link: http://lkml.kernel.org/r/1595490560-15117-7-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-12mm/swap: implement workingset detection for anonymous LRUJoonsoo Kim1-3/+4
This patch implements workingset detection for anonymous LRU. All the infrastructure is implemented by the previous patches so this patch just activates the workingset detection by installing/retrieving the shadow entry and adding refault calculation. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hugh Dickins <hughd@google.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Link: http://lkml.kernel.org/r/1595490560-15117-6-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-12mm/swapcache: support to handle the shadow entriesJoonsoo Kim1-1/+1
Workingset detection for anonymous page will be implemented in the following patch and it requires to store the shadow entries into the swapcache. This patch implements an infrastructure to store the shadow entry in the swapcache. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Hugh Dickins <hughd@google.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Link: http://lkml.kernel.org/r/1595490560-15117-5-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-12mm/workingset: prepare the workingset detection infrastructure for anon LRUJoonsoo Kim1-5/+10
To prepare the workingset detection for anon LRU, this patch splits workingset event counters for refault, activate and restore into anon and file variants, as well as the refaults counter in struct lruvec. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hugh Dickins <hughd@google.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Link: http://lkml.kernel.org/r/1595490560-15117-4-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-12mm/vmscan: protect the workingset on anonymous LRUJoonsoo Kim1-3/+1
In current implementation, newly created or swap-in anonymous page is started on active list. Growing active list results in rebalancing active/inactive list so old pages on active list are demoted to inactive list. Hence, the page on active list isn't protected at all. Following is an example of this situation. Assume that 50 hot pages on active list. Numbers denote the number of pages on active/inactive list (active | inactive). 1. 50 hot pages on active list 50(h) | 0 2. workload: 50 newly created (used-once) pages 50(uo) | 50(h) 3. workload: another 50 newly created (used-once) pages 50(uo) | 50(uo), swap-out 50(h) This patch tries to fix this issue. Like as file LRU, newly created or swap-in anonymous pages will be inserted to the inactive list. They are promoted to active list if enough reference happens. This simple modification changes the above example as following. 1. 50 hot pages on active list 50(h) | 0 2. workload: 50 newly created (used-once) pages 50(h) | 50(uo) 3. workload: another 50 newly created (used-once) pages 50(h) | 50(uo), swap-out 50(uo) As you can see, hot pages on active list would be protected. Note that, this implementation has a drawback that the page cannot be promoted and will be swapped-out if re-access interval is greater than the size of inactive list but less than the size of total(active+inactive). To solve this potential issue, following patch will apply workingset detection similar to the one that's already applied to file LRU. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hugh Dickins <hughd@google.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Link: http://lkml.kernel.org/r/1595490560-15117-3-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-12mm/vmscan: make active/inactive ratio as 1:1 for anon lruJoonsoo Kim1-1/+1
Patch series "workingset protection/detection on the anonymous LRU list", v7. * PROBLEM In current implementation, newly created or swap-in anonymous page is started on the active list. Growing the active list results in rebalancing active/inactive list so old pages on the active list are demoted to the inactive list. Hence, hot page on the active list isn't protected at all. Following is an example of this situation. Assume that 50 hot pages on active list and system can contain total 100 pages. Numbers denote the number of pages on active/inactive list (active | inactive). (h) stands for hot pages and (uo) stands for used-once pages. 1. 50 hot pages on active list 50(h) | 0 2. workload: 50 newly created (used-once) pages 50(uo) | 50(h) 3. workload: another 50 newly created (used-once) pages 50(uo) | 50(uo), swap-out 50(h) As we can see, hot pages are swapped-out and it would cause swap-in later. * SOLUTION Since this is what we want to avoid, this patchset implements workingset protection. Like as the file LRU list, newly created or swap-in anonymous page is started on the inactive list. Also, like as the file LRU list, if enough reference happens, the page will be promoted. This simple modification changes the above example as following. 1. 50 hot pages on active list 50(h) | 0 2. workload: 50 newly created (used-once) pages 50(h) | 50(uo) 3. workload: another 50 newly created (used-once) pages 50(h) | 50(uo), swap-out 50(uo) hot pages remains in the active list. :) * EXPERIMENT I tested this scenario on my test bed and confirmed that this problem happens on current implementation. I also checked that it is fixed by this patchset. * SUBJECT workingset detection * PROBLEM Later part of the patchset implements the workingset detection for the anonymous LRU list. There is a corner case that workingset protection could cause thrashing. If we can avoid thrashing by workingset detection, we can get the better performance. Following is an example of thrashing due to the workingset protection. 1. 50 hot pages on active list 50(h) | 0 2. workload: 50 newly created (will be hot) pages 50(h) | 50(wh) 3. workload: another 50 newly created (used-once) pages 50(h) | 50(uo), swap-out 50(wh) 4. workload: 50 (will be hot) pages 50(h) | 50(wh), swap-in 50(wh) 5. workload: another 50 newly created (used-once) pages 50(h) | 50(uo), swap-out 50(wh) 6. repeat 4, 5 Without workingset detection, this kind of workload cannot be promoted and thrashing happens forever. * SOLUTION Therefore, this patchset implements workingset detection. All the infrastructure for workingset detecion is already implemented, so there is not much work to do. First, extend workingset detection code to deal with the anonymous LRU list. Then, make swap cache handles the exceptional value for the shadow entry. Lastly, install/retrieve the shadow value into/from the swap cache and check the refault distance. * EXPERIMENT I made a test program to imitates above scenario and confirmed that problem exists. Then, I checked that this patchset fixes it. My test setup is a virtual machine with 8 cpus and 6100MB memory. But, the amount of the memory that the test program can use is about 280 MB. This is because the system uses large ram-backed swap and large ramdisk to capture the trace. Test scenario is like as below. 1. allocate cold memory (512MB) 2. allocate hot-1 memory (96MB) 3. activate hot-1 memory (96MB) 4. allocate another hot-2 memory (96MB) 5. access cold memory (128MB) 6. access hot-2 memory (96MB) 7. repeat 5, 6 Since hot-1 memory (96MB) is on the active list, the inactive list can contains roughly 190MB pages. hot-2 memory's re-access interval (96+128 MB) is more 190MB, so it cannot be promoted without workingset detection and swap-in/out happens repeatedly. With this patchset, workingset detection works and promotion happens. Therefore, swap-in/out occurs less. Here is the result. (average of 5 runs) type swap-in swap-out base 863240 989945 patch 681565 809273 As we can see, patched kernel do less swap-in/out. * OVERALL TEST (ebizzy using modified random function) ebizzy is the test program that main thread allocates lots of memory and child threads access them randomly during the given times. Swap-in will happen if allocated memory is larger than the system memory. The random function that represents the zipf distribution is used to make hot/cold memory. Hot/cold ratio is controlled by the parameter. If the parameter is high, hot memory is accessed much larger than cold one. If the parameter is low, the number of access on each memory would be similar. I uses various parameters in order to show the effect of patchset on various hot/cold ratio workload. My test setup is a virtual machine with 8 cpus, 1024 MB memory and 5120 MB ram swap. Result format is as following. param: 1-1024-0.1 - 1 (number of thread) - 1024 (allocated memory size, MB) - 0.1 (zipf distribution alpha, 0.1 works like as roughly uniform random, 1.3 works like as small portion of memory is hot and the others are cold) pswpin: smaller is better std: standard deviation improvement: negative is better * single thread param pswpin std improvement base 1-1024.0-0.1 14101983.40 79441.19 prot 1-1024.0-0.1 14065875.80 136413.01 ( -0.26 ) detect 1-1024.0-0.1 13910435.60 100804.82 ( -1.36 ) base 1-1024.0-0.7 7998368.80 43469.32 prot 1-1024.0-0.7 7622245.80 88318.74 ( -4.70 ) detect 1-1024.0-0.7 7618515.20 59742.07 ( -4.75 ) base 1-1024.0-1.3 1017400.80 38756.30 prot 1-1024.0-1.3 940464.60 29310.69 ( -7.56 ) detect 1-1024.0-1.3 945511.40 24579.52 ( -7.07 ) base 1-1280.0-0.1 22895541.40 50016.08 prot 1-1280.0-0.1 22860305.40 51952.37 ( -0.15 ) detect 1-1280.0-0.1 22705565.20 93380.35 ( -0.83 ) base 1-1280.0-0.7 13717645.60 46250.65 prot 1-1280.0-0.7 12935355.80 64754.43 ( -5.70 ) detect 1-1280.0-0.7 13040232.00 63304.00 ( -4.94 ) base 1-1280.0-1.3 1654251.40 4159.68 prot 1-1280.0-1.3 1522680.60 33673.50 ( -7.95 ) detect 1-1280.0-1.3 1599207.00 70327.89 ( -3.33 ) base 1-1536.0-0.1 31621775.40 31156.28 prot 1-1536.0-0.1 31540355.20 62241.36 ( -0.26 ) detect 1-1536.0-0.1 31420056.00 123831.27 ( -0.64 ) base 1-1536.0-0.7 19620760.60 60937.60 prot 1-1536.0-0.7 18337839.60 56102.58 ( -6.54 ) detect 1-1536.0-0.7 18599128.00 75289.48 ( -5.21 ) base 1-1536.0-1.3 2378142.40 20994.43 prot 1-1536.0-1.3 2166260.60 48455.46 ( -8.91 ) detect 1-1536.0-1.3 2183762.20 16883.24 ( -8.17 ) base 1-1792.0-0.1 40259714.80 90750.70 prot 1-1792.0-0.1 40053917.20 64509.47 ( -0.51 ) detect 1-1792.0-0.1 39949736.40 104989.64 ( -0.77 ) base 1-1792.0-0.7 25704884.40 69429.68 prot 1-1792.0-0.7 23937389.00 79945.60 ( -6.88 ) detect 1-1792.0-0.7 24271902.00 35044.30 ( -5.57 ) base 1-1792.0-1.3 3129497.00 32731.86 prot 1-1792.0-1.3 2796994.40 19017.26 ( -10.62 ) detect 1-1792.0-1.3 2886840.40 33938.82 ( -7.75 ) base 1-2048.0-0.1 48746924.40 50863.88 prot 1-2048.0-0.1 48631954.40 24537.30 ( -0.24 ) detect 1-2048.0-0.1 48509419.80 27085.34 ( -0.49 ) base 1-2048.0-0.7 32046424.40 78624.22 prot 1-2048.0-0.7 29764182.20 86002.26 ( -7.12 ) detect 1-2048.0-0.7 30250315.80 101282.14 ( -5.60 ) base 1-2048.0-1.3 3916723.60 24048.55 prot 1-2048.0-1.3 3490781.60 33292.61 ( -10.87 ) detect 1-2048.0-1.3 3585002.20 44942.04 ( -8.47 ) * multi thread param pswpin std improvement base 8-1024.0-0.1 16219822.60 329474.01 prot 8-1024.0-0.1 15959494.00 654597.45 ( -1.61 ) detect 8-1024.0-0.1 15773790.80 502275.25 ( -2.75 ) base 8-1024.0-0.7 9174107.80 537619.33 prot 8-1024.0-0.7 8571915.00 385230.08 ( -6.56 ) detect 8-1024.0-0.7 8489484.20 364683.00 ( -7.46 ) base 8-1024.0-1.3 1108495.60 83555.98 prot 8-1024.0-1.3 1038906.20 63465.20 ( -6.28 ) detect 8-1024.0-1.3 941817.80 32648.80 ( -15.04 ) base 8-1280.0-0.1 25776114.20 450480.45 prot 8-1280.0-0.1 25430847.00 465627.07 ( -1.34 ) detect 8-1280.0-0.1 25282555.00 465666.55 ( -1.91 ) base 8-1280.0-0.7 15218968.00 702007.69 prot 8-1280.0-0.7 13957947.80 492643.86 ( -8.29 ) detect 8-1280.0-0.7 14158331.20 238656.02 ( -6.97 ) base 8-1280.0-1.3 1792482.80 30512.90 prot 8-1280.0-1.3 1577686.40 34002.62 ( -11.98 ) detect 8-1280.0-1.3 1556133.00 22944.79 ( -13.19 ) base 8-1536.0-0.1 33923761.40 575455.85 prot 8-1536.0-0.1 32715766.20 300633.51 ( -3.56 ) detect 8-1536.0-0.1 33158477.40 117764.51 ( -2.26 ) base 8-1536.0-0.7 20628907.80 303851.34 prot 8-1536.0-0.7 19329511.20 341719.31 ( -6.30 ) detect 8-1536.0-0.7 20013934.00 385358.66 ( -2.98 ) base 8-1536.0-1.3 2588106.40 130769.20 prot 8-1536.0-1.3 2275222.40 89637.06 ( -12.09 ) detect 8-1536.0-1.3 2365008.40 124412.55 ( -8.62 ) base 8-1792.0-0.1 43328279.20 946469.12 prot 8-1792.0-0.1 41481980.80 525690.89 ( -4.26 ) detect 8-1792.0-0.1 41713944.60 406798.93 ( -3.73 ) base 8-1792.0-0.7 27155647.40 536253.57 prot 8-1792.0-0.7 24989406.80 502734.52 ( -7.98 ) detect 8-1792.0-0.7 25524806.40 263237.87 ( -6.01 ) base 8-1792.0-1.3 3260372.80 137907.92 prot 8-1792.0-1.3 2879187.80 63597.26 ( -11.69 ) detect 8-1792.0-1.3 2892962.20 33229.13 ( -11.27 ) base 8-2048.0-0.1 50583989.80 710121.48 prot 8-2048.0-0.1 49599984.40 228782.42 ( -1.95 ) detect 8-2048.0-0.1 50578596.00 660971.66 ( -0.01 ) base 8-2048.0-0.7 33765479.60 812659.55 prot 8-2048.0-0.7 30767021.20 462907.24 ( -8.88 ) detect 8-2048.0-0.7 32213068.80 211884.24 ( -4.60 ) base 8-2048.0-1.3 3941675.80 28436.45 prot 8-2048.0-1.3 3538742.40 76856.08 ( -10.22 ) detect 8-2048.0-1.3 3579397.80 58630.95 ( -9.19 ) As we can see, all the cases show improvement. Especially, test case with zipf distribution 1.3 show more improvements. It means that if there is a hot/cold tendency in anon pages, this patchset works better. This patch (of 6): Current implementation of LRU management for anonymous page has some problems. Most important one is that it doesn't protect the workingset, that is, pages on the active LRU list. Although, this problem will be fixed in the following patchset, the preparation is required and this patch does it. What following patch does is to implement workingset protection. After the following patchset, newly created or swap-in pages will start their lifetime on the inactive list. If inactive list is too small, there is not enough chance to be referenced and the page cannot become the workingset. In order to provide the newly anonymous or swap-in pages enough chance to be referenced again, this patch makes active/inactive LRU ratio as 1:1. This is just a temporary measure. Later patch in the series introduces workingset detection for anonymous LRU that will be used to better decide if pages should start on the active and inactive list. Afterwards this patch is effectively reverted. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Michal Hocko <mhocko@kernel.org> Cc: Hugh Dickins <hughd@google.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Matthew Wilcox <willy@infradead.org> Link: http://lkml.kernel.org/r/1595490560-15117-1-git-send-email-iamjoonsoo.kim@lge.com Link: http://lkml.kernel.org/r/1595490560-15117-2-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07mm: vmscan: consistent update to pgrefillShakeel Butt1-1/+2
The vmstat pgrefill is useful together with pgscan and pgsteal stats to measure the reclaim efficiency. However vmstat's pgrefill is not updated consistently at system level. It gets updated for both global and memcg reclaim however pgscan and pgsteal are updated for only global reclaim. So, update pgrefill only for global reclaim. If someone is interested in the stats representing both system level as well as memcg level reclaim, then consult the root memcg's memory.stat instead of /proc/vmstat. Signed-off-by: Shakeel Butt <shakeelb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Yafang Shao <laoar.shao@gmail.com> Acked-by: Roman Gushchin <guro@fb.com> Acked-by: Chris Down <chris@chrisdown.name> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Link: http://lkml.kernel.org/r/20200711011459.1159929-1-shakeelb@google.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07mm/vmscan.c: fix typodylan-meiners1-1/+1
Change "optizimation" to "optimization". Signed-off-by: dylan-meiners <spacct.spacct@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: David Hildenbrand <david@redhat.com> Link: http://lkml.kernel.org/r/20200609185144.10049-1-spacct.spacct@gmail.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07mm: remove vm_total_pagesDavid Hildenbrand1-5/+0
The global variable "vm_total_pages" is a relic from older days. There is only a single user that reads the variable - build_all_zonelists() - and the first thing it does is update it. Use a local variable in build_all_zonelists() instead and remove the global variable. Signed-off-by: David Hildenbrand <david@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Wei Yang <richard.weiyang@gmail.com> Reviewed-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com> Reviewed-by: Mike Rapoport <rppt@linux.ibm.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Huang Ying <ying.huang@intel.com> Cc: Minchan Kim <minchan@kernel.org> Link: http://lkml.kernel.org/r/20200619132410.23859-2-david@redhat.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07mm: memcontrol: don't count limit-setting reclaim as memory pressureJohannes Weiner1-6/+0
When an outside process lowers one of the memory limits of a cgroup (or uses the force_empty knob in cgroup1), direct reclaim is performed in the context of the write(), in order to directly enforce the new limit and have it being met by the time the write() returns. Currently, this reclaim activity is accounted as memory pressure in the cgroup that the writer(!) belongs to. This is unexpected. It specifically causes problems for senpai (https://github.com/facebookincubator/senpai), which is an agent that routinely adjusts the memory limits and performs associated reclaim work in tens or even hundreds of cgroups running on the host. The cgroup that senpai is running in itself will report elevated levels of memory pressure, even though it itself is under no memory shortage or any sort of distress. Move the psi annotation from the central cgroup reclaim function to callsites in the allocation context, and thereby no longer count any limit-setting reclaim as memory pressure. If the newly set limit causes the workload inside the cgroup into direct reclaim, that of course will continue to count as memory pressure. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Reviewed-by: Roman Gushchin <guro@fb.com> Acked-by: Chris Down <chris@chrisdown.name> Acked-by: Michal Hocko <mhocko@suse.com> Link: http://lkml.kernel.org/r/20200728135210.379885-2-hannes@cmpxchg.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07mm, memcg: decouple e{low,min} state mutations from protection checksChris Down1-13/+4
mem_cgroup_protected currently is both used to set effective low and min and return a mem_cgroup_protection based on the result. As a user, this can be a little unexpected: it appears to be a simple predicate function, if not for the big warning in the comment above about the order in which it must be executed. This change makes it so that we separate the state mutations from the actual protection checks, which makes it more obvious where we need to be careful mutating internal state, and where we are simply checking and don't need to worry about that. [mhocko@suse.com - don't check protection on root memcgs] Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Chris Down <chris@chrisdown.name> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Roman Gushchin <guro@fb.com> Cc: Yafang Shao <laoar.shao@gmail.com> Link: http://lkml.kernel.org/r/ff3f915097fcee9f6d7041c084ef92d16aaeb56a.1594638158.git.chris@chrisdown.name Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07mm, memcg: avoid stale protection values when cgroup is above protectionYafang Shao1-1/+2
Patch series "mm, memcg: memory.{low,min} reclaim fix & cleanup", v4. This series contains a fix for a edge case in my earlier protection calculation patches, and a patch to make the area overall a little more robust to hopefully help avoid this in future. This patch (of 2): A cgroup can have both memory protection and a memory limit to isolate it from its siblings in both directions - for example, to prevent it from being shrunk below 2G under high pressure from outside, but also from growing beyond 4G under low pressure. Commit 9783aa9917f8 ("mm, memcg: proportional memory.{low,min} reclaim") implemented proportional scan pressure so that multiple siblings in excess of their protection settings don't get reclaimed equally but instead in accordance to their unprotected portion. During limit reclaim, this proportionality shouldn't apply of course: there is no competition, all pressure is from within the cgroup and should be applied as such. Reclaim should operate at full efficiency. However, mem_cgroup_protected() never expected anybody to look at the effective protection values when it indicated that the cgroup is above its protection. As a result, a query during limit reclaim may return stale protection values that were calculated by a previous reclaim cycle in which the cgroup did have siblings. When this happens, reclaim is unnecessarily hesitant and potentially slow to meet the desired limit. In theory this could lead to premature OOM kills, although it's not obvious this has occurred in practice. Workaround the problem by special casing reclaim roots in mem_cgroup_protection. These memcgs are never participating in the reclaim protection because the reclaim is internal. We have to ignore effective protection values for reclaim roots because mem_cgroup_protected might be called from racing reclaim contexts with different roots. Calculation is relying on root -> leaf tree traversal therefore top-down reclaim protection invariants should hold. The only exception is the reclaim root which should have effective protection set to 0 but that would be problematic for the following setup: Let's have global and A's reclaim in parallel: | A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G) |\ | C (low = 1G, usage = 2.5G) B (low = 1G, usage = 0.5G) for A reclaim we have B.elow = B.low C.elow = C.low For the global reclaim A.elow = A.low B.elow = min(B.usage, B.low) because children_low_usage <= A.elow C.elow = min(C.usage, C.low) With the effective values resetting we have A reclaim A.elow = 0 B.elow = B.low C.elow = C.low and global reclaim could see the above and then B.elow = C.elow = 0 because children_low_usage > A.elow Which means that protected memcgs would get reclaimed. In future we would like to make mem_cgroup_protected more robust against racing reclaim contexts but that is likely more complex solution than this simple workaround. [hannes@cmpxchg.org - large part of the changelog] [mhocko@suse.com - workaround explanation] [chris@chrisdown.name - retitle] Fixes: 9783aa9917f8 ("mm, memcg: proportional memory.{low,min} reclaim") Signed-off-by: Yafang Shao <laoar.shao@gmail.com> Signed-off-by: Chris Down <chris@chrisdown.name> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Chris Down <chris@chrisdown.name> Acked-by: Roman Gushchin <guro@fb.com> Link: http://lkml.kernel.org/r/cover.1594638158.git.chris@chrisdown.name Link: http://lkml.kernel.org/r/044fb8ecffd001c7905d27c0c2ad998069fdc396.1594638158.git.chris@chrisdown.name Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07mm: memcg: convert vmstat slab counters to bytesRoman Gushchin1-1/+2
In order to prepare for per-object slab memory accounting, convert NR_SLAB_RECLAIMABLE and NR_SLAB_UNRECLAIMABLE vmstat items to bytes. To make it obvious, rename them to NR_SLAB_RECLAIMABLE_B and NR_SLAB_UNRECLAIMABLE_B (similar to NR_KERNEL_STACK_KB). Internally global and per-node counters are stored in pages, however memcg and lruvec counters are stored in bytes. This scheme may look weird, but only for now. As soon as slab pages will be shared between multiple cgroups, global and node counters will reflect the total number of slab pages. However memcg and lruvec counters will be used for per-memcg slab memory tracking, which will take separate kernel objects in the account. Keeping global and node counters in pages helps to avoid additional overhead. The size of slab memory shouldn't exceed 4Gb on 32-bit machines, so it will fit into atomic_long_t we use for vmstats. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/20200623174037.3951353-4-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-26mm: workingset: age nonresident information alongside anonymous pagesJohannes Weiner1-0/+3
Patch series "fix for "mm: balance LRU lists based on relative thrashing" patchset" This patchset fixes some problems of the patchset, "mm: balance LRU lists based on relative thrashing", which is now merged on the mainline. Patch "mm: workingset: let cache workingset challenge anon fix" is the result of discussion with Johannes. See following link. http://lkml.kernel.org/r/20200520232525.798933-6-hannes@cmpxchg.org And, the other two are minor things which are found when I try to rebase my patchset. This patch (of 3): After ("mm: workingset: let cache workingset challenge anon fix"), we compare refault distances to active_file + anon. But age of the non-resident information is only driven by the file LRU. As a result, we may overestimate the recency of any incoming refaults and activate them too eagerly, causing unnecessary LRU churn in certain situations. Make anon aging drive nonresident age as well to address that. Link: http://lkml.kernel.org/r/1592288204-27734-1-git-send-email-iamjoonsoo.kim@lge.com Link: http://lkml.kernel.org/r/1592288204-27734-2-git-send-email-iamjoonsoo.kim@lge.com Fixes: 34e58cac6d8f2a ("mm: workingset: let cache workingset challenge anon") Reported-by: Joonsoo Kim <js1304@gmail.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Rik van Riel <riel@surriel.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-04mm/vmsan: fix some typos in commentEthon Paul1-3/+3
There are some typos, fix them. s/regsitration/registration s/santity/sanity s/decremeting/decrementing Signed-off-by: Ethon Paul <ethp@qq.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Link: http://lkml.kernel.org/r/20200411071544.16222-1-ethp@qq.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-03mm: vmscan: limit the range of LRU type balancingJohannes Weiner1-9/+13
When LRU cost only shows up on one list, we abruptly stop scanning that list altogether. That's an extreme reaction: by the time the other list starts thrashing and the pendulum swings back, we may have no recent age information on the first list anymore, and we could have significant latencies until the scanner has caught up. Soften this change in the feedback system by ensuring that no list receives less than a third of overall pressure, and only distribute the other 66% according to LRU cost. This ensures that we maintain a minimum rate of aging on the entire workingset while it's being pressured, while still allowing a generous rate of convergence when the relative sizes of the lists need to adjust. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Link: http://lkml.kernel.org/r/20200520232525.798933-15-hannes@cmpxchg.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-03mm: vmscan: reclaim writepage is IO costJohannes Weiner1-0/+3
The VM tries to balance reclaim pressure between anon and file so as to reduce the amount of IO incurred due to the memory shortage. It already counts refaults and swapins, but in addition it should also count writepage calls during reclaim. For swap, this is obvious: it's IO that wouldn't have occurred if the anonymous memory hadn't been under memory pressure. From a relative balancing point of view this makes sense as well: even if anon is cold and reclaimable, a cache that isn't thrashing may have equally cold pages that don't require IO to reclaim. For file writeback, it's trickier: some of the reclaim writepage IO would have likely occurred anyway due to dirty expiration. But not all of it - premature writeback reduces batching and generates additional writes. Since the flushers are already woken up by the time the VM starts writing cache pages one by one, let's assume that we'e likely causing writes that wouldn't have happened without memory pressure. In addition, the per-page cost of IO would have probably been much cheaper if written in larger batches from the flusher thread rather than the single-page-writes from kswapd. For our purposes - getting the trend right to accelerate convergence on a stable state that doesn't require paging at all - this is sufficiently accurate. If we later wanted to optimize for sustained thrashing, we can still refine the measurements. Count all writepage calls from kswapd as IO cost toward the LRU that the page belongs to. Why do this dynamically? Don't we know in advance that anon pages require IO to reclaim, and so could build in a static bias? First, scanning is not the same as reclaiming. If all the anon pages are referenced, we may not swap for a while just because we're scanning the anon list. During this time, however, it's important that we age anonymous memory and the page cache at the same rate so that their hot-cold gradients are comparable. Everything else being equal, we still want to reclaim the coldest memory overall. Second, we keep copies in swap unless the page changes. If there is swap-backed data that's mostly read (tmpfs file) and has been swapped out before, we can reclaim it without incurring additional IO. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Link: http://lkml.kernel.org/r/20200520232525.798933-14-hannes@cmpxchg.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-03mm: vmscan: determine anon/file pressure balance at the reclaim rootJohannes Weiner1-24/+17
We split the LRU lists into anon and file, and we rebalance the scan pressure between them when one of them begins thrashing: if the file cache experiences workingset refaults, we increase the pressure on anonymous pages; if the workload is stalled on swapins, we increase the pressure on the file cache instead. With cgroups and their nested LRU lists, we currently don't do this correctly. While recursive cgroup reclaim establishes a relative LRU order among the pages of all involved cgroups, LRU pressure balancing is done on an individual cgroup LRU level. As a result, when one cgroup is thrashing on the filesystem cache while a sibling may have cold anonymous pages, pressure doesn't get equalized between them. This patch moves LRU balancing decision to the root of reclaim - the same level where the LRU order is established. It does this by tracking LRU cost recursively, so that every level of the cgroup tree knows the aggregate LRU cost of all memory within its domain. When the page scanner calculates the scan balance for any given individual cgroup's LRU list, it uses the values from the ancestor cgroup that initiated the reclaim cycle. If one sibling is then thrashing on the cache, it will tip the pressure balance inside its ancestors, and the next hierarchical reclaim iteration will go more after the anon pages in the tree. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Link: http://lkml.kernel.org/r/20200520232525.798933-13-hannes@cmpxchg.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-03mm: balance LRU lists based on relative thrashingJohannes Weiner1-29/+10
Since the LRUs were split into anon and file lists, the VM has been balancing between page cache and anonymous pages based on per-list ratios of scanned vs. rotated pages. In most cases that tips page reclaim towards the list that is easier to reclaim and has the fewest actively used pages, but there are a few problems with it: 1. Refaults and LRU rotations are weighted the same way, even though one costs IO and the other costs a bit of CPU. 2. The less we scan an LRU list based on already observed rotations, the more we increase the sampling interval for new references, and rotations become even more likely on that list. This can enter a death spiral in which we stop looking at one list completely until the other one is all but annihilated by page reclaim. Since commit a528910e12ec ("mm: thrash detection-based file cache sizing") we have refault detection for the page cache. Along with swapin events, they are good indicators of when the file or anon list, respectively, is too small for its workingset and needs to grow. For example, if the page cache is thrashing, the cache pages need more time in memory, while there may be colder pages on the anonymous list. Likewise, if swapped pages are faulting back in, it indicates that we reclaim anonymous pages too aggressively and should back off. Replace LRU rotations with refaults and swapins as the basis for relative reclaim cost of the two LRUs. This will have the VM target list balances that incur the least amount of IO on aggregate. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Link: http://lkml.kernel.org/r/20200520232525.798933-12-hannes@cmpxchg.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>