Age | Commit message (Collapse) | Author | Files | Lines |
|
This allows a backend to filter on the dmesg reason as well as the pstore
reason. When ramoops is switched to pstore, this is needed since it has
no interest in storing non-crash dmesg details.
Drop pstore_write() as it has no users, and handling the "reason" here
has no obviously correct value.
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Tony Luck <tony.luck@intel.com>
|
|
The buf_lock cannot be held while populating the inodes, so make the backend
pass forward an allocated and filled buffer instead. This solves the following
backtrace. The effect is that "buf" is only ever used to notify the backends
that something was written to it, and shouldn't be used in the read path.
To replace the buf_lock during the read path, isolate the open/read/close
loop with a separate mutex to maintain serialized access to the backend.
Note that is is up to the pstore backend to cope if the (*write)() path is
called in the middle of the read path.
[ 59.691019] BUG: sleeping function called from invalid context at .../mm/slub.c:847
[ 59.691019] in_atomic(): 0, irqs_disabled(): 1, pid: 1819, name: mount
[ 59.691019] Pid: 1819, comm: mount Not tainted 3.0.8 #1
[ 59.691019] Call Trace:
[ 59.691019] [<810252d5>] __might_sleep+0xc3/0xca
[ 59.691019] [<810a26e6>] kmem_cache_alloc+0x32/0xf3
[ 59.691019] [<810b53ac>] ? __d_lookup_rcu+0x6f/0xf4
[ 59.691019] [<810b68b1>] alloc_inode+0x2a/0x64
[ 59.691019] [<810b6903>] new_inode+0x18/0x43
[ 59.691019] [<81142447>] pstore_get_inode.isra.1+0x11/0x98
[ 59.691019] [<81142623>] pstore_mkfile+0xae/0x26f
[ 59.691019] [<810a2a66>] ? kmem_cache_free+0x19/0xb1
[ 59.691019] [<8116c821>] ? ida_get_new_above+0x140/0x158
[ 59.691019] [<811708ea>] ? __init_rwsem+0x1e/0x2c
[ 59.691019] [<810b67e8>] ? inode_init_always+0x111/0x1b0
[ 59.691019] [<8102127e>] ? should_resched+0xd/0x27
[ 59.691019] [<8137977f>] ? _cond_resched+0xd/0x21
[ 59.691019] [<81142abf>] pstore_get_records+0x52/0xa7
[ 59.691019] [<8114254b>] pstore_fill_super+0x7d/0x91
[ 59.691019] [<810a7ff5>] mount_single+0x46/0x82
[ 59.691019] [<8114231a>] pstore_mount+0x15/0x17
[ 59.691019] [<811424ce>] ? pstore_get_inode.isra.1+0x98/0x98
[ 59.691019] [<810a8199>] mount_fs+0x5a/0x12d
[ 59.691019] [<810b9174>] ? alloc_vfsmnt+0xa4/0x14a
[ 59.691019] [<810b9474>] vfs_kern_mount+0x4f/0x7d
[ 59.691019] [<810b9d7e>] do_kern_mount+0x34/0xb2
[ 59.691019] [<810bb15f>] do_mount+0x5fc/0x64a
[ 59.691019] [<810912fb>] ? strndup_user+0x2e/0x3f
[ 59.691019] [<810bb3cb>] sys_mount+0x66/0x99
[ 59.691019] [<8137b537>] sysenter_do_call+0x12/0x26
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Tony Luck <tony.luck@intel.com>
|
|
Currently pstore write interface employs record id as return
value, but it is not enough because it can't tell caller if
the write operation is successful. Pass the record id back via
an argument pointer and return zero for success, non-zero for
failure.
Signed-off-by: Chen Gong <gong.chen@linux.intel.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
|
|
pstore was using mutex locking to protect read/write access to the
backend plug-ins. This causes problems when pstore is executed in
an NMI context through panic() -> kmsg_dump().
This patch changes the mutex to a spin_lock_irqsave then also checks to
see if we are in an NMI context. If we are in an NMI and can't get the
lock, just print a message stating that and blow by the locking.
All this is probably a hack around the bigger locking problem but it
solves my current situation of trying to sleep in an NMI context.
Tested by loading the lkdtm module and executing a HARDLOCKUP which
will cause the machine to panic inside the nmi handler.
Signed-off-by: Don Zickus <dzickus@redhat.com>
Acked-by: Matthew Garrett <mjg@redhat.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
|
|
We'll never have a negative part, so just make this an unsigned int.
Signed-off-by: Matthew Garrett <mjg@redhat.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
|
|
EFI only provides small amounts of individual storage, and conventionally
puts metadata in the storage variable name. Rather than add a metadata
header to the (already limited) variable storage, it's easier for us to
modify pstore to pass all the information we need to construct a unique
variable name to the appropriate functions.
Signed-off-by: Matthew Garrett <mjg@redhat.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
|
|
Some pstore implementations may not have a static context, so extend the
API to pass the pstore_info struct to all calls and allow for a context
pointer.
Signed-off-by: Matthew Garrett <mjg@redhat.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
|
|
Currently after mount/remount operation on pstore filesystem,
the content on pstore will be lost. It is because current ERST
implementation doesn't support multi-user usage, which moves
internal pointer to the end after accessing it. Adding
multi-user support for pstore usage.
Signed-off-by: Chen Gong <gong.chen@linux.intel.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
|
|
the return type of function _read_ in pstore is size_t,
but in the callback function of _read_, the logic doesn't
consider it too much, which means if negative value (assuming
error here) is returned, it will be converted to positive because
of type casting. ssize_t is enough for this function.
Signed-off-by: Chen Gong <gong.chen@linux.intel.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
|
|
Some platforms have a small amount of non-volatile storage that
can be used to store information useful to diagnose the cause of
a system crash. This is the generic part of a file system interface
that presents information from the crash as a series of files in
/dev/pstore. Once the information has been seen, the underlying
storage is freed by deleting the files.
Signed-off-by: Tony Luck <tony.luck@intel.com>
|