Age | Commit message (Collapse) | Author | Files | Lines |
|
Setup the memory cgroup and add basic hooks and controls to integrate
and work with the cgroup.
Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Pavel Emelianov <xemul@openvz.org>
Cc: Paul Menage <menage@google.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Kirill Korotaev <dev@sw.ru>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: David Rientjes <rientjes@google.com>
Cc: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Commit cfb5285660aad4931b2ebbfa902ea48a37dfffa1 removed a useful feature for
us, which provided a cpu accounting resource controller. This feature would be
useful if someone wants to group tasks only for accounting purpose and doesnt
really want to exercise any control over their cpu consumption.
The patch below reintroduces the feature. It is based on Paul Menage's
original patch (Commit 62d0df64065e7c135d0002f069444fbdfc64768f), with
these differences:
- Removed load average information. I felt it needs more thought (esp
to deal with SMP and virtualized platforms) and can be added for
2.6.25 after more discussions.
- Convert group cpu usage to be nanosecond accurate (as rest of the cfs
stats are) and invoke cpuacct_charge() from the respective scheduler
classes
- Make accounting scalable on SMP systems by splitting the usage
counter to be per-cpu
- Move the code from kernel/cpu_acct.c to kernel/sched.c (since the
code is not big enough to warrant a new file and also this rightly
needs to live inside the scheduler. Also things like accessing
rq->lock while reading cpu usage becomes easier if the code lived in
kernel/sched.c)
The patch also modifies the cpu controller not to provide the same accounting
information.
Tested-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Tested the patches on top of 2.6.24-rc3. The patches work fine. Ran
some simple tests like cpuspin (spin on the cpu), ran several tasks in
the same group and timed them. Compared their time stamps with
cpuacct.usage.
Signed-off-by: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
Revert 62d0df64065e7c135d0002f069444fbdfc64768f.
This was originally intended as a simple initial example of how to create a
control groups subsystem; it wasn't intended for mainline, but I didn't make
this clear enough to Andrew.
The CFS cgroup subsystem now has better functionality for the per-cgroup usage
accounting (based directly on CFS stats) than the "usage" status file in this
patch, and the "load" status file is rather simplistic - although having a
per-cgroup load average report would be a useful feature, I don't believe this
patch actually provides it. If it gets into the final 2.6.24 we'd probably
have to support this interface for ever.
Cc: Paul Menage <menage@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Enable "cgroup" (formerly containers) based fair group scheduling. This
will let administrator create arbitrary groups of tasks (using "cgroup"
pseudo filesystem) and control their cpu bandwidth usage.
[akpm@linux-foundation.org: fix cpp condition]
Signed-off-by: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Signed-off-by: Dhaval Giani <dhaval@linux.vnet.ibm.com>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Menage <menage@google.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
When a task enters a new namespace via a clone() or unshare(), a new cgroup
is created and the task moves into it.
This version names cgroups which are automatically created using
cgroup_clone() as "node_<pid>" where pid is the pid of the unsharing or
cloned process. (Thanks Pavel for the idea) This is safe because if the
process unshares again, it will create
/cgroups/(...)/node_<pid>/node_<pid>
The only possibilities (AFAICT) for a -EEXIST on unshare are
1. pid wraparound
2. a process fails an unshare, then tries again.
Case 1 is unlikely enough that I ignore it (at least for now). In case 2, the
node_<pid> will be empty and can be rmdir'ed to make the subsequent unshare()
succeed.
Changelog:
Name cloned cgroups as "node_<pid>".
[clg@fr.ibm.com: fix order of cgroup subsystems in init/Kconfig]
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Cc: Paul Menage <menage@google.com>
Signed-off-by: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This example subsystem exports debugging information as an aid to diagnosing
refcount leaks, etc, in the cgroup framework.
Signed-off-by: Paul Menage <menage@google.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This example demonstrates how to use the generic cgroup subsystem for a
simple resource tracker that counts, for the processes in a cgroup, the
total CPU time used and the %CPU used in the last complete 10 second interval.
Portions contributed by Balbir Singh <balbir@in.ibm.com>
Signed-off-by: Paul Menage <menage@google.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Remove the filesystem support logic from the cpusets system and makes cpusets
a cgroup subsystem
The "cpuset" filesystem becomes a dummy filesystem; attempts to mount it get
passed through to the cgroup filesystem with the appropriate options to
emulate the old cpuset filesystem behaviour.
Signed-off-by: Paul Menage <menage@google.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Generic Process Control Groups
--------------------------
There have recently been various proposals floating around for
resource management/accounting and other task grouping subsystems in
the kernel, including ResGroups, User BeanCounters, NSProxy
cgroups, and others. These all need the basic abstraction of being
able to group together multiple processes in an aggregate, in order to
track/limit the resources permitted to those processes, or control
other behaviour of the processes, and all implement this grouping in
different ways.
This patchset provides a framework for tracking and grouping processes
into arbitrary "cgroups" and assigning arbitrary state to those
groupings, in order to control the behaviour of the cgroup as an
aggregate.
The intention is that the various resource management and
virtualization/cgroup efforts can also become task cgroup
clients, with the result that:
- the userspace APIs are (somewhat) normalised
- it's easier to test e.g. the ResGroups CPU controller in
conjunction with the BeanCounters memory controller, or use either of
them as the resource-control portion of a virtual server system.
- the additional kernel footprint of any of the competing resource
management systems is substantially reduced, since it doesn't need
to provide process grouping/containment, hence improving their
chances of getting into the kernel
This patch:
Add the main task cgroups framework - the cgroup filesystem, and the
basic structures for tracking membership and associating subsystem state
objects to tasks.
Signed-off-by: Paul Menage <menage@google.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|