diff options
Diffstat (limited to 'lib/sort.c')
-rw-r--r-- | lib/sort.c | 254 |
1 files changed, 200 insertions, 54 deletions
diff --git a/lib/sort.c b/lib/sort.c index d6b7a202b0b6..50855ea8c262 100644 --- a/lib/sort.c +++ b/lib/sort.c @@ -1,8 +1,13 @@ // SPDX-License-Identifier: GPL-2.0 /* - * A fast, small, non-recursive O(nlog n) sort for the Linux kernel + * A fast, small, non-recursive O(n log n) sort for the Linux kernel * - * Jan 23 2005 Matt Mackall <mpm@selenic.com> + * This performs n*log2(n) + 0.37*n + o(n) comparisons on average, + * and 1.5*n*log2(n) + O(n) in the (very contrived) worst case. + * + * Glibc qsort() manages n*log2(n) - 1.26*n for random inputs (1.63*n + * better) at the expense of stack usage and much larger code to avoid + * quicksort's O(n^2) worst case. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt @@ -11,35 +16,155 @@ #include <linux/export.h> #include <linux/sort.h> -static int alignment_ok(const void *base, int align) +/** + * is_aligned - is this pointer & size okay for word-wide copying? + * @base: pointer to data + * @size: size of each element + * @align: required alignment (typically 4 or 8) + * + * Returns true if elements can be copied using word loads and stores. + * The size must be a multiple of the alignment, and the base address must + * be if we do not have CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS. + * + * For some reason, gcc doesn't know to optimize "if (a & mask || b & mask)" + * to "if ((a | b) & mask)", so we do that by hand. + */ +__attribute_const__ __always_inline +static bool is_aligned(const void *base, size_t size, unsigned char align) { - return IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) || - ((unsigned long)base & (align - 1)) == 0; + unsigned char lsbits = (unsigned char)size; + + (void)base; +#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS + lsbits |= (unsigned char)(uintptr_t)base; +#endif + return (lsbits & (align - 1)) == 0; } -static void u32_swap(void *a, void *b, int size) +/** + * swap_words_32 - swap two elements in 32-bit chunks + * @a, @b: pointers to the elements + * @size: element size (must be a multiple of 4) + * + * Exchange the two objects in memory. This exploits base+index addressing, + * which basically all CPUs have, to minimize loop overhead computations. + * + * For some reason, on x86 gcc 7.3.0 adds a redundant test of n at the + * bottom of the loop, even though the zero flag is stil valid from the + * subtract (since the intervening mov instructions don't alter the flags). + * Gcc 8.1.0 doesn't have that problem. + */ +static void swap_words_32(void *a, void *b, size_t n) { - u32 t = *(u32 *)a; - *(u32 *)a = *(u32 *)b; - *(u32 *)b = t; + do { + u32 t = *(u32 *)(a + (n -= 4)); + *(u32 *)(a + n) = *(u32 *)(b + n); + *(u32 *)(b + n) = t; + } while (n); } -static void u64_swap(void *a, void *b, int size) +/** + * swap_words_64 - swap two elements in 64-bit chunks + * @a, @b: pointers to the elements + * @size: element size (must be a multiple of 8) + * + * Exchange the two objects in memory. This exploits base+index + * addressing, which basically all CPUs have, to minimize loop overhead + * computations. + * + * We'd like to use 64-bit loads if possible. If they're not, emulating + * one requires base+index+4 addressing which x86 has but most other + * processors do not. If CONFIG_64BIT, we definitely have 64-bit loads, + * but it's possible to have 64-bit loads without 64-bit pointers (e.g. + * x32 ABI). Are there any cases the kernel needs to worry about? + */ +static void swap_words_64(void *a, void *b, size_t n) { - u64 t = *(u64 *)a; - *(u64 *)a = *(u64 *)b; - *(u64 *)b = t; + do { +#ifdef CONFIG_64BIT + u64 t = *(u64 *)(a + (n -= 8)); + *(u64 *)(a + n) = *(u64 *)(b + n); + *(u64 *)(b + n) = t; +#else + /* Use two 32-bit transfers to avoid base+index+4 addressing */ + u32 t = *(u32 *)(a + (n -= 4)); + *(u32 *)(a + n) = *(u32 *)(b + n); + *(u32 *)(b + n) = t; + + t = *(u32 *)(a + (n -= 4)); + *(u32 *)(a + n) = *(u32 *)(b + n); + *(u32 *)(b + n) = t; +#endif + } while (n); } -static void generic_swap(void *a, void *b, int size) +/** + * swap_bytes - swap two elements a byte at a time + * @a, @b: pointers to the elements + * @size: element size + * + * This is the fallback if alignment doesn't allow using larger chunks. + */ +static void swap_bytes(void *a, void *b, size_t n) { - char t; - do { - t = *(char *)a; - *(char *)a++ = *(char *)b; - *(char *)b++ = t; - } while (--size > 0); + char t = ((char *)a)[--n]; + ((char *)a)[n] = ((char *)b)[n]; + ((char *)b)[n] = t; + } while (n); +} + +typedef void (*swap_func_t)(void *a, void *b, int size); + +/* + * The values are arbitrary as long as they can't be confused with + * a pointer, but small integers make for the smallest compare + * instructions. + */ +#define SWAP_WORDS_64 (swap_func_t)0 +#define SWAP_WORDS_32 (swap_func_t)1 +#define SWAP_BYTES (swap_func_t)2 + +/* + * The function pointer is last to make tail calls most efficient if the + * compiler decides not to inline this function. + */ +static void do_swap(void *a, void *b, size_t size, swap_func_t swap_func) +{ + if (swap_func == SWAP_WORDS_64) + swap_words_64(a, b, size); + else if (swap_func == SWAP_WORDS_32) + swap_words_32(a, b, size); + else if (swap_func == SWAP_BYTES) + swap_bytes(a, b, size); + else + swap_func(a, b, (int)size); +} + +/** + * parent - given the offset of the child, find the offset of the parent. + * @i: the offset of the heap element whose parent is sought. Non-zero. + * @lsbit: a precomputed 1-bit mask, equal to "size & -size" + * @size: size of each element + * + * In terms of array indexes, the parent of element j = @i/@size is simply + * (j-1)/2. But when working in byte offsets, we can't use implicit + * truncation of integer divides. + * + * Fortunately, we only need one bit of the quotient, not the full divide. + * @size has a least significant bit. That bit will be clear if @i is + * an even multiple of @size, and set if it's an odd multiple. + * + * Logically, we're doing "if (i & lsbit) i -= size;", but since the + * branch is unpredictable, it's done with a bit of clever branch-free + * code instead. + */ +__attribute_const__ __always_inline +static size_t parent(size_t i, unsigned int lsbit, size_t size) +{ + i -= size; + i -= size & -(i & lsbit); + return i / 2; } /** @@ -50,57 +175,78 @@ static void generic_swap(void *a, void *b, int size) * @cmp_func: pointer to comparison function * @swap_func: pointer to swap function or NULL * - * This function does a heapsort on the given array. You may provide a - * swap_func function optimized to your element type. + * This function does a heapsort on the given array. You may provide + * a swap_func function if you need to do something more than a memory + * copy (e.g. fix up pointers or auxiliary data), but the built-in swap + * avoids a slow retpoline and so is significantly faster. * * Sorting time is O(n log n) both on average and worst-case. While - * qsort is about 20% faster on average, it suffers from exploitable + * quicksort is slightly faster on average, it suffers from exploitable * O(n*n) worst-case behavior and extra memory requirements that make * it less suitable for kernel use. */ - void sort(void *base, size_t num, size_t size, int (*cmp_func)(const void *, const void *), void (*swap_func)(void *, void *, int size)) { /* pre-scale counters for performance */ - int i = (num/2 - 1) * size, n = num * size, c, r; + size_t n = num * size, a = (num/2) * size; + const unsigned int lsbit = size & -size; /* Used to find parent */ + + if (!a) /* num < 2 || size == 0 */ + return; if (!swap_func) { - if (size == 4 && alignment_ok(base, 4)) - swap_func = u32_swap; - else if (size == 8 && alignment_ok(base, 8)) - swap_func = u64_swap; + if (is_aligned(base, size, 8)) + swap_func = SWAP_WORDS_64; + else if (is_aligned(base, size, 4)) + swap_func = SWAP_WORDS_32; else - swap_func = generic_swap; + swap_func = SWAP_BYTES; } - /* heapify */ - for ( ; i >= 0; i -= size) { - for (r = i; r * 2 + size < n; r = c) { - c = r * 2 + size; - if (c < n - size && - cmp_func(base + c, base + c + size) < 0) - c += size; - if (cmp_func(base + r, base + c) >= 0) - break; - swap_func(base + r, base + c, size); - } - } + /* + * Loop invariants: + * 1. elements [a,n) satisfy the heap property (compare greater than + * all of their children), + * 2. elements [n,num*size) are sorted, and + * 3. a <= b <= c <= d <= n (whenever they are valid). + */ + for (;;) { + size_t b, c, d; + + if (a) /* Building heap: sift down --a */ + a -= size; + else if (n -= size) /* Sorting: Extract root to --n */ + do_swap(base, base + n, size, swap_func); + else /* Sort complete */ + break; - /* sort */ - for (i = n - size; i > 0; i -= size) { - swap_func(base, base + i, size); - for (r = 0; r * 2 + size < i; r = c) { - c = r * 2 + size; - if (c < i - size && - cmp_func(base + c, base + c + size) < 0) - c += size; - if (cmp_func(base + r, base + c) >= 0) - break; - swap_func(base + r, base + c, size); + /* + * Sift element at "a" down into heap. This is the + * "bottom-up" variant, which significantly reduces + * calls to cmp_func(): we find the sift-down path all + * the way to the leaves (one compare per level), then + * backtrack to find where to insert the target element. + * + * Because elements tend to sift down close to the leaves, + * this uses fewer compares than doing two per level + * on the way down. (A bit more than half as many on + * average, 3/4 worst-case.) + */ + for (b = a; c = 2*b + size, (d = c + size) < n;) + b = cmp_func(base + c, base + d) >= 0 ? c : d; + if (d == n) /* Special case last leaf with no sibling */ + b = c; + + /* Now backtrack from "b" to the correct location for "a" */ + while (b != a && cmp_func(base + a, base + b) >= 0) + b = parent(b, lsbit, size); + c = b; /* Where "a" belongs */ + while (b != a) { /* Shift it into place */ + b = parent(b, lsbit, size); + do_swap(base + b, base + c, size, swap_func); } } } - EXPORT_SYMBOL(sort); |