diff options
Diffstat (limited to 'kernel/sched/fair.c')
-rw-r--r-- | kernel/sched/fair.c | 1423 |
1 files changed, 961 insertions, 462 deletions
diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c index 9b4c4f320130..bfa3c86d0d68 100644 --- a/kernel/sched/fair.c +++ b/kernel/sched/fair.c @@ -322,13 +322,13 @@ static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list) /* Do the two (enqueued) entities belong to the same group ? */ -static inline int +static inline struct cfs_rq * is_same_group(struct sched_entity *se, struct sched_entity *pse) { if (se->cfs_rq == pse->cfs_rq) - return 1; + return se->cfs_rq; - return 0; + return NULL; } static inline struct sched_entity *parent_entity(struct sched_entity *se) @@ -336,17 +336,6 @@ static inline struct sched_entity *parent_entity(struct sched_entity *se) return se->parent; } -/* return depth at which a sched entity is present in the hierarchy */ -static inline int depth_se(struct sched_entity *se) -{ - int depth = 0; - - for_each_sched_entity(se) - depth++; - - return depth; -} - static void find_matching_se(struct sched_entity **se, struct sched_entity **pse) { @@ -360,8 +349,8 @@ find_matching_se(struct sched_entity **se, struct sched_entity **pse) */ /* First walk up until both entities are at same depth */ - se_depth = depth_se(*se); - pse_depth = depth_se(*pse); + se_depth = (*se)->depth; + pse_depth = (*pse)->depth; while (se_depth > pse_depth) { se_depth--; @@ -426,12 +415,6 @@ static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) #define for_each_leaf_cfs_rq(rq, cfs_rq) \ for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL) -static inline int -is_same_group(struct sched_entity *se, struct sched_entity *pse) -{ - return 1; -} - static inline struct sched_entity *parent_entity(struct sched_entity *se) { return NULL; @@ -819,14 +802,6 @@ unsigned int sysctl_numa_balancing_scan_size = 256; /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ unsigned int sysctl_numa_balancing_scan_delay = 1000; -/* - * After skipping a page migration on a shared page, skip N more numa page - * migrations unconditionally. This reduces the number of NUMA migrations - * in shared memory workloads, and has the effect of pulling tasks towards - * where their memory lives, over pulling the memory towards the task. - */ -unsigned int sysctl_numa_balancing_migrate_deferred = 16; - static unsigned int task_nr_scan_windows(struct task_struct *p) { unsigned long rss = 0; @@ -893,10 +868,26 @@ struct numa_group { struct list_head task_list; struct rcu_head rcu; + nodemask_t active_nodes; unsigned long total_faults; + /* + * Faults_cpu is used to decide whether memory should move + * towards the CPU. As a consequence, these stats are weighted + * more by CPU use than by memory faults. + */ + unsigned long *faults_cpu; unsigned long faults[0]; }; +/* Shared or private faults. */ +#define NR_NUMA_HINT_FAULT_TYPES 2 + +/* Memory and CPU locality */ +#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) + +/* Averaged statistics, and temporary buffers. */ +#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) + pid_t task_numa_group_id(struct task_struct *p) { return p->numa_group ? p->numa_group->gid : 0; @@ -904,16 +895,16 @@ pid_t task_numa_group_id(struct task_struct *p) static inline int task_faults_idx(int nid, int priv) { - return 2 * nid + priv; + return NR_NUMA_HINT_FAULT_TYPES * nid + priv; } static inline unsigned long task_faults(struct task_struct *p, int nid) { - if (!p->numa_faults) + if (!p->numa_faults_memory) return 0; - return p->numa_faults[task_faults_idx(nid, 0)] + - p->numa_faults[task_faults_idx(nid, 1)]; + return p->numa_faults_memory[task_faults_idx(nid, 0)] + + p->numa_faults_memory[task_faults_idx(nid, 1)]; } static inline unsigned long group_faults(struct task_struct *p, int nid) @@ -925,6 +916,12 @@ static inline unsigned long group_faults(struct task_struct *p, int nid) p->numa_group->faults[task_faults_idx(nid, 1)]; } +static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) +{ + return group->faults_cpu[task_faults_idx(nid, 0)] + + group->faults_cpu[task_faults_idx(nid, 1)]; +} + /* * These return the fraction of accesses done by a particular task, or * task group, on a particular numa node. The group weight is given a @@ -935,7 +932,7 @@ static inline unsigned long task_weight(struct task_struct *p, int nid) { unsigned long total_faults; - if (!p->numa_faults) + if (!p->numa_faults_memory) return 0; total_faults = p->total_numa_faults; @@ -954,10 +951,73 @@ static inline unsigned long group_weight(struct task_struct *p, int nid) return 1000 * group_faults(p, nid) / p->numa_group->total_faults; } +bool should_numa_migrate_memory(struct task_struct *p, struct page * page, + int src_nid, int dst_cpu) +{ + struct numa_group *ng = p->numa_group; + int dst_nid = cpu_to_node(dst_cpu); + int last_cpupid, this_cpupid; + + this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); + + /* + * Multi-stage node selection is used in conjunction with a periodic + * migration fault to build a temporal task<->page relation. By using + * a two-stage filter we remove short/unlikely relations. + * + * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate + * a task's usage of a particular page (n_p) per total usage of this + * page (n_t) (in a given time-span) to a probability. + * + * Our periodic faults will sample this probability and getting the + * same result twice in a row, given these samples are fully + * independent, is then given by P(n)^2, provided our sample period + * is sufficiently short compared to the usage pattern. + * + * This quadric squishes small probabilities, making it less likely we + * act on an unlikely task<->page relation. + */ + last_cpupid = page_cpupid_xchg_last(page, this_cpupid); + if (!cpupid_pid_unset(last_cpupid) && + cpupid_to_nid(last_cpupid) != dst_nid) + return false; + + /* Always allow migrate on private faults */ + if (cpupid_match_pid(p, last_cpupid)) + return true; + + /* A shared fault, but p->numa_group has not been set up yet. */ + if (!ng) + return true; + + /* + * Do not migrate if the destination is not a node that + * is actively used by this numa group. + */ + if (!node_isset(dst_nid, ng->active_nodes)) + return false; + + /* + * Source is a node that is not actively used by this + * numa group, while the destination is. Migrate. + */ + if (!node_isset(src_nid, ng->active_nodes)) + return true; + + /* + * Both source and destination are nodes in active + * use by this numa group. Maximize memory bandwidth + * by migrating from more heavily used groups, to less + * heavily used ones, spreading the load around. + * Use a 1/4 hysteresis to avoid spurious page movement. + */ + return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4); +} + static unsigned long weighted_cpuload(const int cpu); static unsigned long source_load(int cpu, int type); static unsigned long target_load(int cpu, int type); -static unsigned long power_of(int cpu); +static unsigned long capacity_of(int cpu); static long effective_load(struct task_group *tg, int cpu, long wl, long wg); /* Cached statistics for all CPUs within a node */ @@ -966,11 +1026,11 @@ struct numa_stats { unsigned long load; /* Total compute capacity of CPUs on a node */ - unsigned long power; + unsigned long compute_capacity; /* Approximate capacity in terms of runnable tasks on a node */ - unsigned long capacity; - int has_capacity; + unsigned long task_capacity; + int has_free_capacity; }; /* @@ -986,7 +1046,7 @@ static void update_numa_stats(struct numa_stats *ns, int nid) ns->nr_running += rq->nr_running; ns->load += weighted_cpuload(cpu); - ns->power += power_of(cpu); + ns->compute_capacity += capacity_of(cpu); cpus++; } @@ -996,15 +1056,15 @@ static void update_numa_stats(struct numa_stats *ns, int nid) * the @ns structure is NULL'ed and task_numa_compare() will * not find this node attractive. * - * We'll either bail at !has_capacity, or we'll detect a huge imbalance - * and bail there. + * We'll either bail at !has_free_capacity, or we'll detect a huge + * imbalance and bail there. */ if (!cpus) return; - ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power; - ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE); - ns->has_capacity = (ns->nr_running < ns->capacity); + ns->task_capacity = + DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE); + ns->has_free_capacity = (ns->nr_running < ns->task_capacity); } struct task_numa_env { @@ -1035,6 +1095,50 @@ static void task_numa_assign(struct task_numa_env *env, env->best_cpu = env->dst_cpu; } +static bool load_too_imbalanced(long src_load, long dst_load, + struct task_numa_env *env) +{ + long imb, old_imb; + long orig_src_load, orig_dst_load; + long src_capacity, dst_capacity; + + /* + * The load is corrected for the CPU capacity available on each node. + * + * src_load dst_load + * ------------ vs --------- + * src_capacity dst_capacity + */ + src_capacity = env->src_stats.compute_capacity; + dst_capacity = env->dst_stats.compute_capacity; + + /* We care about the slope of the imbalance, not the direction. */ + if (dst_load < src_load) + swap(dst_load, src_load); + + /* Is the difference below the threshold? */ + imb = dst_load * src_capacity * 100 - + src_load * dst_capacity * env->imbalance_pct; + if (imb <= 0) + return false; + + /* + * The imbalance is above the allowed threshold. + * Compare it with the old imbalance. + */ + orig_src_load = env->src_stats.load; + orig_dst_load = env->dst_stats.load; + + if (orig_dst_load < orig_src_load) + swap(orig_dst_load, orig_src_load); + + old_imb = orig_dst_load * src_capacity * 100 - + orig_src_load * dst_capacity * env->imbalance_pct; + + /* Would this change make things worse? */ + return (imb > old_imb); +} + /* * This checks if the overall compute and NUMA accesses of the system would * be improved if the source tasks was migrated to the target dst_cpu taking @@ -1047,9 +1151,10 @@ static void task_numa_compare(struct task_numa_env *env, struct rq *src_rq = cpu_rq(env->src_cpu); struct rq *dst_rq = cpu_rq(env->dst_cpu); struct task_struct *cur; - long dst_load, src_load; + long src_load, dst_load; long load; - long imp = (groupimp > 0) ? groupimp : taskimp; + long imp = env->p->numa_group ? groupimp : taskimp; + long moveimp = imp; rcu_read_lock(); cur = ACCESS_ONCE(dst_rq->curr); @@ -1087,11 +1192,6 @@ static void task_numa_compare(struct task_numa_env *env, * itself (not part of a group), use the task weight * instead. */ - if (env->p->numa_group) - imp = groupimp; - else - imp = taskimp; - if (cur->numa_group) imp += group_weight(cur, env->src_nid) - group_weight(cur, env->dst_nid); @@ -1101,33 +1201,47 @@ static void task_numa_compare(struct task_numa_env *env, } } - if (imp < env->best_imp) + if (imp <= env->best_imp && moveimp <= env->best_imp) goto unlock; if (!cur) { /* Is there capacity at our destination? */ - if (env->src_stats.has_capacity && - !env->dst_stats.has_capacity) + if (env->src_stats.has_free_capacity && + !env->dst_stats.has_free_capacity) goto unlock; goto balance; } /* Balance doesn't matter much if we're running a task per cpu */ - if (src_rq->nr_running == 1 && dst_rq->nr_running == 1) + if (imp > env->best_imp && src_rq->nr_running == 1 && + dst_rq->nr_running == 1) goto assign; /* * In the overloaded case, try and keep the load balanced. */ balance: - dst_load = env->dst_stats.load; - src_load = env->src_stats.load; - - /* XXX missing power terms */ load = task_h_load(env->p); - dst_load += load; - src_load -= load; + dst_load = env->dst_stats.load + load; + src_load = env->src_stats.load - load; + + if (moveimp > imp && moveimp > env->best_imp) { + /* + * If the improvement from just moving env->p direction is + * better than swapping tasks around, check if a move is + * possible. Store a slightly smaller score than moveimp, + * so an actually idle CPU will win. + */ + if (!load_too_imbalanced(src_load, dst_load, env)) { + imp = moveimp - 1; + cur = NULL; + goto assign; + } + } + + if (imp <= env->best_imp) + goto unlock; if (cur) { load = task_h_load(cur); @@ -1135,11 +1249,7 @@ balance: src_load += load; } - /* make src_load the smaller */ - if (dst_load < src_load) - swap(dst_load, src_load); - - if (src_load * env->imbalance_pct < dst_load * 100) + if (load_too_imbalanced(src_load, dst_load, env)) goto unlock; assign: @@ -1215,9 +1325,8 @@ static int task_numa_migrate(struct task_struct *p) groupimp = group_weight(p, env.dst_nid) - groupweight; update_numa_stats(&env.dst_stats, env.dst_nid); - /* If the preferred nid has capacity, try to use it. */ - if (env.dst_stats.has_capacity) - task_numa_find_cpu(&env, taskimp, groupimp); + /* Try to find a spot on the preferred nid. */ + task_numa_find_cpu(&env, taskimp, groupimp); /* No space available on the preferred nid. Look elsewhere. */ if (env.best_cpu == -1) { @@ -1237,12 +1346,28 @@ static int task_numa_migrate(struct task_struct *p) } } + /* + * If the task is part of a workload that spans multiple NUMA nodes, + * and is migrating into one of the workload's active nodes, remember + * this node as the task's preferred numa node, so the workload can + * settle down. + * A task that migrated to a second choice node will be better off + * trying for a better one later. Do not set the preferred node here. + */ + if (p->numa_group) { + if (env.best_cpu == -1) + nid = env.src_nid; + else + nid = env.dst_nid; + + if (node_isset(nid, p->numa_group->active_nodes)) + sched_setnuma(p, env.dst_nid); + } + /* No better CPU than the current one was found. */ if (env.best_cpu == -1) return -EAGAIN; - sched_setnuma(p, env.dst_nid); - /* * Reset the scan period if the task is being rescheduled on an * alternative node to recheck if the tasks is now properly placed. @@ -1266,12 +1391,15 @@ static int task_numa_migrate(struct task_struct *p) /* Attempt to migrate a task to a CPU on the preferred node. */ static void numa_migrate_preferred(struct task_struct *p) { + unsigned long interval = HZ; + /* This task has no NUMA fault statistics yet */ - if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults)) + if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory)) return; /* Periodically retry migrating the task to the preferred node */ - p->numa_migrate_retry = jiffies + HZ; + interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); + p->numa_migrate_retry = jiffies + interval; /* Success if task is already running on preferred CPU */ if (task_node(p) == p->numa_preferred_nid) @@ -1282,14 +1410,46 @@ static void numa_migrate_preferred(struct task_struct *p) } /* + * Find the nodes on which the workload is actively running. We do this by + * tracking the nodes from which NUMA hinting faults are triggered. This can + * be different from the set of nodes where the workload's memory is currently + * located. + * + * The bitmask is used to make smarter decisions on when to do NUMA page + * migrations, To prevent flip-flopping, and excessive page migrations, nodes + * are added when they cause over 6/16 of the maximum number of faults, but + * only removed when they drop below 3/16. + */ +static void update_numa_active_node_mask(struct numa_group *numa_group) +{ + unsigned long faults, max_faults = 0; + int nid; + + for_each_online_node(nid) { + faults = group_faults_cpu(numa_group, nid); + if (faults > max_faults) + max_faults = faults; + } + + for_each_online_node(nid) { + faults = group_faults_cpu(numa_group, nid); + if (!node_isset(nid, numa_group->active_nodes)) { + if (faults > max_faults * 6 / 16) + node_set(nid, numa_group->active_nodes); + } else if (faults < max_faults * 3 / 16) + node_clear(nid, numa_group->active_nodes); + } +} + +/* * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS * increments. The more local the fault statistics are, the higher the scan - * period will be for the next scan window. If local/remote ratio is below - * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the - * scan period will decrease + * period will be for the next scan window. If local/(local+remote) ratio is + * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) + * the scan period will decrease. Aim for 70% local accesses. */ #define NUMA_PERIOD_SLOTS 10 -#define NUMA_PERIOD_THRESHOLD 3 +#define NUMA_PERIOD_THRESHOLD 7 /* * Increase the scan period (slow down scanning) if the majority of @@ -1355,11 +1515,41 @@ static void update_task_scan_period(struct task_struct *p, memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); } +/* + * Get the fraction of time the task has been running since the last + * NUMA placement cycle. The scheduler keeps similar statistics, but + * decays those on a 32ms period, which is orders of magnitude off + * from the dozens-of-seconds NUMA balancing period. Use the scheduler + * stats only if the task is so new there are no NUMA statistics yet. + */ +static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) +{ + u64 runtime, delta, now; + /* Use the start of this time slice to avoid calculations. */ + now = p->se.exec_start; + runtime = p->se.sum_exec_runtime; + + if (p->last_task_numa_placement) { + delta = runtime - p->last_sum_exec_runtime; + *period = now - p->last_task_numa_placement; + } else { + delta = p->se.avg.runnable_avg_sum; + *period = p->se.avg.runnable_avg_period; + } + + p->last_sum_exec_runtime = runtime; + p->last_task_numa_placement = now; + + return delta; +} + static void task_numa_placement(struct task_struct *p) { int seq, nid, max_nid = -1, max_group_nid = -1; unsigned long max_faults = 0, max_group_faults = 0; unsigned long fault_types[2] = { 0, 0 }; + unsigned long total_faults; + u64 runtime, period; spinlock_t *group_lock = NULL; seq = ACCESS_ONCE(p->mm->numa_scan_seq); @@ -1368,10 +1558,14 @@ static void task_numa_placement(struct task_struct *p) p->numa_scan_seq = seq; p->numa_scan_period_max = task_scan_max(p); + total_faults = p->numa_faults_locality[0] + + p->numa_faults_locality[1]; + runtime = numa_get_avg_runtime(p, &period); + /* If the task is part of a group prevent parallel updates to group stats */ if (p->numa_group) { group_lock = &p->numa_group->lock; - spin_lock(group_lock); + spin_lock_irq(group_lock); } /* Find the node with the highest number of faults */ @@ -1379,24 +1573,37 @@ static void task_numa_placement(struct task_struct *p) unsigned long faults = 0, group_faults = 0; int priv, i; - for (priv = 0; priv < 2; priv++) { - long diff; + for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { + long diff, f_diff, f_weight; i = task_faults_idx(nid, priv); - diff = -p->numa_faults[i]; /* Decay existing window, copy faults since last scan */ - p->numa_faults[i] >>= 1; - p->numa_faults[i] += p->numa_faults_buffer[i]; - fault_types[priv] += p->numa_faults_buffer[i]; - p->numa_faults_buffer[i] = 0; + diff = p->numa_faults_buffer_memory[i] - p->numa_faults_memory[i] / 2; + fault_types[priv] += p->numa_faults_buffer_memory[i]; + p->numa_faults_buffer_memory[i] = 0; - faults += p->numa_faults[i]; - diff += p->numa_faults[i]; + /* + * Normalize the faults_from, so all tasks in a group + * count according to CPU use, instead of by the raw + * number of faults. Tasks with little runtime have + * little over-all impact on throughput, and thus their + * faults are less important. + */ + f_weight = div64_u64(runtime << 16, period + 1); + f_weight = (f_weight * p->numa_faults_buffer_cpu[i]) / + (total_faults + 1); + f_diff = f_weight - p->numa_faults_cpu[i] / 2; + p->numa_faults_buffer_cpu[i] = 0; + + p->numa_faults_memory[i] += diff; + p->numa_faults_cpu[i] += f_diff; + faults += p->numa_faults_memory[i]; p->total_numa_faults += diff; if (p->numa_group) { /* safe because we can only change our own group */ p->numa_group->faults[i] += diff; + p->numa_group->faults_cpu[i] += f_diff; p->numa_group->total_faults += diff; group_faults += p->numa_group->faults[i]; } @@ -1416,30 +1623,18 @@ static void task_numa_placement(struct task_struct *p) update_task_scan_period(p, fault_types[0], fault_types[1]); if (p->numa_group) { - /* - * If the preferred task and group nids are different, - * iterate over the nodes again to find the best place. - */ - if (max_nid != max_group_nid) { - unsigned long weight, max_weight = 0; - - for_each_online_node(nid) { - weight = task_weight(p, nid) + group_weight(p, nid); - if (weight > max_weight) { - max_weight = weight; - max_nid = nid; - } - } - } - - spin_unlock(group_lock); + update_numa_active_node_mask(p->numa_group); + spin_unlock_irq(group_lock); + max_nid = max_group_nid; } - /* Preferred node as the node with the most faults */ - if (max_faults && max_nid != p->numa_preferred_nid) { - /* Update the preferred nid and migrate task if possible */ - sched_setnuma(p, max_nid); - numa_migrate_preferred(p); + if (max_faults) { + /* Set the new preferred node */ + if (max_nid != p->numa_preferred_nid) + sched_setnuma(p, max_nid); + + if (task_node(p) != p->numa_preferred_nid) + numa_migrate_preferred(p); } } @@ -1465,7 +1660,7 @@ static void task_numa_group(struct task_struct *p, int cpupid, int flags, if (unlikely(!p->numa_group)) { unsigned int size = sizeof(struct numa_group) + - 2*nr_node_ids*sizeof(unsigned long); + 4*nr_node_ids*sizeof(unsigned long); grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); if (!grp) @@ -1475,9 +1670,14 @@ static void task_numa_group(struct task_struct *p, int cpupid, int flags, spin_lock_init(&grp->lock); INIT_LIST_HEAD(&grp->task_list); grp->gid = p->pid; + /* Second half of the array tracks nids where faults happen */ + grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES * + nr_node_ids; - for (i = 0; i < 2*nr_node_ids; i++) - grp->faults[i] = p->numa_faults[i]; + node_set(task_node(current), grp->active_nodes); + + for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) + grp->faults[i] = p->numa_faults_memory[i]; grp->total_faults = p->total_numa_faults; @@ -1532,11 +1732,12 @@ static void task_numa_group(struct task_struct *p, int cpupid, int flags, if (!join) return; - double_lock(&my_grp->lock, &grp->lock); + BUG_ON(irqs_disabled()); + double_lock_irq(&my_grp->lock, &grp->lock); - for (i = 0; i < 2*nr_node_ids; i++) { - my_grp->faults[i] -= p->numa_faults[i]; - grp->faults[i] += p->numa_faults[i]; + for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { + my_grp->faults[i] -= p->numa_faults_memory[i]; + grp->faults[i] += p->numa_faults_memory[i]; } my_grp->total_faults -= p->total_numa_faults; grp->total_faults += p->total_numa_faults; @@ -1546,7 +1747,7 @@ static void task_numa_group(struct task_struct *p, int cpupid, int flags, grp->nr_tasks++; spin_unlock(&my_grp->lock); - spin_unlock(&grp->lock); + spin_unlock_irq(&grp->lock); rcu_assign_pointer(p->numa_group, grp); @@ -1561,34 +1762,39 @@ no_join: void task_numa_free(struct task_struct *p) { struct numa_group *grp = p->numa_group; + void *numa_faults = p->numa_faults_memory; + unsigned long flags; int i; - void *numa_faults = p->numa_faults; if (grp) { - spin_lock(&grp->lock); - for (i = 0; i < 2*nr_node_ids; i++) - grp->faults[i] -= p->numa_faults[i]; + spin_lock_irqsave(&grp->lock, flags); + for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) + grp->faults[i] -= p->numa_faults_memory[i]; grp->total_faults -= p->total_numa_faults; list_del(&p->numa_entry); grp->nr_tasks--; - spin_unlock(&grp->lock); + spin_unlock_irqrestore(&grp->lock, flags); rcu_assign_pointer(p->numa_group, NULL); put_numa_group(grp); } - p->numa_faults = NULL; - p->numa_faults_buffer = NULL; + p->numa_faults_memory = NULL; + p->numa_faults_buffer_memory = NULL; + p->numa_faults_cpu= NULL; + p->numa_faults_buffer_cpu = NULL; kfree(numa_faults); } /* * Got a PROT_NONE fault for a page on @node. */ -void task_numa_fault(int last_cpupid, int node, int pages, int flags) +void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) { struct task_struct *p = current; bool migrated = flags & TNF_MIGRATED; + int cpu_node = task_node(current); + int local = !!(flags & TNF_FAULT_LOCAL); int priv; if (!numabalancing_enabled) @@ -1603,16 +1809,24 @@ void task_numa_fault(int last_cpupid, int node, int pages, int flags) return; /* Allocate buffer to track faults on a per-node basis */ - if (unlikely(!p->numa_faults)) { - int size = sizeof(*p->numa_faults) * 2 * nr_node_ids; + if (unlikely(!p->numa_faults_memory)) { + int size = sizeof(*p->numa_faults_memory) * + NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; - /* numa_faults and numa_faults_buffer share the allocation */ - p->numa_faults = kzalloc(size * 2, GFP_KERNEL|__GFP_NOWARN); - if (!p->numa_faults) + p->numa_faults_memory = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); + if (!p->numa_faults_memory) return; - BUG_ON(p->numa_faults_buffer); - p->numa_faults_buffer = p->numa_faults + (2 * nr_node_ids); + BUG_ON(p->numa_faults_buffer_memory); + /* + * The averaged statistics, shared & private, memory & cpu, + * occupy the first half of the array. The second half of the + * array is for current counters, which are averaged into the + * first set by task_numa_placement. + */ + p->numa_faults_cpu = p->numa_faults_memory + (2 * nr_node_ids); + p->numa_faults_buffer_memory = p->numa_faults_memory + (4 * nr_node_ids); + p->numa_faults_buffer_cpu = p->numa_faults_memory + (6 * nr_node_ids); p->total_numa_faults = 0; memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); } @@ -1629,6 +1843,17 @@ void task_numa_fault(int last_cpupid, int node, int pages, int flags) task_numa_group(p, last_cpupid, flags, &priv); } + /* + * If a workload spans multiple NUMA nodes, a shared fault that + * occurs wholly within the set of nodes that the workload is + * actively using should be counted as local. This allows the + * scan rate to slow down when a workload has settled down. + */ + if (!priv && !local && p->numa_group && + node_isset(cpu_node, p->numa_group->active_nodes) && + node_isset(mem_node, p->numa_group->active_nodes)) + local = 1; + task_numa_placement(p); /* @@ -1641,8 +1866,9 @@ void task_numa_fault(int last_cpupid, int node, int pages, int flags) if (migrated) p->numa_pages_migrated += pages; - p->numa_faults_buffer[task_faults_idx(node, priv)] += pages; - p->numa_faults_locality[!!(flags & TNF_FAULT_LOCAL)] += pages; + p->numa_faults_buffer_memory[task_faults_idx(mem_node, priv)] += pages; + p->numa_faults_buffer_cpu[task_faults_idx(cpu_node, priv)] += pages; + p->numa_faults_locality[local] += pages; } static void reset_ptenuma_scan(struct task_struct *p) @@ -2219,13 +2445,20 @@ static inline void __update_group_entity_contrib(struct sched_entity *se) se->avg.load_avg_contrib >>= NICE_0_SHIFT; } } -#else + +static inline void update_rq_runnable_avg(struct rq *rq, int runnable) +{ + __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable); + __update_tg_runnable_avg(&rq->avg, &rq->cfs); +} +#else /* CONFIG_FAIR_GROUP_SCHED */ static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq, int force_update) {} static inline void __update_tg_runnable_avg(struct sched_avg *sa, struct cfs_rq *cfs_rq) {} static inline void __update_group_entity_contrib(struct sched_entity *se) {} -#endif +static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {} +#endif /* CONFIG_FAIR_GROUP_SCHED */ static inline void __update_task_entity_contrib(struct sched_entity *se) { @@ -2323,12 +2556,6 @@ static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update) __update_cfs_rq_tg_load_contrib(cfs_rq, force_update); } -static inline void update_rq_runnable_avg(struct rq *rq, int runnable) -{ - __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable); - __update_tg_runnable_avg(&rq->avg, &rq->cfs); -} - /* Add the load generated by se into cfs_rq's child load-average */ static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, @@ -2416,7 +2643,10 @@ void idle_exit_fair(struct rq *this_rq) update_rq_runnable_avg(this_rq, 0); } -#else +static int idle_balance(struct rq *this_rq); + +#else /* CONFIG_SMP */ + static inline void update_entity_load_avg(struct sched_entity *se, int update_cfs_rq) {} static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {} @@ -2428,7 +2658,13 @@ static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq, int sleep) {} static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update) {} -#endif + +static inline int idle_balance(struct rq *rq) +{ + return 0; +} + +#endif /* CONFIG_SMP */ static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) { @@ -2578,10 +2814,10 @@ static void __clear_buddies_last(struct sched_entity *se) { for_each_sched_entity(se) { struct cfs_rq *cfs_rq = cfs_rq_of(se); - if (cfs_rq->last == se) - cfs_rq->last = NULL; - else + if (cfs_rq->last != se) break; + + cfs_rq->last = NULL; } } @@ -2589,10 +2825,10 @@ static void __clear_buddies_next(struct sched_entity *se) { for_each_sched_entity(se) { struct cfs_rq *cfs_rq = cfs_rq_of(se); - if (cfs_rq->next == se) - cfs_rq->next = NULL; - else + if (cfs_rq->next != se) break; + + cfs_rq->next = NULL; } } @@ -2600,10 +2836,10 @@ static void __clear_buddies_skip(struct sched_entity *se) { for_each_sched_entity(se) { struct cfs_rq *cfs_rq = cfs_rq_of(se); - if (cfs_rq->skip == se) - cfs_rq->skip = NULL; - else + if (cfs_rq->skip != se) break; + + cfs_rq->skip = NULL; } } @@ -2679,7 +2915,7 @@ check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) ideal_runtime = sched_slice(cfs_rq, curr); delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; if (delta_exec > ideal_runtime) { - resched_task(rq_of(cfs_rq)->curr); + resched_curr(rq_of(cfs_rq)); /* * The current task ran long enough, ensure it doesn't get * re-elected due to buddy favours. @@ -2703,7 +2939,7 @@ check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) return; if (delta > ideal_runtime) - resched_task(rq_of(cfs_rq)->curr); + resched_curr(rq_of(cfs_rq)); } static void @@ -2746,17 +2982,36 @@ wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); * 3) pick the "last" process, for cache locality * 4) do not run the "skip" process, if something else is available */ -static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq) +static struct sched_entity * +pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) { - struct sched_entity *se = __pick_first_entity(cfs_rq); - struct sched_entity *left = se; + struct sched_entity *left = __pick_first_entity(cfs_rq); + struct sched_entity *se; + + /* + * If curr is set we have to see if its left of the leftmost entity + * still in the tree, provided there was anything in the tree at all. + */ + if (!left || (curr && entity_before(curr, left))) + left = curr; + + se = left; /* ideally we run the leftmost entity */ /* * Avoid running the skip buddy, if running something else can * be done without getting too unfair. */ if (cfs_rq->skip == se) { - struct sched_entity *second = __pick_next_entity(se); + struct sched_entity *second; + + if (se == curr) { + second = __pick_first_entity(cfs_rq); + } else { + second = __pick_next_entity(se); + if (!second || (curr && entity_before(curr, second))) + second = curr; + } + if (second && wakeup_preempt_entity(second, left) < 1) se = second; } @@ -2778,7 +3033,7 @@ static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq) return se; } -static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq); +static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) { @@ -2824,7 +3079,7 @@ entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) * validating it and just reschedule. */ if (queued) { - resched_task(rq_of(cfs_rq)->curr); + resched_curr(rq_of(cfs_rq)); return; } /* @@ -2942,7 +3197,7 @@ static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) */ if (!cfs_b->timer_active) { __refill_cfs_bandwidth_runtime(cfs_b); - __start_cfs_bandwidth(cfs_b); + __start_cfs_bandwidth(cfs_b, false); } if (cfs_b->runtime > 0) { @@ -2987,10 +3242,12 @@ static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq) * has not truly expired. * * Fortunately we can check determine whether this the case by checking - * whether the global deadline has advanced. + * whether the global deadline has advanced. It is valid to compare + * cfs_b->runtime_expires without any locks since we only care about + * exact equality, so a partial write will still work. */ - if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) { + if (cfs_rq->runtime_expires != cfs_b->runtime_expires) { /* extend local deadline, drift is bounded above by 2 ticks */ cfs_rq->runtime_expires += TICK_NSEC; } else { @@ -3013,7 +3270,7 @@ static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) * hierarchy can be throttled */ if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) - resched_task(rq_of(cfs_rq)->curr); + resched_curr(rq_of(cfs_rq)); } static __always_inline @@ -3114,14 +3371,18 @@ static void throttle_cfs_rq(struct cfs_rq *cfs_rq) } if (!se) - rq->nr_running -= task_delta; + sub_nr_running(rq, task_delta); cfs_rq->throttled = 1; cfs_rq->throttled_clock = rq_clock(rq); raw_spin_lock(&cfs_b->lock); - list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); + /* + * Add to the _head_ of the list, so that an already-started + * distribute_cfs_runtime will not see us + */ + list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); if (!cfs_b->timer_active) - __start_cfs_bandwidth(cfs_b); + __start_cfs_bandwidth(cfs_b, false); raw_spin_unlock(&cfs_b->lock); } @@ -3165,18 +3426,19 @@ void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) } if (!se) - rq->nr_running += task_delta; + add_nr_running(rq, task_delta); /* determine whether we need to wake up potentially idle cpu */ if (rq->curr == rq->idle && rq->cfs.nr_running) - resched_task(rq->curr); + resched_curr(rq); } static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, u64 remaining, u64 expires) { struct cfs_rq *cfs_rq; - u64 runtime = remaining; + u64 runtime; + u64 starting_runtime = remaining; rcu_read_lock(); list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, @@ -3207,7 +3469,7 @@ next: } rcu_read_unlock(); - return remaining; + return starting_runtime - remaining; } /* @@ -3219,21 +3481,21 @@ next: static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun) { u64 runtime, runtime_expires; - int idle = 1, throttled; + int throttled; - raw_spin_lock(&cfs_b->lock); /* no need to continue the timer with no bandwidth constraint */ if (cfs_b->quota == RUNTIME_INF) - goto out_unlock; + goto out_deactivate; throttled = !list_empty(&cfs_b->throttled_cfs_rq); - /* idle depends on !throttled (for the case of a large deficit) */ - idle = cfs_b->idle && !throttled; cfs_b->nr_periods += overrun; - /* if we're going inactive then everything else can be deferred */ - if (idle) - goto out_unlock; + /* + * idle depends on !throttled (for the case of a large deficit), and if + * we're going inactive then everything else can be deferred + */ + if (cfs_b->idle && !throttled) + goto out_deactivate; /* * if we have relooped after returning idle once, we need to update our @@ -3247,28 +3509,23 @@ static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun) if (!throttled) { /* mark as potentially idle for the upcoming period */ cfs_b->idle = 1; - goto out_unlock; + return 0; } /* account preceding periods in which throttling occurred */ cfs_b->nr_throttled += overrun; - /* - * There are throttled entities so we must first use the new bandwidth - * to unthrottle them before making it generally available. This - * ensures that all existing debts will be paid before a new cfs_rq is - * allowed to run. - */ - runtime = cfs_b->runtime; runtime_expires = cfs_b->runtime_expires; - cfs_b->runtime = 0; /* - * This check is repeated as we are holding onto the new bandwidth - * while we unthrottle. This can potentially race with an unthrottled - * group trying to acquire new bandwidth from the global pool. + * This check is repeated as we are holding onto the new bandwidth while + * we unthrottle. This can potentially race with an unthrottled group + * trying to acquire new bandwidth from the global pool. This can result + * in us over-using our runtime if it is all used during this loop, but + * only by limited amounts in that extreme case. */ - while (throttled && runtime > 0) { + while (throttled && cfs_b->runtime > 0) { + runtime = cfs_b->runtime; raw_spin_unlock(&cfs_b->lock); /* we can't nest cfs_b->lock while distributing bandwidth */ runtime = distribute_cfs_runtime(cfs_b, runtime, @@ -3276,10 +3533,10 @@ static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun) raw_spin_lock(&cfs_b->lock); throttled = !list_empty(&cfs_b->throttled_cfs_rq); + + cfs_b->runtime -= min(runtime, cfs_b->runtime); } - /* return (any) remaining runtime */ - cfs_b->runtime = runtime; /* * While we are ensured activity in the period following an * unthrottle, this also covers the case in which the new bandwidth is @@ -3287,12 +3544,12 @@ static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun) * timer to remain active while there are any throttled entities.) */ cfs_b->idle = 0; -out_unlock: - if (idle) - cfs_b->timer_active = 0; - raw_spin_unlock(&cfs_b->lock); - return idle; + return 0; + +out_deactivate: + cfs_b->timer_active = 0; + return 1; } /* a cfs_rq won't donate quota below this amount */ @@ -3390,10 +3647,9 @@ static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) return; } - if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) { + if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) runtime = cfs_b->runtime; - cfs_b->runtime = 0; - } + expires = cfs_b->runtime_expires; raw_spin_unlock(&cfs_b->lock); @@ -3404,7 +3660,7 @@ static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) raw_spin_lock(&cfs_b->lock); if (expires == cfs_b->runtime_expires) - cfs_b->runtime = runtime; + cfs_b->runtime -= min(runtime, cfs_b->runtime); raw_spin_unlock(&cfs_b->lock); } @@ -3433,22 +3689,23 @@ static void check_enqueue_throttle(struct cfs_rq *cfs_rq) } /* conditionally throttle active cfs_rq's from put_prev_entity() */ -static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) +static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { if (!cfs_bandwidth_used()) - return; + return false; if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) - return; + return false; /* * it's possible for a throttled entity to be forced into a running * state (e.g. set_curr_task), in this case we're finished. */ if (cfs_rq_throttled(cfs_rq)) - return; + return true; throttle_cfs_rq(cfs_rq); + return true; } static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) @@ -3468,6 +3725,7 @@ static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) int overrun; int idle = 0; + raw_spin_lock(&cfs_b->lock); for (;;) { now = hrtimer_cb_get_time(timer); overrun = hrtimer_forward(timer, now, cfs_b->period); @@ -3477,6 +3735,7 @@ static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) idle = do_sched_cfs_period_timer(cfs_b, overrun); } + raw_spin_unlock(&cfs_b->lock); return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; } @@ -3502,7 +3761,7 @@ static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) } /* requires cfs_b->lock, may release to reprogram timer */ -void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) +void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force) { /* * The timer may be active because we're trying to set a new bandwidth @@ -3517,7 +3776,7 @@ void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) cpu_relax(); raw_spin_lock(&cfs_b->lock); /* if someone else restarted the timer then we're done */ - if (cfs_b->timer_active) + if (!force && cfs_b->timer_active) return; } @@ -3531,13 +3790,24 @@ static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) hrtimer_cancel(&cfs_b->slack_timer); } -static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) +static void __maybe_unused update_runtime_enabled(struct rq *rq) { struct cfs_rq *cfs_rq; for_each_leaf_cfs_rq(rq, cfs_rq) { - struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); + struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth; + + raw_spin_lock(&cfs_b->lock); + cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; + raw_spin_unlock(&cfs_b->lock); + } +} + +static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) +{ + struct cfs_rq *cfs_rq; + for_each_leaf_cfs_rq(rq, cfs_rq) { if (!cfs_rq->runtime_enabled) continue; @@ -3545,7 +3815,13 @@ static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) * clock_task is not advancing so we just need to make sure * there's some valid quota amount */ - cfs_rq->runtime_remaining = cfs_b->quota; + cfs_rq->runtime_remaining = 1; + /* + * Offline rq is schedulable till cpu is completely disabled + * in take_cpu_down(), so we prevent new cfs throttling here. + */ + cfs_rq->runtime_enabled = 0; + if (cfs_rq_throttled(cfs_rq)) unthrottle_cfs_rq(cfs_rq); } @@ -3558,7 +3834,7 @@ static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) } static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} -static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} +static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} @@ -3589,6 +3865,7 @@ static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) return NULL; } static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} +static inline void update_runtime_enabled(struct rq *rq) {} static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} #endif /* CONFIG_CFS_BANDWIDTH */ @@ -3612,7 +3889,7 @@ static void hrtick_start_fair(struct rq *rq, struct task_struct *p) if (delta < 0) { if (rq->curr == p) - resched_task(p); + resched_curr(rq); return; } @@ -3696,7 +3973,7 @@ enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) if (!se) { update_rq_runnable_avg(rq, rq->nr_running); - inc_nr_running(rq); + add_nr_running(rq, 1); } hrtick_update(rq); } @@ -3756,7 +4033,7 @@ static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) } if (!se) { - dec_nr_running(rq); + sub_nr_running(rq, 1); update_rq_runnable_avg(rq, 1); } hrtick_update(rq); @@ -3802,9 +4079,9 @@ static unsigned long target_load(int cpu, int type) return max(rq->cpu_load[type-1], total); } -static unsigned long power_of(int cpu) +static unsigned long capacity_of(int cpu) { - return cpu_rq(cpu)->cpu_power; + return cpu_rq(cpu)->cpu_capacity; } static unsigned long cpu_avg_load_per_task(int cpu) @@ -3826,8 +4103,8 @@ static void record_wakee(struct task_struct *p) * about the boundary, really active task won't care * about the loss. */ - if (jiffies > current->wakee_flip_decay_ts + HZ) { - current->wakee_flips = 0; + if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { + current->wakee_flips >>= 1; current->wakee_flip_decay_ts = jiffies; } @@ -4047,12 +4324,12 @@ static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync) s64 this_eff_load, prev_eff_load; this_eff_load = 100; - this_eff_load *= power_of(prev_cpu); + this_eff_load *= capacity_of(prev_cpu); this_eff_load *= this_load + effective_load(tg, this_cpu, weight, weight); prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2; - prev_eff_load *= power_of(this_cpu); + prev_eff_load *= capacity_of(this_cpu); prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight); balanced = this_eff_load <= prev_eff_load; @@ -4128,8 +4405,8 @@ find_idlest_group(struct sched_domain *sd, struct task_struct *p, avg_load += load; } - /* Adjust by relative CPU power of the group */ - avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power; + /* Adjust by relative CPU capacity of the group */ + avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity; if (local_group) { this_load = avg_load; @@ -4213,13 +4490,14 @@ done: } /* - * sched_balance_self: balance the current task (running on cpu) in domains - * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and - * SD_BALANCE_EXEC. + * select_task_rq_fair: Select target runqueue for the waking task in domains + * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE, + * SD_BALANCE_FORK, or SD_BALANCE_EXEC. * - * Balance, ie. select the least loaded group. + * Balances load by selecting the idlest cpu in the idlest group, or under + * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set. * - * Returns the target CPU number, or the same CPU if no balancing is needed. + * Returns the target cpu number. * * preempt must be disabled. */ @@ -4260,10 +4538,10 @@ select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_f sd = tmp; } - if (affine_sd) { - if (cpu != prev_cpu && wake_affine(affine_sd, p, sync)) - prev_cpu = cpu; + if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync)) + prev_cpu = cpu; + if (sd_flag & SD_BALANCE_WAKE) { new_cpu = select_idle_sibling(p, prev_cpu); goto unlock; } @@ -4331,6 +4609,9 @@ migrate_task_rq_fair(struct task_struct *p, int next_cpu) atomic_long_add(se->avg.load_avg_contrib, &cfs_rq->removed_load); } + + /* We have migrated, no longer consider this task hot */ + se->exec_start = 0; } #endif /* CONFIG_SMP */ @@ -4477,7 +4758,7 @@ static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_ return; preempt: - resched_task(curr); + resched_curr(rq); /* * Only set the backward buddy when the current task is still * on the rq. This can happen when a wakeup gets interleaved @@ -4494,26 +4775,124 @@ preempt: set_last_buddy(se); } -static struct task_struct *pick_next_task_fair(struct rq *rq) +static struct task_struct * +pick_next_task_fair(struct rq *rq, struct task_struct *prev) { - struct task_struct *p; struct cfs_rq *cfs_rq = &rq->cfs; struct sched_entity *se; + struct task_struct *p; + int new_tasks; +again: +#ifdef CONFIG_FAIR_GROUP_SCHED if (!cfs_rq->nr_running) - return NULL; + goto idle; + + if (prev->sched_class != &fair_sched_class) + goto simple; + + /* + * Because of the set_next_buddy() in dequeue_task_fair() it is rather + * likely that a next task is from the same cgroup as the current. + * + * Therefore attempt to avoid putting and setting the entire cgroup + * hierarchy, only change the part that actually changes. + */ do { - se = pick_next_entity(cfs_rq); + struct sched_entity *curr = cfs_rq->curr; + + /* + * Since we got here without doing put_prev_entity() we also + * have to consider cfs_rq->curr. If it is still a runnable + * entity, update_curr() will update its vruntime, otherwise + * forget we've ever seen it. + */ + if (curr && curr->on_rq) + update_curr(cfs_rq); + else + curr = NULL; + + /* + * This call to check_cfs_rq_runtime() will do the throttle and + * dequeue its entity in the parent(s). Therefore the 'simple' + * nr_running test will indeed be correct. + */ + if (unlikely(check_cfs_rq_runtime(cfs_rq))) + goto simple; + + se = pick_next_entity(cfs_rq, curr); + cfs_rq = group_cfs_rq(se); + } while (cfs_rq); + + p = task_of(se); + + /* + * Since we haven't yet done put_prev_entity and if the selected task + * is a different task than we started out with, try and touch the + * least amount of cfs_rqs. + */ + if (prev != p) { + struct sched_entity *pse = &prev->se; + + while (!(cfs_rq = is_same_group(se, pse))) { + int se_depth = se->depth; + int pse_depth = pse->depth; + + if (se_depth <= pse_depth) { + put_prev_entity(cfs_rq_of(pse), pse); + pse = parent_entity(pse); + } + if (se_depth >= pse_depth) { + set_next_entity(cfs_rq_of(se), se); + se = parent_entity(se); + } + } + + put_prev_entity(cfs_rq, pse); + set_next_entity(cfs_rq, se); + } + + if (hrtick_enabled(rq)) + hrtick_start_fair(rq, p); + + return p; +simple: + cfs_rq = &rq->cfs; +#endif + + if (!cfs_rq->nr_running) + goto idle; + + put_prev_task(rq, prev); + + do { + se = pick_next_entity(cfs_rq, NULL); set_next_entity(cfs_rq, se); cfs_rq = group_cfs_rq(se); } while (cfs_rq); p = task_of(se); + if (hrtick_enabled(rq)) hrtick_start_fair(rq, p); return p; + +idle: + new_tasks = idle_balance(rq); + /* + * Because idle_balance() releases (and re-acquires) rq->lock, it is + * possible for any higher priority task to appear. In that case we + * must re-start the pick_next_entity() loop. + */ + if (new_tasks < 0) + return RETRY_TASK; + + if (new_tasks > 0) + goto again; + + return NULL; } /* @@ -4607,14 +4986,14 @@ static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preemp * * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) * - * P_i is the cpu power (or compute capacity) of cpu i, typically it is the + * C_i is the compute capacity of cpu i, typically it is the * fraction of 'recent' time available for SCHED_OTHER task execution. But it * can also include other factors [XXX]. * * To achieve this balance we define a measure of imbalance which follows * directly from (1): * - * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4) + * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) * * We them move tasks around to minimize the imbalance. In the continuous * function space it is obvious this converges, in the discrete case we get @@ -4750,8 +5129,7 @@ static void move_task(struct task_struct *p, struct lb_env *env) /* * Is this task likely cache-hot: */ -static int -task_hot(struct task_struct *p, u64 now, struct sched_domain *sd) +static int task_hot(struct task_struct *p, struct lb_env *env) { s64 delta; @@ -4764,7 +5142,7 @@ task_hot(struct task_struct *p, u64 now, struct sched_domain *sd) /* * Buddy candidates are cache hot: */ - if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running && + if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && (&p->se == cfs_rq_of(&p->se)->next || &p->se == cfs_rq_of(&p->se)->last)) return 1; @@ -4774,7 +5152,7 @@ task_hot(struct task_struct *p, u64 now, struct sched_domain *sd) if (sysctl_sched_migration_cost == 0) return 0; - delta = now - p->se.exec_start; + delta = rq_clock_task(env->src_rq) - p->se.exec_start; return delta < (s64)sysctl_sched_migration_cost; } @@ -4783,9 +5161,10 @@ task_hot(struct task_struct *p, u64 now, struct sched_domain *sd) /* Returns true if the destination node has incurred more faults */ static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env) { + struct numa_group *numa_group = rcu_dereference(p->numa_group); int src_nid, dst_nid; - if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults || + if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory || !(env->sd->flags & SD_NUMA)) { return false; } @@ -4796,27 +5175,35 @@ static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env) if (src_nid == dst_nid) return false; - /* Always encourage migration to the preferred node. */ - if (dst_nid == p->numa_preferred_nid) - return true; + if (numa_group) { + /* Task is already in the group's interleave set. */ + if (node_isset(src_nid, numa_group->active_nodes)) + return false; - /* If both task and group weight improve, this move is a winner. */ - if (task_weight(p, dst_nid) > task_weight(p, src_nid) && - group_weight(p, dst_nid) > group_weight(p, src_nid)) + /* Task is moving into the group's interleave set. */ + if (node_isset(dst_nid, numa_group->active_nodes)) + return true; + + return group_faults(p, dst_nid) > group_faults(p, src_nid); + } + + /* Encourage migration to the preferred node. */ + if (dst_nid == p->numa_preferred_nid) return true; - return false; + return task_faults(p, dst_nid) > task_faults(p, src_nid); } static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env) { + struct numa_group *numa_group = rcu_dereference(p->numa_group); int src_nid, dst_nid; if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER)) return false; - if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) + if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA)) return false; src_nid = cpu_to_node(env->src_cpu); @@ -4825,16 +5212,23 @@ static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env) if (src_nid == dst_nid) return false; + if (numa_group) { + /* Task is moving within/into the group's interleave set. */ + if (node_isset(dst_nid, numa_group->active_nodes)) + return false; + + /* Task is moving out of the group's interleave set. */ + if (node_isset(src_nid, numa_group->active_nodes)) + return true; + + return group_faults(p, dst_nid) < group_faults(p, src_nid); + } + /* Migrating away from the preferred node is always bad. */ if (src_nid == p->numa_preferred_nid) return true; - /* If either task or group weight get worse, don't do it. */ - if (task_weight(p, dst_nid) < task_weight(p, src_nid) || - group_weight(p, dst_nid) < group_weight(p, src_nid)) - return true; - - return false; + return task_faults(p, dst_nid) < task_faults(p, src_nid); } #else @@ -4912,7 +5306,7 @@ int can_migrate_task(struct task_struct *p, struct lb_env *env) * 2) task is cache cold, or * 3) too many balance attempts have failed. */ - tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd); + tsk_cache_hot = task_hot(p, env); if (!tsk_cache_hot) tsk_cache_hot = migrate_degrades_locality(p, env); @@ -5173,13 +5567,13 @@ struct sg_lb_stats { unsigned long group_load; /* Total load over the CPUs of the group */ unsigned long sum_weighted_load; /* Weighted load of group's tasks */ unsigned long load_per_task; - unsigned long group_power; + unsigned long group_capacity; unsigned int sum_nr_running; /* Nr tasks running in the group */ - unsigned int group_capacity; + unsigned int group_capacity_factor; unsigned int idle_cpus; unsigned int group_weight; int group_imb; /* Is there an imbalance in the group ? */ - int group_has_capacity; /* Is there extra capacity in the group? */ + int group_has_free_capacity; #ifdef CONFIG_NUMA_BALANCING unsigned int nr_numa_running; unsigned int nr_preferred_running; @@ -5194,7 +5588,7 @@ struct sd_lb_stats { struct sched_group *busiest; /* Busiest group in this sd */ struct sched_group *local; /* Local group in this sd */ unsigned long total_load; /* Total load of all groups in sd */ - unsigned long total_pwr; /* Total power of all groups in sd */ + unsigned long total_capacity; /* Total capacity of all groups in sd */ unsigned long avg_load; /* Average load across all groups in sd */ struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ @@ -5213,7 +5607,7 @@ static inline void init_sd_lb_stats(struct sd_lb_stats *sds) .busiest = NULL, .local = NULL, .total_load = 0UL, - .total_pwr = 0UL, + .total_capacity = 0UL, .busiest_stat = { .avg_load = 0UL, }, @@ -5248,17 +5642,17 @@ static inline int get_sd_load_idx(struct sched_domain *sd, return load_idx; } -static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu) +static unsigned long default_scale_capacity(struct sched_domain *sd, int cpu) { - return SCHED_POWER_SCALE; + return SCHED_CAPACITY_SCALE; } -unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu) +unsigned long __weak arch_scale_freq_capacity(struct sched_domain *sd, int cpu) { - return default_scale_freq_power(sd, cpu); + return default_scale_capacity(sd, cpu); } -static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu) +static unsigned long default_scale_smt_capacity(struct sched_domain *sd, int cpu) { unsigned long weight = sd->span_weight; unsigned long smt_gain = sd->smt_gain; @@ -5268,15 +5662,16 @@ static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu) return smt_gain; } -unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu) +unsigned long __weak arch_scale_smt_capacity(struct sched_domain *sd, int cpu) { - return default_scale_smt_power(sd, cpu); + return default_scale_smt_capacity(sd, cpu); } -static unsigned long scale_rt_power(int cpu) +static unsigned long scale_rt_capacity(int cpu) { struct rq *rq = cpu_rq(cpu); u64 total, available, age_stamp, avg; + s64 delta; /* * Since we're reading these variables without serialization make sure @@ -5285,74 +5680,78 @@ static unsigned long scale_rt_power(int cpu) age_stamp = ACCESS_ONCE(rq->age_stamp); avg = ACCESS_ONCE(rq->rt_avg); - total = sched_avg_period() + (rq_clock(rq) - age_stamp); + delta = rq_clock(rq) - age_stamp; + if (unlikely(delta < 0)) + delta = 0; + + total = sched_avg_period() + delta; if (unlikely(total < avg)) { - /* Ensures that power won't end up being negative */ + /* Ensures that capacity won't end up being negative */ available = 0; } else { available = total - avg; } - if (unlikely((s64)total < SCHED_POWER_SCALE)) - total = SCHED_POWER_SCALE; + if (unlikely((s64)total < SCHED_CAPACITY_SCALE)) + total = SCHED_CAPACITY_SCALE; - total >>= SCHED_POWER_SHIFT; + total >>= SCHED_CAPACITY_SHIFT; return div_u64(available, total); } -static void update_cpu_power(struct sched_domain *sd, int cpu) +static void update_cpu_capacity(struct sched_domain *sd, int cpu) { unsigned long weight = sd->span_weight; - unsigned long power = SCHED_POWER_SCALE; + unsigned long capacity = SCHED_CAPACITY_SCALE; struct sched_group *sdg = sd->groups; - if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) { - if (sched_feat(ARCH_POWER)) - power *= arch_scale_smt_power(sd, cpu); + if ((sd->flags & SD_SHARE_CPUCAPACITY) && weight > 1) { + if (sched_feat(ARCH_CAPACITY)) + capacity *= arch_scale_smt_capacity(sd, cpu); else - power *= default_scale_smt_power(sd, cpu); + capacity *= default_scale_smt_capacity(sd, cpu); - power >>= SCHED_POWER_SHIFT; + capacity >>= SCHED_CAPACITY_SHIFT; } - sdg->sgp->power_orig = power; + sdg->sgc->capacity_orig = capacity; - if (sched_feat(ARCH_POWER)) - power *= arch_scale_freq_power(sd, cpu); + if (sched_feat(ARCH_CAPACITY)) + capacity *= arch_scale_freq_capacity(sd, cpu); else - power *= default_scale_freq_power(sd, cpu); + capacity *= default_scale_capacity(sd, cpu); - power >>= SCHED_POWER_SHIFT; + capacity >>= SCHED_CAPACITY_SHIFT; - power *= scale_rt_power(cpu); - power >>= SCHED_POWER_SHIFT; + capacity *= scale_rt_capacity(cpu); + capacity >>= SCHED_CAPACITY_SHIFT; - if (!power) - power = 1; + if (!capacity) + capacity = 1; - cpu_rq(cpu)->cpu_power = power; - sdg->sgp->power = power; + cpu_rq(cpu)->cpu_capacity = capacity; + sdg->sgc->capacity = capacity; } -void update_group_power(struct sched_domain *sd, int cpu) +void update_group_capacity(struct sched_domain *sd, int cpu) { struct sched_domain *child = sd->child; struct sched_group *group, *sdg = sd->groups; - unsigned long power, power_orig; + unsigned long capacity, capacity_orig; unsigned long interval; interval = msecs_to_jiffies(sd->balance_interval); interval = clamp(interval, 1UL, max_load_balance_interval); - sdg->sgp->next_update = jiffies + interval; + sdg->sgc->next_update = jiffies + interval; if (!child) { - update_cpu_power(sd, cpu); + update_cpu_capacity(sd, cpu); return; } - power_orig = power = 0; + capacity_orig = capacity = 0; if (child->flags & SD_OVERLAP) { /* @@ -5361,31 +5760,31 @@ void update_group_power(struct sched_domain *sd, int cpu) */ for_each_cpu(cpu, sched_group_cpus(sdg)) { - struct sched_group_power *sgp; + struct sched_group_capacity *sgc; struct rq *rq = cpu_rq(cpu); /* - * build_sched_domains() -> init_sched_groups_power() + * build_sched_domains() -> init_sched_groups_capacity() * gets here before we've attached the domains to the * runqueues. * - * Use power_of(), which is set irrespective of domains - * in update_cpu_power(). + * Use capacity_of(), which is set irrespective of domains + * in update_cpu_capacity(). * - * This avoids power/power_orig from being 0 and + * This avoids capacity/capacity_orig from being 0 and * causing divide-by-zero issues on boot. * - * Runtime updates will correct power_orig. + * Runtime updates will correct capacity_orig. */ if (unlikely(!rq->sd)) { - power_orig += power_of(cpu); - power += power_of(cpu); + capacity_orig += capacity_of(cpu); + capacity += capacity_of(cpu); continue; } - sgp = rq->sd->groups->sgp; - power_orig += sgp->power_orig; - power += sgp->power; + sgc = rq->sd->groups->sgc; + capacity_orig += sgc->capacity_orig; + capacity += sgc->capacity; } } else { /* @@ -5395,14 +5794,14 @@ void update_group_power(struct sched_domain *sd, int cpu) group = child->groups; do { - power_orig += group->sgp->power_orig; - power += group->sgp->power; + capacity_orig += group->sgc->capacity_orig; + capacity += group->sgc->capacity; group = group->next; } while (group != child->groups); } - sdg->sgp->power_orig = power_orig; - sdg->sgp->power = power; + sdg->sgc->capacity_orig = capacity_orig; + sdg->sgc->capacity = capacity; } /* @@ -5416,15 +5815,15 @@ static inline int fix_small_capacity(struct sched_domain *sd, struct sched_group *group) { /* - * Only siblings can have significantly less than SCHED_POWER_SCALE + * Only siblings can have significantly less than SCHED_CAPACITY_SCALE */ - if (!(sd->flags & SD_SHARE_CPUPOWER)) + if (!(sd->flags & SD_SHARE_CPUCAPACITY)) return 0; /* - * If ~90% of the cpu_power is still there, we're good. + * If ~90% of the cpu_capacity is still there, we're good. */ - if (group->sgp->power * 32 > group->sgp->power_orig * 29) + if (group->sgc->capacity * 32 > group->sgc->capacity_orig * 29) return 1; return 0; @@ -5461,34 +5860,35 @@ fix_small_capacity(struct sched_domain *sd, struct sched_group *group) static inline int sg_imbalanced(struct sched_group *group) { - return group->sgp->imbalance; + return group->sgc->imbalance; } /* - * Compute the group capacity. + * Compute the group capacity factor. * - * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by + * Avoid the issue where N*frac(smt_capacity) >= 1 creates 'phantom' cores by * first dividing out the smt factor and computing the actual number of cores - * and limit power unit capacity with that. + * and limit unit capacity with that. */ -static inline int sg_capacity(struct lb_env *env, struct sched_group *group) +static inline int sg_capacity_factor(struct lb_env *env, struct sched_group *group) { - unsigned int capacity, smt, cpus; - unsigned int power, power_orig; + unsigned int capacity_factor, smt, cpus; + unsigned int capacity, capacity_orig; - power = group->sgp->power; - power_orig = group->sgp->power_orig; + capacity = group->sgc->capacity; + capacity_orig = group->sgc->capacity_orig; cpus = group->group_weight; - /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */ - smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig); - capacity = cpus / smt; /* cores */ + /* smt := ceil(cpus / capacity), assumes: 1 < smt_capacity < 2 */ + smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, capacity_orig); + capacity_factor = cpus / smt; /* cores */ - capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE)); - if (!capacity) - capacity = fix_small_capacity(env->sd, group); + capacity_factor = min_t(unsigned, + capacity_factor, DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE)); + if (!capacity_factor) + capacity_factor = fix_small_capacity(env->sd, group); - return capacity; + return capacity_factor; } /** @@ -5498,10 +5898,12 @@ static inline int sg_capacity(struct lb_env *env, struct sched_group *group) * @load_idx: Load index of sched_domain of this_cpu for load calc. * @local_group: Does group contain this_cpu. * @sgs: variable to hold the statistics for this group. + * @overload: Indicate more than one runnable task for any CPU. */ static inline void update_sg_lb_stats(struct lb_env *env, struct sched_group *group, int load_idx, - int local_group, struct sg_lb_stats *sgs) + int local_group, struct sg_lb_stats *sgs, + bool *overload) { unsigned long load; int i; @@ -5519,6 +5921,10 @@ static inline void update_sg_lb_stats(struct lb_env *env, sgs->group_load += load; sgs->sum_nr_running += rq->nr_running; + + if (rq->nr_running > 1) + *overload = true; + #ifdef CONFIG_NUMA_BALANCING sgs->nr_numa_running += rq->nr_numa_running; sgs->nr_preferred_running += rq->nr_preferred_running; @@ -5528,9 +5934,9 @@ static inline void update_sg_lb_stats(struct lb_env *env, sgs->idle_cpus++; } - /* Adjust by relative CPU power of the group */ - sgs->group_power = group->sgp->power; - sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power; + /* Adjust by relative CPU capacity of the group */ + sgs->group_capacity = group->sgc->capacity; + sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity; if (sgs->sum_nr_running) sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running; @@ -5538,10 +5944,10 @@ static inline void update_sg_lb_stats(struct lb_env *env, sgs->group_weight = group->group_weight; sgs->group_imb = sg_imbalanced(group); - sgs->group_capacity = sg_capacity(env, group); + sgs->group_capacity_factor = sg_capacity_factor(env, group); - if (sgs->group_capacity > sgs->sum_nr_running) - sgs->group_has_capacity = 1; + if (sgs->group_capacity_factor > sgs->sum_nr_running) + sgs->group_has_free_capacity = 1; } /** @@ -5565,7 +5971,7 @@ static bool update_sd_pick_busiest(struct lb_env *env, if (sgs->avg_load <= sds->busiest_stat.avg_load) return false; - if (sgs->sum_nr_running > sgs->group_capacity) + if (sgs->sum_nr_running > sgs->group_capacity_factor) return true; if (sgs->group_imb) @@ -5629,6 +6035,7 @@ static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sd struct sched_group *sg = env->sd->groups; struct sg_lb_stats tmp_sgs; int load_idx, prefer_sibling = 0; + bool overload = false; if (child && child->flags & SD_PREFER_SIBLING) prefer_sibling = 1; @@ -5645,28 +6052,29 @@ static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sd sgs = &sds->local_stat; if (env->idle != CPU_NEWLY_IDLE || - time_after_eq(jiffies, sg->sgp->next_update)) - update_group_power(env->sd, env->dst_cpu); + time_after_eq(jiffies, sg->sgc->next_update)) + update_group_capacity(env->sd, env->dst_cpu); } - update_sg_lb_stats(env, sg, load_idx, local_group, sgs); + update_sg_lb_stats(env, sg, load_idx, local_group, sgs, + &overload); if (local_group) goto next_group; /* * In case the child domain prefers tasks go to siblings - * first, lower the sg capacity to one so that we'll try + * first, lower the sg capacity factor to one so that we'll try * and move all the excess tasks away. We lower the capacity * of a group only if the local group has the capacity to fit - * these excess tasks, i.e. nr_running < group_capacity. The + * these excess tasks, i.e. nr_running < group_capacity_factor. The * extra check prevents the case where you always pull from the * heaviest group when it is already under-utilized (possible * with a large weight task outweighs the tasks on the system). */ if (prefer_sibling && sds->local && - sds->local_stat.group_has_capacity) - sgs->group_capacity = min(sgs->group_capacity, 1U); + sds->local_stat.group_has_free_capacity) + sgs->group_capacity_factor = min(sgs->group_capacity_factor, 1U); if (update_sd_pick_busiest(env, sds, sg, sgs)) { sds->busiest = sg; @@ -5676,13 +6084,20 @@ static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sd next_group: /* Now, start updating sd_lb_stats */ sds->total_load += sgs->group_load; - sds->total_pwr += sgs->group_power; + sds->total_capacity += sgs->group_capacity; sg = sg->next; } while (sg != env->sd->groups); if (env->sd->flags & SD_NUMA) env->fbq_type = fbq_classify_group(&sds->busiest_stat); + + if (!env->sd->parent) { + /* update overload indicator if we are at root domain */ + if (env->dst_rq->rd->overload != overload) + env->dst_rq->rd->overload = overload; + } + } /** @@ -5723,8 +6138,8 @@ static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds) return 0; env->imbalance = DIV_ROUND_CLOSEST( - sds->busiest_stat.avg_load * sds->busiest_stat.group_power, - SCHED_POWER_SCALE); + sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity, + SCHED_CAPACITY_SCALE); return 1; } @@ -5739,7 +6154,7 @@ static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds) static inline void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds) { - unsigned long tmp, pwr_now = 0, pwr_move = 0; + unsigned long tmp, capa_now = 0, capa_move = 0; unsigned int imbn = 2; unsigned long scaled_busy_load_per_task; struct sg_lb_stats *local, *busiest; @@ -5753,8 +6168,8 @@ void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds) imbn = 1; scaled_busy_load_per_task = - (busiest->load_per_task * SCHED_POWER_SCALE) / - busiest->group_power; + (busiest->load_per_task * SCHED_CAPACITY_SCALE) / + busiest->group_capacity; if (busiest->avg_load + scaled_busy_load_per_task >= local->avg_load + (scaled_busy_load_per_task * imbn)) { @@ -5764,40 +6179,38 @@ void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds) /* * OK, we don't have enough imbalance to justify moving tasks, - * however we may be able to increase total CPU power used by + * however we may be able to increase total CPU capacity used by * moving them. */ - pwr_now += busiest->group_power * + capa_now += busiest->group_capacity * min(busiest->load_per_task, busiest->avg_load); - pwr_now += local->group_power * + capa_now += local->group_capacity * min(local->load_per_task, local->avg_load); - pwr_now /= SCHED_POWER_SCALE; + capa_now /= SCHED_CAPACITY_SCALE; /* Amount of load we'd subtract */ - tmp = (busiest->load_per_task * SCHED_POWER_SCALE) / - busiest->group_power; - if (busiest->avg_load > tmp) { - pwr_move += busiest->group_power * + if (busiest->avg_load > scaled_busy_load_per_task) { + capa_move += busiest->group_capacity * min(busiest->load_per_task, - busiest->avg_load - tmp); + busiest->avg_load - scaled_busy_load_per_task); } /* Amount of load we'd add */ - if (busiest->avg_load * busiest->group_power < - busiest->load_per_task * SCHED_POWER_SCALE) { - tmp = (busiest->avg_load * busiest->group_power) / - local->group_power; + if (busiest->avg_load * busiest->group_capacity < + busiest->load_per_task * SCHED_CAPACITY_SCALE) { + tmp = (busiest->avg_load * busiest->group_capacity) / + local->group_capacity; } else { - tmp = (busiest->load_per_task * SCHED_POWER_SCALE) / - local->group_power; + tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) / + local->group_capacity; } - pwr_move += local->group_power * + capa_move += local->group_capacity * min(local->load_per_task, local->avg_load + tmp); - pwr_move /= SCHED_POWER_SCALE; + capa_move /= SCHED_CAPACITY_SCALE; /* Move if we gain throughput */ - if (pwr_move > pwr_now) + if (capa_move > capa_now) env->imbalance = busiest->load_per_task; } @@ -5827,7 +6240,7 @@ static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *s /* * In the presence of smp nice balancing, certain scenarios can have * max load less than avg load(as we skip the groups at or below - * its cpu_power, while calculating max_load..) + * its cpu_capacity, while calculating max_load..) */ if (busiest->avg_load <= sds->avg_load || local->avg_load >= sds->avg_load) { @@ -5842,10 +6255,10 @@ static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *s * have to drop below capacity to reach cpu-load equilibrium. */ load_above_capacity = - (busiest->sum_nr_running - busiest->group_capacity); + (busiest->sum_nr_running - busiest->group_capacity_factor); - load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE); - load_above_capacity /= busiest->group_power; + load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_CAPACITY_SCALE); + load_above_capacity /= busiest->group_capacity; } /* @@ -5860,9 +6273,9 @@ static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *s /* How much load to actually move to equalise the imbalance */ env->imbalance = min( - max_pull * busiest->group_power, - (sds->avg_load - local->avg_load) * local->group_power - ) / SCHED_POWER_SCALE; + max_pull * busiest->group_capacity, + (sds->avg_load - local->avg_load) * local->group_capacity + ) / SCHED_CAPACITY_SCALE; /* * if *imbalance is less than the average load per runnable task @@ -5916,7 +6329,8 @@ static struct sched_group *find_busiest_group(struct lb_env *env) if (!sds.busiest || busiest->sum_nr_running == 0) goto out_balanced; - sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr; + sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load) + / sds.total_capacity; /* * If the busiest group is imbalanced the below checks don't @@ -5927,8 +6341,8 @@ static struct sched_group *find_busiest_group(struct lb_env *env) goto force_balance; /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */ - if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity && - !busiest->group_has_capacity) + if (env->idle == CPU_NEWLY_IDLE && local->group_has_free_capacity && + !busiest->group_has_free_capacity) goto force_balance; /* @@ -5982,11 +6396,11 @@ static struct rq *find_busiest_queue(struct lb_env *env, struct sched_group *group) { struct rq *busiest = NULL, *rq; - unsigned long busiest_load = 0, busiest_power = 1; + unsigned long busiest_load = 0, busiest_capacity = 1; int i; for_each_cpu_and(i, sched_group_cpus(group), env->cpus) { - unsigned long power, capacity, wl; + unsigned long capacity, capacity_factor, wl; enum fbq_type rt; rq = cpu_rq(i); @@ -6014,34 +6428,34 @@ static struct rq *find_busiest_queue(struct lb_env *env, if (rt > env->fbq_type) continue; - power = power_of(i); - capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE); - if (!capacity) - capacity = fix_small_capacity(env->sd, group); + capacity = capacity_of(i); + capacity_factor = DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE); + if (!capacity_factor) + capacity_factor = fix_small_capacity(env->sd, group); wl = weighted_cpuload(i); /* * When comparing with imbalance, use weighted_cpuload() - * which is not scaled with the cpu power. + * which is not scaled with the cpu capacity. */ - if (capacity && rq->nr_running == 1 && wl > env->imbalance) + if (capacity_factor && rq->nr_running == 1 && wl > env->imbalance) continue; /* * For the load comparisons with the other cpu's, consider - * the weighted_cpuload() scaled with the cpu power, so that - * the load can be moved away from the cpu that is potentially - * running at a lower capacity. + * the weighted_cpuload() scaled with the cpu capacity, so + * that the load can be moved away from the cpu that is + * potentially running at a lower capacity. * - * Thus we're looking for max(wl_i / power_i), crosswise + * Thus we're looking for max(wl_i / capacity_i), crosswise * multiplication to rid ourselves of the division works out - * to: wl_i * power_j > wl_j * power_i; where j is our - * previous maximum. + * to: wl_i * capacity_j > wl_j * capacity_i; where j is + * our previous maximum. */ - if (wl * busiest_power > busiest_load * power) { + if (wl * busiest_capacity > busiest_load * capacity) { busiest_load = wl; - busiest_power = power; + busiest_capacity = capacity; busiest = rq; } } @@ -6249,7 +6663,7 @@ more_balance: * We failed to reach balance because of affinity. */ if (sd_parent) { - int *group_imbalance = &sd_parent->groups->sgp->imbalance; + int *group_imbalance = &sd_parent->groups->sgc->imbalance; if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) { *group_imbalance = 1; @@ -6355,21 +6769,63 @@ out: return ld_moved; } +static inline unsigned long +get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) +{ + unsigned long interval = sd->balance_interval; + + if (cpu_busy) + interval *= sd->busy_factor; + + /* scale ms to jiffies */ + interval = msecs_to_jiffies(interval); + interval = clamp(interval, 1UL, max_load_balance_interval); + + return interval; +} + +static inline void +update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance) +{ + unsigned long interval, next; + + interval = get_sd_balance_interval(sd, cpu_busy); + next = sd->last_balance + interval; + + if (time_after(*next_balance, next)) + *next_balance = next; +} + /* * idle_balance is called by schedule() if this_cpu is about to become * idle. Attempts to pull tasks from other CPUs. */ -void idle_balance(int this_cpu, struct rq *this_rq) +static int idle_balance(struct rq *this_rq) { + unsigned long next_balance = jiffies + HZ; + int this_cpu = this_rq->cpu; struct sched_domain *sd; int pulled_task = 0; - unsigned long next_balance = jiffies + HZ; u64 curr_cost = 0; + idle_enter_fair(this_rq); + + /* + * We must set idle_stamp _before_ calling idle_balance(), such that we + * measure the duration of idle_balance() as idle time. + */ this_rq->idle_stamp = rq_clock(this_rq); - if (this_rq->avg_idle < sysctl_sched_migration_cost) - return; + if (this_rq->avg_idle < sysctl_sched_migration_cost || + !this_rq->rd->overload) { + rcu_read_lock(); + sd = rcu_dereference_check_sched_domain(this_rq->sd); + if (sd) + update_next_balance(sd, 0, &next_balance); + rcu_read_unlock(); + + goto out; + } /* * Drop the rq->lock, but keep IRQ/preempt disabled. @@ -6379,20 +6835,20 @@ void idle_balance(int this_cpu, struct rq *this_rq) update_blocked_averages(this_cpu); rcu_read_lock(); for_each_domain(this_cpu, sd) { - unsigned long interval; int continue_balancing = 1; u64 t0, domain_cost; if (!(sd->flags & SD_LOAD_BALANCE)) continue; - if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) + if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) { + update_next_balance(sd, 0, &next_balance); break; + } if (sd->flags & SD_BALANCE_NEWIDLE) { t0 = sched_clock_cpu(this_cpu); - /* If we've pulled tasks over stop searching: */ pulled_task = load_balance(this_cpu, this_rq, sd, CPU_NEWLY_IDLE, &continue_balancing); @@ -6404,28 +6860,45 @@ void idle_balance(int this_cpu, struct rq *this_rq) curr_cost += domain_cost; } - interval = msecs_to_jiffies(sd->balance_interval); - if (time_after(next_balance, sd->last_balance + interval)) - next_balance = sd->last_balance + interval; - if (pulled_task) { - this_rq->idle_stamp = 0; + update_next_balance(sd, 0, &next_balance); + + /* + * Stop searching for tasks to pull if there are + * now runnable tasks on this rq. + */ + if (pulled_task || this_rq->nr_running > 0) break; - } } rcu_read_unlock(); raw_spin_lock(&this_rq->lock); - if (pulled_task || time_after(jiffies, this_rq->next_balance)) { - /* - * We are going idle. next_balance may be set based on - * a busy processor. So reset next_balance. - */ + if (curr_cost > this_rq->max_idle_balance_cost) + this_rq->max_idle_balance_cost = curr_cost; + + /* + * While browsing the domains, we released the rq lock, a task could + * have been enqueued in the meantime. Since we're not going idle, + * pretend we pulled a task. + */ + if (this_rq->cfs.h_nr_running && !pulled_task) + pulled_task = 1; + +out: + /* Move the next balance forward */ + if (time_after(this_rq->next_balance, next_balance)) this_rq->next_balance = next_balance; + + /* Is there a task of a high priority class? */ + if (this_rq->nr_running != this_rq->cfs.h_nr_running) + pulled_task = -1; + + if (pulled_task) { + idle_exit_fair(this_rq); + this_rq->idle_stamp = 0; } - if (curr_cost > this_rq->max_idle_balance_cost) - this_rq->max_idle_balance_cost = curr_cost; + return pulled_task; } /* @@ -6496,6 +6969,11 @@ out_unlock: return 0; } +static inline int on_null_domain(struct rq *rq) +{ + return unlikely(!rcu_dereference_sched(rq->sd)); +} + #ifdef CONFIG_NO_HZ_COMMON /* * idle load balancing details @@ -6550,8 +7028,13 @@ static void nohz_balancer_kick(void) static inline void nohz_balance_exit_idle(int cpu) { if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) { - cpumask_clear_cpu(cpu, nohz.idle_cpus_mask); - atomic_dec(&nohz.nr_cpus); + /* + * Completely isolated CPUs don't ever set, so we must test. + */ + if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) { + cpumask_clear_cpu(cpu, nohz.idle_cpus_mask); + atomic_dec(&nohz.nr_cpus); + } clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); } } @@ -6568,7 +7051,7 @@ static inline void set_cpu_sd_state_busy(void) goto unlock; sd->nohz_idle = 0; - atomic_inc(&sd->groups->sgp->nr_busy_cpus); + atomic_inc(&sd->groups->sgc->nr_busy_cpus); unlock: rcu_read_unlock(); } @@ -6585,7 +7068,7 @@ void set_cpu_sd_state_idle(void) goto unlock; sd->nohz_idle = 1; - atomic_dec(&sd->groups->sgp->nr_busy_cpus); + atomic_dec(&sd->groups->sgc->nr_busy_cpus); unlock: rcu_read_unlock(); } @@ -6605,6 +7088,12 @@ void nohz_balance_enter_idle(int cpu) if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu))) return; + /* + * If we're a completely isolated CPU, we don't play. + */ + if (on_null_domain(cpu_rq(cpu))) + return; + cpumask_set_cpu(cpu, nohz.idle_cpus_mask); atomic_inc(&nohz.nr_cpus); set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); @@ -6682,16 +7171,9 @@ static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) break; } - interval = sd->balance_interval; - if (idle != CPU_IDLE) - interval *= sd->busy_factor; - - /* scale ms to jiffies */ - interval = msecs_to_jiffies(interval); - interval = clamp(interval, 1UL, max_load_balance_interval); + interval = get_sd_balance_interval(sd, idle != CPU_IDLE); need_serialize = sd->flags & SD_SERIALIZE; - if (need_serialize) { if (!spin_trylock(&balancing)) goto out; @@ -6707,6 +7189,7 @@ static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; } sd->last_balance = jiffies; + interval = get_sd_balance_interval(sd, idle != CPU_IDLE); } if (need_serialize) spin_unlock(&balancing); @@ -6764,12 +7247,17 @@ static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) rq = cpu_rq(balance_cpu); - raw_spin_lock_irq(&rq->lock); - update_rq_clock(rq); - update_idle_cpu_load(rq); - raw_spin_unlock_irq(&rq->lock); - - rebalance_domains(rq, CPU_IDLE); + /* + * If time for next balance is due, + * do the balance. + */ + if (time_after_eq(jiffies, rq->next_balance)) { + raw_spin_lock_irq(&rq->lock); + update_rq_clock(rq); + update_idle_cpu_load(rq); + raw_spin_unlock_irq(&rq->lock); + rebalance_domains(rq, CPU_IDLE); + } if (time_after(this_rq->next_balance, rq->next_balance)) this_rq->next_balance = rq->next_balance; @@ -6784,7 +7272,7 @@ end: * of an idle cpu is the system. * - This rq has more than one task. * - At any scheduler domain level, this cpu's scheduler group has multiple - * busy cpu's exceeding the group's power. + * busy cpu's exceeding the group's capacity. * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler * domain span are idle. */ @@ -6792,7 +7280,7 @@ static inline int nohz_kick_needed(struct rq *rq) { unsigned long now = jiffies; struct sched_domain *sd; - struct sched_group_power *sgp; + struct sched_group_capacity *sgc; int nr_busy, cpu = rq->cpu; if (unlikely(rq->idle_balance)) @@ -6822,8 +7310,8 @@ static inline int nohz_kick_needed(struct rq *rq) sd = rcu_dereference(per_cpu(sd_busy, cpu)); if (sd) { - sgp = sd->groups->sgp; - nr_busy = atomic_read(&sgp->nr_busy_cpus); + sgc = sd->groups->sgc; + nr_busy = atomic_read(&sgc->nr_busy_cpus); if (nr_busy > 1) goto need_kick_unlock; @@ -6867,11 +7355,6 @@ static void run_rebalance_domains(struct softirq_action *h) nohz_idle_balance(this_rq, idle); } -static inline int on_null_domain(struct rq *rq) -{ - return !rcu_dereference_sched(rq->sd); -} - /* * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. */ @@ -6892,6 +7375,8 @@ void trigger_load_balance(struct rq *rq) static void rq_online_fair(struct rq *rq) { update_sysctl(); + + update_runtime_enabled(rq); } static void rq_offline_fair(struct rq *rq) @@ -6965,7 +7450,7 @@ static void task_fork_fair(struct task_struct *p) * 'current' within the tree based on its new key value. */ swap(curr->vruntime, se->vruntime); - resched_task(rq->curr); + resched_curr(rq); } se->vruntime -= cfs_rq->min_vruntime; @@ -6990,7 +7475,7 @@ prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) */ if (rq->curr == p) { if (p->prio > oldprio) - resched_task(rq->curr); + resched_curr(rq); } else check_preempt_curr(rq, p, 0); } @@ -7036,7 +7521,15 @@ static void switched_from_fair(struct rq *rq, struct task_struct *p) */ static void switched_to_fair(struct rq *rq, struct task_struct *p) { - if (!p->se.on_rq) + struct sched_entity *se = &p->se; +#ifdef CONFIG_FAIR_GROUP_SCHED + /* + * Since the real-depth could have been changed (only FAIR + * class maintain depth value), reset depth properly. + */ + se->depth = se->parent ? se->parent->depth + 1 : 0; +#endif + if (!se->on_rq) return; /* @@ -7045,7 +7538,7 @@ static void switched_to_fair(struct rq *rq, struct task_struct *p) * if we can still preempt the current task. */ if (rq->curr == p) - resched_task(rq->curr); + resched_curr(rq); else check_preempt_curr(rq, p, 0); } @@ -7084,7 +7577,9 @@ void init_cfs_rq(struct cfs_rq *cfs_rq) #ifdef CONFIG_FAIR_GROUP_SCHED static void task_move_group_fair(struct task_struct *p, int on_rq) { + struct sched_entity *se = &p->se; struct cfs_rq *cfs_rq; + /* * If the task was not on the rq at the time of this cgroup movement * it must have been asleep, sleeping tasks keep their ->vruntime @@ -7110,23 +7605,24 @@ static void task_move_group_fair(struct task_struct *p, int on_rq) * To prevent boost or penalty in the new cfs_rq caused by delta * min_vruntime between the two cfs_rqs, we skip vruntime adjustment. */ - if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING)) + if (!on_rq && (!se->sum_exec_runtime || p->state == TASK_WAKING)) on_rq = 1; if (!on_rq) - p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime; + se->vruntime -= cfs_rq_of(se)->min_vruntime; set_task_rq(p, task_cpu(p)); + se->depth = se->parent ? se->parent->depth + 1 : 0; if (!on_rq) { - cfs_rq = cfs_rq_of(&p->se); - p->se.vruntime += cfs_rq->min_vruntime; + cfs_rq = cfs_rq_of(se); + se->vruntime += cfs_rq->min_vruntime; #ifdef CONFIG_SMP /* * migrate_task_rq_fair() will have removed our previous * contribution, but we must synchronize for ongoing future * decay. */ - p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter); - cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib; + se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter); + cfs_rq->blocked_load_avg += se->avg.load_avg_contrib; #endif } } @@ -7222,10 +7718,13 @@ void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, if (!se) return; - if (!parent) + if (!parent) { se->cfs_rq = &rq->cfs; - else + se->depth = 0; + } else { se->cfs_rq = parent->my_q; + se->depth = parent->depth + 1; + } se->my_q = cfs_rq; /* guarantee group entities always have weight */ |