diff options
Diffstat (limited to 'include/linux/cgroup-defs.h')
-rw-r--r-- | include/linux/cgroup-defs.h | 501 |
1 files changed, 501 insertions, 0 deletions
diff --git a/include/linux/cgroup-defs.h b/include/linux/cgroup-defs.h new file mode 100644 index 000000000000..93755a629299 --- /dev/null +++ b/include/linux/cgroup-defs.h @@ -0,0 +1,501 @@ +/* + * linux/cgroup-defs.h - basic definitions for cgroup + * + * This file provides basic type and interface. Include this file directly + * only if necessary to avoid cyclic dependencies. + */ +#ifndef _LINUX_CGROUP_DEFS_H +#define _LINUX_CGROUP_DEFS_H + +#include <linux/limits.h> +#include <linux/list.h> +#include <linux/idr.h> +#include <linux/wait.h> +#include <linux/mutex.h> +#include <linux/rcupdate.h> +#include <linux/percpu-refcount.h> +#include <linux/percpu-rwsem.h> +#include <linux/workqueue.h> + +#ifdef CONFIG_CGROUPS + +struct cgroup; +struct cgroup_root; +struct cgroup_subsys; +struct cgroup_taskset; +struct kernfs_node; +struct kernfs_ops; +struct kernfs_open_file; +struct seq_file; + +#define MAX_CGROUP_TYPE_NAMELEN 32 +#define MAX_CGROUP_ROOT_NAMELEN 64 +#define MAX_CFTYPE_NAME 64 + +/* define the enumeration of all cgroup subsystems */ +#define SUBSYS(_x) _x ## _cgrp_id, +enum cgroup_subsys_id { +#include <linux/cgroup_subsys.h> + CGROUP_SUBSYS_COUNT, +}; +#undef SUBSYS + +/* bits in struct cgroup_subsys_state flags field */ +enum { + CSS_NO_REF = (1 << 0), /* no reference counting for this css */ + CSS_ONLINE = (1 << 1), /* between ->css_online() and ->css_offline() */ + CSS_RELEASED = (1 << 2), /* refcnt reached zero, released */ +}; + +/* bits in struct cgroup flags field */ +enum { + /* Control Group requires release notifications to userspace */ + CGRP_NOTIFY_ON_RELEASE, + /* + * Clone the parent's configuration when creating a new child + * cpuset cgroup. For historical reasons, this option can be + * specified at mount time and thus is implemented here. + */ + CGRP_CPUSET_CLONE_CHILDREN, +}; + +/* cgroup_root->flags */ +enum { + CGRP_ROOT_SANE_BEHAVIOR = (1 << 0), /* __DEVEL__sane_behavior specified */ + CGRP_ROOT_NOPREFIX = (1 << 1), /* mounted subsystems have no named prefix */ + CGRP_ROOT_XATTR = (1 << 2), /* supports extended attributes */ +}; + +/* cftype->flags */ +enum { + CFTYPE_ONLY_ON_ROOT = (1 << 0), /* only create on root cgrp */ + CFTYPE_NOT_ON_ROOT = (1 << 1), /* don't create on root cgrp */ + CFTYPE_NO_PREFIX = (1 << 3), /* (DON'T USE FOR NEW FILES) no subsys prefix */ + + /* internal flags, do not use outside cgroup core proper */ + __CFTYPE_ONLY_ON_DFL = (1 << 16), /* only on default hierarchy */ + __CFTYPE_NOT_ON_DFL = (1 << 17), /* not on default hierarchy */ +}; + +/* + * Per-subsystem/per-cgroup state maintained by the system. This is the + * fundamental structural building block that controllers deal with. + * + * Fields marked with "PI:" are public and immutable and may be accessed + * directly without synchronization. + */ +struct cgroup_subsys_state { + /* PI: the cgroup that this css is attached to */ + struct cgroup *cgroup; + + /* PI: the cgroup subsystem that this css is attached to */ + struct cgroup_subsys *ss; + + /* reference count - access via css_[try]get() and css_put() */ + struct percpu_ref refcnt; + + /* PI: the parent css */ + struct cgroup_subsys_state *parent; + + /* siblings list anchored at the parent's ->children */ + struct list_head sibling; + struct list_head children; + + /* + * PI: Subsys-unique ID. 0 is unused and root is always 1. The + * matching css can be looked up using css_from_id(). + */ + int id; + + unsigned int flags; + + /* + * Monotonically increasing unique serial number which defines a + * uniform order among all csses. It's guaranteed that all + * ->children lists are in the ascending order of ->serial_nr and + * used to allow interrupting and resuming iterations. + */ + u64 serial_nr; + + /* percpu_ref killing and RCU release */ + struct rcu_head rcu_head; + struct work_struct destroy_work; +}; + +/* + * A css_set is a structure holding pointers to a set of + * cgroup_subsys_state objects. This saves space in the task struct + * object and speeds up fork()/exit(), since a single inc/dec and a + * list_add()/del() can bump the reference count on the entire cgroup + * set for a task. + */ +struct css_set { + /* Reference count */ + atomic_t refcount; + + /* + * List running through all cgroup groups in the same hash + * slot. Protected by css_set_lock + */ + struct hlist_node hlist; + + /* + * Lists running through all tasks using this cgroup group. + * mg_tasks lists tasks which belong to this cset but are in the + * process of being migrated out or in. Protected by + * css_set_rwsem, but, during migration, once tasks are moved to + * mg_tasks, it can be read safely while holding cgroup_mutex. + */ + struct list_head tasks; + struct list_head mg_tasks; + + /* + * List of cgrp_cset_links pointing at cgroups referenced from this + * css_set. Protected by css_set_lock. + */ + struct list_head cgrp_links; + + /* the default cgroup associated with this css_set */ + struct cgroup *dfl_cgrp; + + /* + * Set of subsystem states, one for each subsystem. This array is + * immutable after creation apart from the init_css_set during + * subsystem registration (at boot time). + */ + struct cgroup_subsys_state *subsys[CGROUP_SUBSYS_COUNT]; + + /* + * List of csets participating in the on-going migration either as + * source or destination. Protected by cgroup_mutex. + */ + struct list_head mg_preload_node; + struct list_head mg_node; + + /* + * If this cset is acting as the source of migration the following + * two fields are set. mg_src_cgrp is the source cgroup of the + * on-going migration and mg_dst_cset is the destination cset the + * target tasks on this cset should be migrated to. Protected by + * cgroup_mutex. + */ + struct cgroup *mg_src_cgrp; + struct css_set *mg_dst_cset; + + /* + * On the default hierarhcy, ->subsys[ssid] may point to a css + * attached to an ancestor instead of the cgroup this css_set is + * associated with. The following node is anchored at + * ->subsys[ssid]->cgroup->e_csets[ssid] and provides a way to + * iterate through all css's attached to a given cgroup. + */ + struct list_head e_cset_node[CGROUP_SUBSYS_COUNT]; + + /* For RCU-protected deletion */ + struct rcu_head rcu_head; +}; + +struct cgroup { + /* self css with NULL ->ss, points back to this cgroup */ + struct cgroup_subsys_state self; + + unsigned long flags; /* "unsigned long" so bitops work */ + + /* + * idr allocated in-hierarchy ID. + * + * ID 0 is not used, the ID of the root cgroup is always 1, and a + * new cgroup will be assigned with a smallest available ID. + * + * Allocating/Removing ID must be protected by cgroup_mutex. + */ + int id; + + /* + * If this cgroup contains any tasks, it contributes one to + * populated_cnt. All children with non-zero popuplated_cnt of + * their own contribute one. The count is zero iff there's no task + * in this cgroup or its subtree. + */ + int populated_cnt; + + struct kernfs_node *kn; /* cgroup kernfs entry */ + struct kernfs_node *procs_kn; /* kn for "cgroup.procs" */ + struct kernfs_node *populated_kn; /* kn for "cgroup.subtree_populated" */ + + /* + * The bitmask of subsystems enabled on the child cgroups. + * ->subtree_control is the one configured through + * "cgroup.subtree_control" while ->child_subsys_mask is the + * effective one which may have more subsystems enabled. + * Controller knobs are made available iff it's enabled in + * ->subtree_control. + */ + unsigned int subtree_control; + unsigned int child_subsys_mask; + + /* Private pointers for each registered subsystem */ + struct cgroup_subsys_state __rcu *subsys[CGROUP_SUBSYS_COUNT]; + + struct cgroup_root *root; + + /* + * List of cgrp_cset_links pointing at css_sets with tasks in this + * cgroup. Protected by css_set_lock. + */ + struct list_head cset_links; + + /* + * On the default hierarchy, a css_set for a cgroup with some + * susbsys disabled will point to css's which are associated with + * the closest ancestor which has the subsys enabled. The + * following lists all css_sets which point to this cgroup's css + * for the given subsystem. + */ + struct list_head e_csets[CGROUP_SUBSYS_COUNT]; + + /* + * list of pidlists, up to two for each namespace (one for procs, one + * for tasks); created on demand. + */ + struct list_head pidlists; + struct mutex pidlist_mutex; + + /* used to wait for offlining of csses */ + wait_queue_head_t offline_waitq; + + /* used to schedule release agent */ + struct work_struct release_agent_work; +}; + +/* + * A cgroup_root represents the root of a cgroup hierarchy, and may be + * associated with a kernfs_root to form an active hierarchy. This is + * internal to cgroup core. Don't access directly from controllers. + */ +struct cgroup_root { + struct kernfs_root *kf_root; + + /* The bitmask of subsystems attached to this hierarchy */ + unsigned int subsys_mask; + + /* Unique id for this hierarchy. */ + int hierarchy_id; + + /* The root cgroup. Root is destroyed on its release. */ + struct cgroup cgrp; + + /* Number of cgroups in the hierarchy, used only for /proc/cgroups */ + atomic_t nr_cgrps; + + /* A list running through the active hierarchies */ + struct list_head root_list; + + /* Hierarchy-specific flags */ + unsigned int flags; + + /* IDs for cgroups in this hierarchy */ + struct idr cgroup_idr; + + /* The path to use for release notifications. */ + char release_agent_path[PATH_MAX]; + + /* The name for this hierarchy - may be empty */ + char name[MAX_CGROUP_ROOT_NAMELEN]; +}; + +/* + * struct cftype: handler definitions for cgroup control files + * + * When reading/writing to a file: + * - the cgroup to use is file->f_path.dentry->d_parent->d_fsdata + * - the 'cftype' of the file is file->f_path.dentry->d_fsdata + */ +struct cftype { + /* + * By convention, the name should begin with the name of the + * subsystem, followed by a period. Zero length string indicates + * end of cftype array. + */ + char name[MAX_CFTYPE_NAME]; + int private; + /* + * If not 0, file mode is set to this value, otherwise it will + * be figured out automatically + */ + umode_t mode; + + /* + * The maximum length of string, excluding trailing nul, that can + * be passed to write. If < PAGE_SIZE-1, PAGE_SIZE-1 is assumed. + */ + size_t max_write_len; + + /* CFTYPE_* flags */ + unsigned int flags; + + /* + * Fields used for internal bookkeeping. Initialized automatically + * during registration. + */ + struct cgroup_subsys *ss; /* NULL for cgroup core files */ + struct list_head node; /* anchored at ss->cfts */ + struct kernfs_ops *kf_ops; + + /* + * read_u64() is a shortcut for the common case of returning a + * single integer. Use it in place of read() + */ + u64 (*read_u64)(struct cgroup_subsys_state *css, struct cftype *cft); + /* + * read_s64() is a signed version of read_u64() + */ + s64 (*read_s64)(struct cgroup_subsys_state *css, struct cftype *cft); + + /* generic seq_file read interface */ + int (*seq_show)(struct seq_file *sf, void *v); + + /* optional ops, implement all or none */ + void *(*seq_start)(struct seq_file *sf, loff_t *ppos); + void *(*seq_next)(struct seq_file *sf, void *v, loff_t *ppos); + void (*seq_stop)(struct seq_file *sf, void *v); + + /* + * write_u64() is a shortcut for the common case of accepting + * a single integer (as parsed by simple_strtoull) from + * userspace. Use in place of write(); return 0 or error. + */ + int (*write_u64)(struct cgroup_subsys_state *css, struct cftype *cft, + u64 val); + /* + * write_s64() is a signed version of write_u64() + */ + int (*write_s64)(struct cgroup_subsys_state *css, struct cftype *cft, + s64 val); + + /* + * write() is the generic write callback which maps directly to + * kernfs write operation and overrides all other operations. + * Maximum write size is determined by ->max_write_len. Use + * of_css/cft() to access the associated css and cft. + */ + ssize_t (*write)(struct kernfs_open_file *of, + char *buf, size_t nbytes, loff_t off); + +#ifdef CONFIG_DEBUG_LOCK_ALLOC + struct lock_class_key lockdep_key; +#endif +}; + +/* + * Control Group subsystem type. + * See Documentation/cgroups/cgroups.txt for details + */ +struct cgroup_subsys { + struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state *parent_css); + int (*css_online)(struct cgroup_subsys_state *css); + void (*css_offline)(struct cgroup_subsys_state *css); + void (*css_released)(struct cgroup_subsys_state *css); + void (*css_free)(struct cgroup_subsys_state *css); + void (*css_reset)(struct cgroup_subsys_state *css); + void (*css_e_css_changed)(struct cgroup_subsys_state *css); + + int (*can_attach)(struct cgroup_subsys_state *css, + struct cgroup_taskset *tset); + void (*cancel_attach)(struct cgroup_subsys_state *css, + struct cgroup_taskset *tset); + void (*attach)(struct cgroup_subsys_state *css, + struct cgroup_taskset *tset); + void (*fork)(struct task_struct *task); + void (*exit)(struct cgroup_subsys_state *css, + struct cgroup_subsys_state *old_css, + struct task_struct *task); + void (*bind)(struct cgroup_subsys_state *root_css); + + int disabled; + int early_init; + + /* + * If %false, this subsystem is properly hierarchical - + * configuration, resource accounting and restriction on a parent + * cgroup cover those of its children. If %true, hierarchy support + * is broken in some ways - some subsystems ignore hierarchy + * completely while others are only implemented half-way. + * + * It's now disallowed to create nested cgroups if the subsystem is + * broken and cgroup core will emit a warning message on such + * cases. Eventually, all subsystems will be made properly + * hierarchical and this will go away. + */ + bool broken_hierarchy; + bool warned_broken_hierarchy; + + /* the following two fields are initialized automtically during boot */ + int id; + const char *name; + + /* link to parent, protected by cgroup_lock() */ + struct cgroup_root *root; + + /* idr for css->id */ + struct idr css_idr; + + /* + * List of cftypes. Each entry is the first entry of an array + * terminated by zero length name. + */ + struct list_head cfts; + + /* + * Base cftypes which are automatically registered. The two can + * point to the same array. + */ + struct cftype *dfl_cftypes; /* for the default hierarchy */ + struct cftype *legacy_cftypes; /* for the legacy hierarchies */ + + /* + * A subsystem may depend on other subsystems. When such subsystem + * is enabled on a cgroup, the depended-upon subsystems are enabled + * together if available. Subsystems enabled due to dependency are + * not visible to userland until explicitly enabled. The following + * specifies the mask of subsystems that this one depends on. + */ + unsigned int depends_on; +}; + +extern struct percpu_rw_semaphore cgroup_threadgroup_rwsem; + +/** + * cgroup_threadgroup_change_begin - threadgroup exclusion for cgroups + * @tsk: target task + * + * Called from threadgroup_change_begin() and allows cgroup operations to + * synchronize against threadgroup changes using a percpu_rw_semaphore. + */ +static inline void cgroup_threadgroup_change_begin(struct task_struct *tsk) +{ + percpu_down_read(&cgroup_threadgroup_rwsem); +} + +/** + * cgroup_threadgroup_change_end - threadgroup exclusion for cgroups + * @tsk: target task + * + * Called from threadgroup_change_end(). Counterpart of + * cgroup_threadcgroup_change_begin(). + */ +static inline void cgroup_threadgroup_change_end(struct task_struct *tsk) +{ + percpu_up_read(&cgroup_threadgroup_rwsem); +} + +#else /* CONFIG_CGROUPS */ + +#define CGROUP_SUBSYS_COUNT 0 + +static inline void cgroup_threadgroup_change_begin(struct task_struct *tsk) {} +static inline void cgroup_threadgroup_change_end(struct task_struct *tsk) {} + +#endif /* CONFIG_CGROUPS */ + +#endif /* _LINUX_CGROUP_DEFS_H */ |