summaryrefslogtreecommitdiff
path: root/fs/ext4/mballoc.c
diff options
context:
space:
mode:
Diffstat (limited to 'fs/ext4/mballoc.c')
-rw-r--r--fs/ext4/mballoc.c603
1 files changed, 571 insertions, 32 deletions
diff --git a/fs/ext4/mballoc.c b/fs/ext4/mballoc.c
index 99bf091fee10..3239e6669e84 100644
--- a/fs/ext4/mballoc.c
+++ b/fs/ext4/mballoc.c
@@ -127,11 +127,50 @@
* smallest multiple of the stripe value (sbi->s_stripe) which is
* greater than the default mb_group_prealloc.
*
+ * If "mb_optimize_scan" mount option is set, we maintain in memory group info
+ * structures in two data structures:
+ *
+ * 1) Array of largest free order lists (sbi->s_mb_largest_free_orders)
+ *
+ * Locking: sbi->s_mb_largest_free_orders_locks(array of rw locks)
+ *
+ * This is an array of lists where the index in the array represents the
+ * largest free order in the buddy bitmap of the participating group infos of
+ * that list. So, there are exactly MB_NUM_ORDERS(sb) (which means total
+ * number of buddy bitmap orders possible) number of lists. Group-infos are
+ * placed in appropriate lists.
+ *
+ * 2) Average fragment size rb tree (sbi->s_mb_avg_fragment_size_root)
+ *
+ * Locking: sbi->s_mb_rb_lock (rwlock)
+ *
+ * This is a red black tree consisting of group infos and the tree is sorted
+ * by average fragment sizes (which is calculated as ext4_group_info->bb_free
+ * / ext4_group_info->bb_fragments).
+ *
+ * When "mb_optimize_scan" mount option is set, mballoc consults the above data
+ * structures to decide the order in which groups are to be traversed for
+ * fulfilling an allocation request.
+ *
+ * At CR = 0, we look for groups which have the largest_free_order >= the order
+ * of the request. We directly look at the largest free order list in the data
+ * structure (1) above where largest_free_order = order of the request. If that
+ * list is empty, we look at remaining list in the increasing order of
+ * largest_free_order. This allows us to perform CR = 0 lookup in O(1) time.
+ *
+ * At CR = 1, we only consider groups where average fragment size > request
+ * size. So, we lookup a group which has average fragment size just above or
+ * equal to request size using our rb tree (data structure 2) in O(log N) time.
+ *
+ * If "mb_optimize_scan" mount option is not set, mballoc traverses groups in
+ * linear order which requires O(N) search time for each CR 0 and CR 1 phase.
+ *
* The regular allocator (using the buddy cache) supports a few tunables.
*
* /sys/fs/ext4/<partition>/mb_min_to_scan
* /sys/fs/ext4/<partition>/mb_max_to_scan
* /sys/fs/ext4/<partition>/mb_order2_req
+ * /sys/fs/ext4/<partition>/mb_linear_limit
*
* The regular allocator uses buddy scan only if the request len is power of
* 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
@@ -149,6 +188,16 @@
* can be used for allocation. ext4_mb_good_group explains how the groups are
* checked.
*
+ * When "mb_optimize_scan" is turned on, as mentioned above, the groups may not
+ * get traversed linearly. That may result in subsequent allocations being not
+ * close to each other. And so, the underlying device may get filled up in a
+ * non-linear fashion. While that may not matter on non-rotational devices, for
+ * rotational devices that may result in higher seek times. "mb_linear_limit"
+ * tells mballoc how many groups mballoc should search linearly before
+ * performing consulting above data structures for more efficient lookups. For
+ * non rotational devices, this value defaults to 0 and for rotational devices
+ * this is set to MB_DEFAULT_LINEAR_LIMIT.
+ *
* Both the prealloc space are getting populated as above. So for the first
* request we will hit the buddy cache which will result in this prealloc
* space getting filled. The prealloc space is then later used for the
@@ -299,6 +348,8 @@
* - bitlock on a group (group)
* - object (inode/locality) (object)
* - per-pa lock (pa)
+ * - cr0 lists lock (cr0)
+ * - cr1 tree lock (cr1)
*
* Paths:
* - new pa
@@ -328,6 +379,9 @@
* group
* object
*
+ * - allocation path (ext4_mb_regular_allocator)
+ * group
+ * cr0/cr1
*/
static struct kmem_cache *ext4_pspace_cachep;
static struct kmem_cache *ext4_ac_cachep;
@@ -351,6 +405,9 @@ static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
ext4_group_t group);
static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac);
+static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
+ ext4_group_t group, int cr);
+
/*
* The algorithm using this percpu seq counter goes below:
* 1. We sample the percpu discard_pa_seq counter before trying for block
@@ -744,6 +801,269 @@ static void ext4_mb_mark_free_simple(struct super_block *sb,
}
}
+static void ext4_mb_rb_insert(struct rb_root *root, struct rb_node *new,
+ int (*cmp)(struct rb_node *, struct rb_node *))
+{
+ struct rb_node **iter = &root->rb_node, *parent = NULL;
+
+ while (*iter) {
+ parent = *iter;
+ if (cmp(new, *iter) > 0)
+ iter = &((*iter)->rb_left);
+ else
+ iter = &((*iter)->rb_right);
+ }
+
+ rb_link_node(new, parent, iter);
+ rb_insert_color(new, root);
+}
+
+static int
+ext4_mb_avg_fragment_size_cmp(struct rb_node *rb1, struct rb_node *rb2)
+{
+ struct ext4_group_info *grp1 = rb_entry(rb1,
+ struct ext4_group_info,
+ bb_avg_fragment_size_rb);
+ struct ext4_group_info *grp2 = rb_entry(rb2,
+ struct ext4_group_info,
+ bb_avg_fragment_size_rb);
+ int num_frags_1, num_frags_2;
+
+ num_frags_1 = grp1->bb_fragments ?
+ grp1->bb_free / grp1->bb_fragments : 0;
+ num_frags_2 = grp2->bb_fragments ?
+ grp2->bb_free / grp2->bb_fragments : 0;
+
+ return (num_frags_2 - num_frags_1);
+}
+
+/*
+ * Reinsert grpinfo into the avg_fragment_size tree with new average
+ * fragment size.
+ */
+static void
+mb_update_avg_fragment_size(struct super_block *sb, struct ext4_group_info *grp)
+{
+ struct ext4_sb_info *sbi = EXT4_SB(sb);
+
+ if (!test_opt2(sb, MB_OPTIMIZE_SCAN) || grp->bb_free == 0)
+ return;
+
+ write_lock(&sbi->s_mb_rb_lock);
+ if (!RB_EMPTY_NODE(&grp->bb_avg_fragment_size_rb)) {
+ rb_erase(&grp->bb_avg_fragment_size_rb,
+ &sbi->s_mb_avg_fragment_size_root);
+ RB_CLEAR_NODE(&grp->bb_avg_fragment_size_rb);
+ }
+
+ ext4_mb_rb_insert(&sbi->s_mb_avg_fragment_size_root,
+ &grp->bb_avg_fragment_size_rb,
+ ext4_mb_avg_fragment_size_cmp);
+ write_unlock(&sbi->s_mb_rb_lock);
+}
+
+/*
+ * Choose next group by traversing largest_free_order lists. Updates *new_cr if
+ * cr level needs an update.
+ */
+static void ext4_mb_choose_next_group_cr0(struct ext4_allocation_context *ac,
+ int *new_cr, ext4_group_t *group, ext4_group_t ngroups)
+{
+ struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
+ struct ext4_group_info *iter, *grp;
+ int i;
+
+ if (ac->ac_status == AC_STATUS_FOUND)
+ return;
+
+ if (unlikely(sbi->s_mb_stats && ac->ac_flags & EXT4_MB_CR0_OPTIMIZED))
+ atomic_inc(&sbi->s_bal_cr0_bad_suggestions);
+
+ grp = NULL;
+ for (i = ac->ac_2order; i < MB_NUM_ORDERS(ac->ac_sb); i++) {
+ if (list_empty(&sbi->s_mb_largest_free_orders[i]))
+ continue;
+ read_lock(&sbi->s_mb_largest_free_orders_locks[i]);
+ if (list_empty(&sbi->s_mb_largest_free_orders[i])) {
+ read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
+ continue;
+ }
+ grp = NULL;
+ list_for_each_entry(iter, &sbi->s_mb_largest_free_orders[i],
+ bb_largest_free_order_node) {
+ if (sbi->s_mb_stats)
+ atomic64_inc(&sbi->s_bal_cX_groups_considered[0]);
+ if (likely(ext4_mb_good_group(ac, iter->bb_group, 0))) {
+ grp = iter;
+ break;
+ }
+ }
+ read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
+ if (grp)
+ break;
+ }
+
+ if (!grp) {
+ /* Increment cr and search again */
+ *new_cr = 1;
+ } else {
+ *group = grp->bb_group;
+ ac->ac_last_optimal_group = *group;
+ ac->ac_flags |= EXT4_MB_CR0_OPTIMIZED;
+ }
+}
+
+/*
+ * Choose next group by traversing average fragment size tree. Updates *new_cr
+ * if cr lvel needs an update. Sets EXT4_MB_SEARCH_NEXT_LINEAR to indicate that
+ * the linear search should continue for one iteration since there's lock
+ * contention on the rb tree lock.
+ */
+static void ext4_mb_choose_next_group_cr1(struct ext4_allocation_context *ac,
+ int *new_cr, ext4_group_t *group, ext4_group_t ngroups)
+{
+ struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
+ int avg_fragment_size, best_so_far;
+ struct rb_node *node, *found;
+ struct ext4_group_info *grp;
+
+ /*
+ * If there is contention on the lock, instead of waiting for the lock
+ * to become available, just continue searching lineraly. We'll resume
+ * our rb tree search later starting at ac->ac_last_optimal_group.
+ */
+ if (!read_trylock(&sbi->s_mb_rb_lock)) {
+ ac->ac_flags |= EXT4_MB_SEARCH_NEXT_LINEAR;
+ return;
+ }
+
+ if (unlikely(ac->ac_flags & EXT4_MB_CR1_OPTIMIZED)) {
+ if (sbi->s_mb_stats)
+ atomic_inc(&sbi->s_bal_cr1_bad_suggestions);
+ /* We have found something at CR 1 in the past */
+ grp = ext4_get_group_info(ac->ac_sb, ac->ac_last_optimal_group);
+ for (found = rb_next(&grp->bb_avg_fragment_size_rb); found != NULL;
+ found = rb_next(found)) {
+ grp = rb_entry(found, struct ext4_group_info,
+ bb_avg_fragment_size_rb);
+ if (sbi->s_mb_stats)
+ atomic64_inc(&sbi->s_bal_cX_groups_considered[1]);
+ if (likely(ext4_mb_good_group(ac, grp->bb_group, 1)))
+ break;
+ }
+ goto done;
+ }
+
+ node = sbi->s_mb_avg_fragment_size_root.rb_node;
+ best_so_far = 0;
+ found = NULL;
+
+ while (node) {
+ grp = rb_entry(node, struct ext4_group_info,
+ bb_avg_fragment_size_rb);
+ avg_fragment_size = 0;
+ if (ext4_mb_good_group(ac, grp->bb_group, 1)) {
+ avg_fragment_size = grp->bb_fragments ?
+ grp->bb_free / grp->bb_fragments : 0;
+ if (!best_so_far || avg_fragment_size < best_so_far) {
+ best_so_far = avg_fragment_size;
+ found = node;
+ }
+ }
+ if (avg_fragment_size > ac->ac_g_ex.fe_len)
+ node = node->rb_right;
+ else
+ node = node->rb_left;
+ }
+
+done:
+ if (found) {
+ grp = rb_entry(found, struct ext4_group_info,
+ bb_avg_fragment_size_rb);
+ *group = grp->bb_group;
+ ac->ac_flags |= EXT4_MB_CR1_OPTIMIZED;
+ } else {
+ *new_cr = 2;
+ }
+
+ read_unlock(&sbi->s_mb_rb_lock);
+ ac->ac_last_optimal_group = *group;
+}
+
+static inline int should_optimize_scan(struct ext4_allocation_context *ac)
+{
+ if (unlikely(!test_opt2(ac->ac_sb, MB_OPTIMIZE_SCAN)))
+ return 0;
+ if (ac->ac_criteria >= 2)
+ return 0;
+ if (ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))
+ return 0;
+ return 1;
+}
+
+/*
+ * Return next linear group for allocation. If linear traversal should not be
+ * performed, this function just returns the same group
+ */
+static int
+next_linear_group(struct ext4_allocation_context *ac, int group, int ngroups)
+{
+ if (!should_optimize_scan(ac))
+ goto inc_and_return;
+
+ if (ac->ac_groups_linear_remaining) {
+ ac->ac_groups_linear_remaining--;
+ goto inc_and_return;
+ }
+
+ if (ac->ac_flags & EXT4_MB_SEARCH_NEXT_LINEAR) {
+ ac->ac_flags &= ~EXT4_MB_SEARCH_NEXT_LINEAR;
+ goto inc_and_return;
+ }
+
+ return group;
+inc_and_return:
+ /*
+ * Artificially restricted ngroups for non-extent
+ * files makes group > ngroups possible on first loop.
+ */
+ return group + 1 >= ngroups ? 0 : group + 1;
+}
+
+/*
+ * ext4_mb_choose_next_group: choose next group for allocation.
+ *
+ * @ac Allocation Context
+ * @new_cr This is an output parameter. If the there is no good group
+ * available at current CR level, this field is updated to indicate
+ * the new cr level that should be used.
+ * @group This is an input / output parameter. As an input it indicates the
+ * next group that the allocator intends to use for allocation. As
+ * output, this field indicates the next group that should be used as
+ * determined by the optimization functions.
+ * @ngroups Total number of groups
+ */
+static void ext4_mb_choose_next_group(struct ext4_allocation_context *ac,
+ int *new_cr, ext4_group_t *group, ext4_group_t ngroups)
+{
+ *new_cr = ac->ac_criteria;
+
+ if (!should_optimize_scan(ac) || ac->ac_groups_linear_remaining)
+ return;
+
+ if (*new_cr == 0) {
+ ext4_mb_choose_next_group_cr0(ac, new_cr, group, ngroups);
+ } else if (*new_cr == 1) {
+ ext4_mb_choose_next_group_cr1(ac, new_cr, group, ngroups);
+ } else {
+ /*
+ * TODO: For CR=2, we can arrange groups in an rb tree sorted by
+ * bb_free. But until that happens, we should never come here.
+ */
+ WARN_ON(1);
+ }
+}
+
/*
* Cache the order of the largest free extent we have available in this block
* group.
@@ -751,18 +1071,33 @@ static void ext4_mb_mark_free_simple(struct super_block *sb,
static void
mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
{
+ struct ext4_sb_info *sbi = EXT4_SB(sb);
int i;
- int bits;
+ if (test_opt2(sb, MB_OPTIMIZE_SCAN) && grp->bb_largest_free_order >= 0) {
+ write_lock(&sbi->s_mb_largest_free_orders_locks[
+ grp->bb_largest_free_order]);
+ list_del_init(&grp->bb_largest_free_order_node);
+ write_unlock(&sbi->s_mb_largest_free_orders_locks[
+ grp->bb_largest_free_order]);
+ }
grp->bb_largest_free_order = -1; /* uninit */
- bits = sb->s_blocksize_bits + 1;
- for (i = bits; i >= 0; i--) {
+ for (i = MB_NUM_ORDERS(sb) - 1; i >= 0; i--) {
if (grp->bb_counters[i] > 0) {
grp->bb_largest_free_order = i;
break;
}
}
+ if (test_opt2(sb, MB_OPTIMIZE_SCAN) &&
+ grp->bb_largest_free_order >= 0 && grp->bb_free) {
+ write_lock(&sbi->s_mb_largest_free_orders_locks[
+ grp->bb_largest_free_order]);
+ list_add_tail(&grp->bb_largest_free_order_node,
+ &sbi->s_mb_largest_free_orders[grp->bb_largest_free_order]);
+ write_unlock(&sbi->s_mb_largest_free_orders_locks[
+ grp->bb_largest_free_order]);
+ }
}
static noinline_for_stack
@@ -816,10 +1151,9 @@ void ext4_mb_generate_buddy(struct super_block *sb,
clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
period = get_cycles() - period;
- spin_lock(&sbi->s_bal_lock);
- sbi->s_mb_buddies_generated++;
- sbi->s_mb_generation_time += period;
- spin_unlock(&sbi->s_bal_lock);
+ atomic_inc(&sbi->s_mb_buddies_generated);
+ atomic64_add(period, &sbi->s_mb_generation_time);
+ mb_update_avg_fragment_size(sb, grp);
}
/* The buddy information is attached the buddy cache inode
@@ -959,7 +1293,7 @@ static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp)
grinfo->bb_fragments = 0;
memset(grinfo->bb_counters, 0,
sizeof(*grinfo->bb_counters) *
- (sb->s_blocksize_bits+2));
+ (MB_NUM_ORDERS(sb)));
/*
* incore got set to the group block bitmap below
*/
@@ -1519,6 +1853,7 @@ static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
done:
mb_set_largest_free_order(sb, e4b->bd_info);
+ mb_update_avg_fragment_size(sb, e4b->bd_info);
mb_check_buddy(e4b);
}
@@ -1655,6 +1990,7 @@ static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
}
mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
+ mb_update_avg_fragment_size(e4b->bd_sb, e4b->bd_info);
ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
mb_check_buddy(e4b);
@@ -1930,7 +2266,7 @@ void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
int max;
BUG_ON(ac->ac_2order <= 0);
- for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
+ for (i = ac->ac_2order; i < MB_NUM_ORDERS(sb); i++) {
if (grp->bb_counters[i] == 0)
continue;
@@ -2109,7 +2445,7 @@ static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
if (free < ac->ac_g_ex.fe_len)
return false;
- if (ac->ac_2order > ac->ac_sb->s_blocksize_bits+1)
+ if (ac->ac_2order >= MB_NUM_ORDERS(ac->ac_sb))
return true;
if (grp->bb_largest_free_order < ac->ac_2order)
@@ -2148,6 +2484,8 @@ static int ext4_mb_good_group_nolock(struct ext4_allocation_context *ac,
ext4_grpblk_t free;
int ret = 0;
+ if (sbi->s_mb_stats)
+ atomic64_inc(&sbi->s_bal_cX_groups_considered[ac->ac_criteria]);
if (should_lock)
ext4_lock_group(sb, group);
free = grp->bb_free;
@@ -2315,13 +2653,13 @@ ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
* We also support searching for power-of-two requests only for
* requests upto maximum buddy size we have constructed.
*/
- if (i >= sbi->s_mb_order2_reqs && i <= sb->s_blocksize_bits + 2) {
+ if (i >= sbi->s_mb_order2_reqs && i <= MB_NUM_ORDERS(sb)) {
/*
* This should tell if fe_len is exactly power of 2
*/
if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
ac->ac_2order = array_index_nospec(i - 1,
- sb->s_blocksize_bits + 2);
+ MB_NUM_ORDERS(sb));
}
/* if stream allocation is enabled, use global goal */
@@ -2347,17 +2685,21 @@ repeat:
* from the goal value specified
*/
group = ac->ac_g_ex.fe_group;
+ ac->ac_last_optimal_group = group;
+ ac->ac_groups_linear_remaining = sbi->s_mb_max_linear_groups;
prefetch_grp = group;
- for (i = 0; i < ngroups; group++, i++) {
- int ret = 0;
+ for (i = 0; i < ngroups; group = next_linear_group(ac, group, ngroups),
+ i++) {
+ int ret = 0, new_cr;
+
cond_resched();
- /*
- * Artificially restricted ngroups for non-extent
- * files makes group > ngroups possible on first loop.
- */
- if (group >= ngroups)
- group = 0;
+
+ ext4_mb_choose_next_group(ac, &new_cr, &group, ngroups);
+ if (new_cr != cr) {
+ cr = new_cr;
+ goto repeat;
+ }
/*
* Batch reads of the block allocation bitmaps
@@ -2422,6 +2764,9 @@ repeat:
if (ac->ac_status != AC_STATUS_CONTINUE)
break;
}
+ /* Processed all groups and haven't found blocks */
+ if (sbi->s_mb_stats && i == ngroups)
+ atomic64_inc(&sbi->s_bal_cX_failed[cr]);
}
if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
@@ -2451,6 +2796,9 @@ repeat:
goto repeat;
}
}
+
+ if (sbi->s_mb_stats && ac->ac_status == AC_STATUS_FOUND)
+ atomic64_inc(&sbi->s_bal_cX_hits[ac->ac_criteria]);
out:
if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
err = first_err;
@@ -2550,6 +2898,157 @@ const struct seq_operations ext4_mb_seq_groups_ops = {
.show = ext4_mb_seq_groups_show,
};
+int ext4_seq_mb_stats_show(struct seq_file *seq, void *offset)
+{
+ struct super_block *sb = (struct super_block *)seq->private;
+ struct ext4_sb_info *sbi = EXT4_SB(sb);
+
+ seq_puts(seq, "mballoc:\n");
+ if (!sbi->s_mb_stats) {
+ seq_puts(seq, "\tmb stats collection turned off.\n");
+ seq_puts(seq, "\tTo enable, please write \"1\" to sysfs file mb_stats.\n");
+ return 0;
+ }
+ seq_printf(seq, "\treqs: %u\n", atomic_read(&sbi->s_bal_reqs));
+ seq_printf(seq, "\tsuccess: %u\n", atomic_read(&sbi->s_bal_success));
+
+ seq_printf(seq, "\tgroups_scanned: %u\n", atomic_read(&sbi->s_bal_groups_scanned));
+
+ seq_puts(seq, "\tcr0_stats:\n");
+ seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[0]));
+ seq_printf(seq, "\t\tgroups_considered: %llu\n",
+ atomic64_read(&sbi->s_bal_cX_groups_considered[0]));
+ seq_printf(seq, "\t\tuseless_loops: %llu\n",
+ atomic64_read(&sbi->s_bal_cX_failed[0]));
+ seq_printf(seq, "\t\tbad_suggestions: %u\n",
+ atomic_read(&sbi->s_bal_cr0_bad_suggestions));
+
+ seq_puts(seq, "\tcr1_stats:\n");
+ seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[1]));
+ seq_printf(seq, "\t\tgroups_considered: %llu\n",
+ atomic64_read(&sbi->s_bal_cX_groups_considered[1]));
+ seq_printf(seq, "\t\tuseless_loops: %llu\n",
+ atomic64_read(&sbi->s_bal_cX_failed[1]));
+ seq_printf(seq, "\t\tbad_suggestions: %u\n",
+ atomic_read(&sbi->s_bal_cr1_bad_suggestions));
+
+ seq_puts(seq, "\tcr2_stats:\n");
+ seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[2]));
+ seq_printf(seq, "\t\tgroups_considered: %llu\n",
+ atomic64_read(&sbi->s_bal_cX_groups_considered[2]));
+ seq_printf(seq, "\t\tuseless_loops: %llu\n",
+ atomic64_read(&sbi->s_bal_cX_failed[2]));
+
+ seq_puts(seq, "\tcr3_stats:\n");
+ seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[3]));
+ seq_printf(seq, "\t\tgroups_considered: %llu\n",
+ atomic64_read(&sbi->s_bal_cX_groups_considered[3]));
+ seq_printf(seq, "\t\tuseless_loops: %llu\n",
+ atomic64_read(&sbi->s_bal_cX_failed[3]));
+ seq_printf(seq, "\textents_scanned: %u\n", atomic_read(&sbi->s_bal_ex_scanned));
+ seq_printf(seq, "\t\tgoal_hits: %u\n", atomic_read(&sbi->s_bal_goals));
+ seq_printf(seq, "\t\t2^n_hits: %u\n", atomic_read(&sbi->s_bal_2orders));
+ seq_printf(seq, "\t\tbreaks: %u\n", atomic_read(&sbi->s_bal_breaks));
+ seq_printf(seq, "\t\tlost: %u\n", atomic_read(&sbi->s_mb_lost_chunks));
+
+ seq_printf(seq, "\tbuddies_generated: %u/%u\n",
+ atomic_read(&sbi->s_mb_buddies_generated),
+ ext4_get_groups_count(sb));
+ seq_printf(seq, "\tbuddies_time_used: %llu\n",
+ atomic64_read(&sbi->s_mb_generation_time));
+ seq_printf(seq, "\tpreallocated: %u\n",
+ atomic_read(&sbi->s_mb_preallocated));
+ seq_printf(seq, "\tdiscarded: %u\n",
+ atomic_read(&sbi->s_mb_discarded));
+ return 0;
+}
+
+static void *ext4_mb_seq_structs_summary_start(struct seq_file *seq, loff_t *pos)
+{
+ struct super_block *sb = PDE_DATA(file_inode(seq->file));
+ unsigned long position;
+
+ read_lock(&EXT4_SB(sb)->s_mb_rb_lock);
+
+ if (*pos < 0 || *pos >= MB_NUM_ORDERS(sb) + 1)
+ return NULL;
+ position = *pos + 1;
+ return (void *) ((unsigned long) position);
+}
+
+static void *ext4_mb_seq_structs_summary_next(struct seq_file *seq, void *v, loff_t *pos)
+{
+ struct super_block *sb = PDE_DATA(file_inode(seq->file));
+ unsigned long position;
+
+ ++*pos;
+ if (*pos < 0 || *pos >= MB_NUM_ORDERS(sb) + 1)
+ return NULL;
+ position = *pos + 1;
+ return (void *) ((unsigned long) position);
+}
+
+static int ext4_mb_seq_structs_summary_show(struct seq_file *seq, void *v)
+{
+ struct super_block *sb = PDE_DATA(file_inode(seq->file));
+ struct ext4_sb_info *sbi = EXT4_SB(sb);
+ unsigned long position = ((unsigned long) v);
+ struct ext4_group_info *grp;
+ struct rb_node *n;
+ unsigned int count, min, max;
+
+ position--;
+ if (position >= MB_NUM_ORDERS(sb)) {
+ seq_puts(seq, "fragment_size_tree:\n");
+ n = rb_first(&sbi->s_mb_avg_fragment_size_root);
+ if (!n) {
+ seq_puts(seq, "\ttree_min: 0\n\ttree_max: 0\n\ttree_nodes: 0\n");
+ return 0;
+ }
+ grp = rb_entry(n, struct ext4_group_info, bb_avg_fragment_size_rb);
+ min = grp->bb_fragments ? grp->bb_free / grp->bb_fragments : 0;
+ count = 1;
+ while (rb_next(n)) {
+ count++;
+ n = rb_next(n);
+ }
+ grp = rb_entry(n, struct ext4_group_info, bb_avg_fragment_size_rb);
+ max = grp->bb_fragments ? grp->bb_free / grp->bb_fragments : 0;
+
+ seq_printf(seq, "\ttree_min: %u\n\ttree_max: %u\n\ttree_nodes: %u\n",
+ min, max, count);
+ return 0;
+ }
+
+ if (position == 0) {
+ seq_printf(seq, "optimize_scan: %d\n",
+ test_opt2(sb, MB_OPTIMIZE_SCAN) ? 1 : 0);
+ seq_puts(seq, "max_free_order_lists:\n");
+ }
+ count = 0;
+ list_for_each_entry(grp, &sbi->s_mb_largest_free_orders[position],
+ bb_largest_free_order_node)
+ count++;
+ seq_printf(seq, "\tlist_order_%u_groups: %u\n",
+ (unsigned int)position, count);
+
+ return 0;
+}
+
+static void ext4_mb_seq_structs_summary_stop(struct seq_file *seq, void *v)
+{
+ struct super_block *sb = PDE_DATA(file_inode(seq->file));
+
+ read_unlock(&EXT4_SB(sb)->s_mb_rb_lock);
+}
+
+const struct seq_operations ext4_mb_seq_structs_summary_ops = {
+ .start = ext4_mb_seq_structs_summary_start,
+ .next = ext4_mb_seq_structs_summary_next,
+ .stop = ext4_mb_seq_structs_summary_stop,
+ .show = ext4_mb_seq_structs_summary_show,
+};
+
static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
{
int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
@@ -2590,7 +3089,7 @@ int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
if (old_groupinfo)
ext4_kvfree_array_rcu(old_groupinfo);
- ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
+ ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
sbi->s_group_info_size);
return 0;
}
@@ -2652,7 +3151,10 @@ int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
init_rwsem(&meta_group_info[i]->alloc_sem);
meta_group_info[i]->bb_free_root = RB_ROOT;
+ INIT_LIST_HEAD(&meta_group_info[i]->bb_largest_free_order_node);
+ RB_CLEAR_NODE(&meta_group_info[i]->bb_avg_fragment_size_rb);
meta_group_info[i]->bb_largest_free_order = -1; /* uninit */
+ meta_group_info[i]->bb_group = group;
mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group);
return 0;
@@ -2709,8 +3211,15 @@ static int ext4_mb_init_backend(struct super_block *sb)
}
if (ext4_has_feature_flex_bg(sb)) {
- /* a single flex group is supposed to be read by a single IO */
- sbi->s_mb_prefetch = min(1 << sbi->s_es->s_log_groups_per_flex,
+ /* a single flex group is supposed to be read by a single IO.
+ * 2 ^ s_log_groups_per_flex != UINT_MAX as s_mb_prefetch is
+ * unsigned integer, so the maximum shift is 32.
+ */
+ if (sbi->s_es->s_log_groups_per_flex >= 32) {
+ ext4_msg(sb, KERN_ERR, "too many log groups per flexible block group");
+ goto err_freesgi;
+ }
+ sbi->s_mb_prefetch = min_t(uint, 1 << sbi->s_es->s_log_groups_per_flex,
BLK_MAX_SEGMENT_SIZE >> (sb->s_blocksize_bits - 9));
sbi->s_mb_prefetch *= 8; /* 8 prefetch IOs in flight at most */
} else {
@@ -2806,7 +3315,7 @@ int ext4_mb_init(struct super_block *sb)
unsigned max;
int ret;
- i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
+ i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_offsets);
sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
if (sbi->s_mb_offsets == NULL) {
@@ -2814,7 +3323,7 @@ int ext4_mb_init(struct super_block *sb)
goto out;
}
- i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
+ i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_maxs);
sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
if (sbi->s_mb_maxs == NULL) {
ret = -ENOMEM;
@@ -2840,10 +3349,30 @@ int ext4_mb_init(struct super_block *sb)
offset_incr = offset_incr >> 1;
max = max >> 1;
i++;
- } while (i <= sb->s_blocksize_bits + 1);
+ } while (i < MB_NUM_ORDERS(sb));
+
+ sbi->s_mb_avg_fragment_size_root = RB_ROOT;
+ sbi->s_mb_largest_free_orders =
+ kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head),
+ GFP_KERNEL);
+ if (!sbi->s_mb_largest_free_orders) {
+ ret = -ENOMEM;
+ goto out;
+ }
+ sbi->s_mb_largest_free_orders_locks =
+ kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t),
+ GFP_KERNEL);
+ if (!sbi->s_mb_largest_free_orders_locks) {
+ ret = -ENOMEM;
+ goto out;
+ }
+ for (i = 0; i < MB_NUM_ORDERS(sb); i++) {
+ INIT_LIST_HEAD(&sbi->s_mb_largest_free_orders[i]);
+ rwlock_init(&sbi->s_mb_largest_free_orders_locks[i]);
+ }
+ rwlock_init(&sbi->s_mb_rb_lock);
spin_lock_init(&sbi->s_md_lock);
- spin_lock_init(&sbi->s_bal_lock);
sbi->s_mb_free_pending = 0;
INIT_LIST_HEAD(&sbi->s_freed_data_list);
@@ -2894,6 +3423,10 @@ int ext4_mb_init(struct super_block *sb)
spin_lock_init(&lg->lg_prealloc_lock);
}
+ if (blk_queue_nonrot(bdev_get_queue(sb->s_bdev)))
+ sbi->s_mb_max_linear_groups = 0;
+ else
+ sbi->s_mb_max_linear_groups = MB_DEFAULT_LINEAR_LIMIT;
/* init file for buddy data */
ret = ext4_mb_init_backend(sb);
if (ret != 0)
@@ -2905,6 +3438,8 @@ out_free_locality_groups:
free_percpu(sbi->s_locality_groups);
sbi->s_locality_groups = NULL;
out:
+ kfree(sbi->s_mb_largest_free_orders);
+ kfree(sbi->s_mb_largest_free_orders_locks);
kfree(sbi->s_mb_offsets);
sbi->s_mb_offsets = NULL;
kfree(sbi->s_mb_maxs);
@@ -2961,6 +3496,8 @@ int ext4_mb_release(struct super_block *sb)
kvfree(group_info);
rcu_read_unlock();
}
+ kfree(sbi->s_mb_largest_free_orders);
+ kfree(sbi->s_mb_largest_free_orders_locks);
kfree(sbi->s_mb_offsets);
kfree(sbi->s_mb_maxs);
iput(sbi->s_buddy_cache);
@@ -2971,17 +3508,18 @@ int ext4_mb_release(struct super_block *sb)
atomic_read(&sbi->s_bal_reqs),
atomic_read(&sbi->s_bal_success));
ext4_msg(sb, KERN_INFO,
- "mballoc: %u extents scanned, %u goal hits, "
+ "mballoc: %u extents scanned, %u groups scanned, %u goal hits, "
"%u 2^N hits, %u breaks, %u lost",
atomic_read(&sbi->s_bal_ex_scanned),
+ atomic_read(&sbi->s_bal_groups_scanned),
atomic_read(&sbi->s_bal_goals),
atomic_read(&sbi->s_bal_2orders),
atomic_read(&sbi->s_bal_breaks),
atomic_read(&sbi->s_mb_lost_chunks));
ext4_msg(sb, KERN_INFO,
- "mballoc: %lu generated and it took %Lu",
- sbi->s_mb_buddies_generated,
- sbi->s_mb_generation_time);
+ "mballoc: %u generated and it took %llu",
+ atomic_read(&sbi->s_mb_buddies_generated),
+ atomic64_read(&sbi->s_mb_generation_time));
ext4_msg(sb, KERN_INFO,
"mballoc: %u preallocated, %u discarded",
atomic_read(&sbi->s_mb_preallocated),
@@ -3576,12 +4114,13 @@ static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
{
struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
- if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
+ if (sbi->s_mb_stats && ac->ac_g_ex.fe_len >= 1) {
atomic_inc(&sbi->s_bal_reqs);
atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
atomic_inc(&sbi->s_bal_success);
atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
+ atomic_add(ac->ac_groups_scanned, &sbi->s_bal_groups_scanned);
if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
atomic_inc(&sbi->s_bal_goals);