diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2018-12-26 14:56:10 -0800 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2018-12-26 14:56:10 -0800 |
commit | 17bf423a1f2d134187191f0ceb4b395173cc98a7 (patch) | |
tree | df27481f3149103f01ef027aed1bc76e699d6470 /kernel/sched/fair.c | |
parent | 116b081c285d89dc6ece72eeecc6aa3979e8b54e (diff) | |
parent | 732cd75b8c920d3727e69957b14faa7c2d7c3b75 (diff) |
Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
"The main changes in this cycle were:
- Introduce "Energy Aware Scheduling" - by Quentin Perret.
This is a coherent topology description of CPUs in cooperation with
the PM subsystem, with the goal to schedule more energy-efficiently
on asymetric SMP platform - such as waking up tasks to the more
energy-efficient CPUs first, as long as the system isn't
oversubscribed.
For details of the design, see:
https://lore.kernel.org/lkml/20180724122521.22109-1-quentin.perret@arm.com/
- Misc cleanups and smaller enhancements"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (23 commits)
sched/fair: Select an energy-efficient CPU on task wake-up
sched/fair: Introduce an energy estimation helper function
sched/fair: Add over-utilization/tipping point indicator
sched/fair: Clean-up update_sg_lb_stats parameters
sched/toplogy: Introduce the 'sched_energy_present' static key
sched/topology: Make Energy Aware Scheduling depend on schedutil
sched/topology: Disable EAS on inappropriate platforms
sched/topology: Add lowest CPU asymmetry sched_domain level pointer
sched/topology: Reference the Energy Model of CPUs when available
PM: Introduce an Energy Model management framework
sched/cpufreq: Prepare schedutil for Energy Aware Scheduling
sched/topology: Relocate arch_scale_cpu_capacity() to the internal header
sched/core: Remove unnecessary unlikely() in push_*_task()
sched/topology: Remove the ::smt_gain field from 'struct sched_domain'
sched: Fix various typos in comments
sched/core: Clean up the #ifdef block in add_nr_running()
sched/fair: Make some variables static
sched/core: Create task_has_idle_policy() helper
sched/fair: Add lsub_positive() and use it consistently
sched/fair: Mask UTIL_AVG_UNCHANGED usages
...
Diffstat (limited to 'kernel/sched/fair.c')
-rw-r--r-- | kernel/sched/fair.c | 385 |
1 files changed, 334 insertions, 51 deletions
diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c index db514993565b..1c1cfbf6ba0c 100644 --- a/kernel/sched/fair.c +++ b/kernel/sched/fair.c @@ -38,7 +38,7 @@ * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) */ unsigned int sysctl_sched_latency = 6000000ULL; -unsigned int normalized_sysctl_sched_latency = 6000000ULL; +static unsigned int normalized_sysctl_sched_latency = 6000000ULL; /* * The initial- and re-scaling of tunables is configurable @@ -58,8 +58,8 @@ enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_L * * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) */ -unsigned int sysctl_sched_min_granularity = 750000ULL; -unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; +unsigned int sysctl_sched_min_granularity = 750000ULL; +static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; /* * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity @@ -81,8 +81,8 @@ unsigned int sysctl_sched_child_runs_first __read_mostly; * * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) */ -unsigned int sysctl_sched_wakeup_granularity = 1000000UL; -unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; +unsigned int sysctl_sched_wakeup_granularity = 1000000UL; +static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; const_debug unsigned int sysctl_sched_migration_cost = 500000UL; @@ -116,7 +116,7 @@ unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; * * (default: ~20%) */ -unsigned int capacity_margin = 1280; +static unsigned int capacity_margin = 1280; static inline void update_load_add(struct load_weight *lw, unsigned long inc) { @@ -703,9 +703,9 @@ void init_entity_runnable_average(struct sched_entity *se) memset(sa, 0, sizeof(*sa)); /* - * Tasks are intialized with full load to be seen as heavy tasks until + * Tasks are initialized with full load to be seen as heavy tasks until * they get a chance to stabilize to their real load level. - * Group entities are intialized with zero load to reflect the fact that + * Group entities are initialized with zero load to reflect the fact that * nothing has been attached to the task group yet. */ if (entity_is_task(se)) @@ -2734,6 +2734,17 @@ account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) WRITE_ONCE(*ptr, res); \ } while (0) +/* + * Remove and clamp on negative, from a local variable. + * + * A variant of sub_positive(), which does not use explicit load-store + * and is thus optimized for local variable updates. + */ +#define lsub_positive(_ptr, _val) do { \ + typeof(_ptr) ptr = (_ptr); \ + *ptr -= min_t(typeof(*ptr), *ptr, _val); \ +} while (0) + #ifdef CONFIG_SMP static inline void enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) @@ -3604,7 +3615,7 @@ static inline unsigned long _task_util_est(struct task_struct *p) { struct util_est ue = READ_ONCE(p->se.avg.util_est); - return max(ue.ewma, ue.enqueued); + return (max(ue.ewma, ue.enqueued) | UTIL_AVG_UNCHANGED); } static inline unsigned long task_util_est(struct task_struct *p) @@ -3622,7 +3633,7 @@ static inline void util_est_enqueue(struct cfs_rq *cfs_rq, /* Update root cfs_rq's estimated utilization */ enqueued = cfs_rq->avg.util_est.enqueued; - enqueued += (_task_util_est(p) | UTIL_AVG_UNCHANGED); + enqueued += _task_util_est(p); WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); } @@ -3650,8 +3661,7 @@ util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep) /* Update root cfs_rq's estimated utilization */ ue.enqueued = cfs_rq->avg.util_est.enqueued; - ue.enqueued -= min_t(unsigned int, ue.enqueued, - (_task_util_est(p) | UTIL_AVG_UNCHANGED)); + ue.enqueued -= min_t(unsigned int, ue.enqueued, _task_util_est(p)); WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued); /* @@ -3966,8 +3976,8 @@ dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) /* * When dequeuing a sched_entity, we must: * - Update loads to have both entity and cfs_rq synced with now. - * - Substract its load from the cfs_rq->runnable_avg. - * - Substract its previous weight from cfs_rq->load.weight. + * - Subtract its load from the cfs_rq->runnable_avg. + * - Subtract its previous weight from cfs_rq->load.weight. * - For group entity, update its weight to reflect the new share * of its group cfs_rq. */ @@ -4640,7 +4650,7 @@ static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun) cfs_b->distribute_running = 0; throttled = !list_empty(&cfs_b->throttled_cfs_rq); - cfs_b->runtime -= min(runtime, cfs_b->runtime); + lsub_positive(&cfs_b->runtime, runtime); } /* @@ -4774,7 +4784,7 @@ static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) raw_spin_lock(&cfs_b->lock); if (expires == cfs_b->runtime_expires) - cfs_b->runtime -= min(runtime, cfs_b->runtime); + lsub_positive(&cfs_b->runtime, runtime); cfs_b->distribute_running = 0; raw_spin_unlock(&cfs_b->lock); } @@ -5072,6 +5082,24 @@ static inline void hrtick_update(struct rq *rq) } #endif +#ifdef CONFIG_SMP +static inline unsigned long cpu_util(int cpu); +static unsigned long capacity_of(int cpu); + +static inline bool cpu_overutilized(int cpu) +{ + return (capacity_of(cpu) * 1024) < (cpu_util(cpu) * capacity_margin); +} + +static inline void update_overutilized_status(struct rq *rq) +{ + if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) + WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED); +} +#else +static inline void update_overutilized_status(struct rq *rq) { } +#endif + /* * The enqueue_task method is called before nr_running is * increased. Here we update the fair scheduling stats and @@ -5129,8 +5157,26 @@ enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) update_cfs_group(se); } - if (!se) + if (!se) { add_nr_running(rq, 1); + /* + * Since new tasks are assigned an initial util_avg equal to + * half of the spare capacity of their CPU, tiny tasks have the + * ability to cross the overutilized threshold, which will + * result in the load balancer ruining all the task placement + * done by EAS. As a way to mitigate that effect, do not account + * for the first enqueue operation of new tasks during the + * overutilized flag detection. + * + * A better way of solving this problem would be to wait for + * the PELT signals of tasks to converge before taking them + * into account, but that is not straightforward to implement, + * and the following generally works well enough in practice. + */ + if (flags & ENQUEUE_WAKEUP) + update_overutilized_status(rq); + + } hrtick_update(rq); } @@ -6241,7 +6287,7 @@ static unsigned long cpu_util_without(int cpu, struct task_struct *p) util = READ_ONCE(cfs_rq->avg.util_avg); /* Discount task's util from CPU's util */ - util -= min_t(unsigned int, util, task_util(p)); + lsub_positive(&util, task_util(p)); /* * Covered cases: @@ -6290,10 +6336,9 @@ static unsigned long cpu_util_without(int cpu, struct task_struct *p) * properly fix the execl regression and it helps in further * reducing the chances for the above race. */ - if (unlikely(task_on_rq_queued(p) || current == p)) { - estimated -= min_t(unsigned int, estimated, - (_task_util_est(p) | UTIL_AVG_UNCHANGED)); - } + if (unlikely(task_on_rq_queued(p) || current == p)) + lsub_positive(&estimated, _task_util_est(p)); + util = max(util, estimated); } @@ -6333,6 +6378,213 @@ static int wake_cap(struct task_struct *p, int cpu, int prev_cpu) } /* + * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued) + * to @dst_cpu. + */ +static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu) +{ + struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; + unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg); + + /* + * If @p migrates from @cpu to another, remove its contribution. Or, + * if @p migrates from another CPU to @cpu, add its contribution. In + * the other cases, @cpu is not impacted by the migration, so the + * util_avg should already be correct. + */ + if (task_cpu(p) == cpu && dst_cpu != cpu) + sub_positive(&util, task_util(p)); + else if (task_cpu(p) != cpu && dst_cpu == cpu) + util += task_util(p); + + if (sched_feat(UTIL_EST)) { + util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued); + + /* + * During wake-up, the task isn't enqueued yet and doesn't + * appear in the cfs_rq->avg.util_est.enqueued of any rq, + * so just add it (if needed) to "simulate" what will be + * cpu_util() after the task has been enqueued. + */ + if (dst_cpu == cpu) + util_est += _task_util_est(p); + + util = max(util, util_est); + } + + return min(util, capacity_orig_of(cpu)); +} + +/* + * compute_energy(): Estimates the energy that would be consumed if @p was + * migrated to @dst_cpu. compute_energy() predicts what will be the utilization + * landscape of the * CPUs after the task migration, and uses the Energy Model + * to compute what would be the energy if we decided to actually migrate that + * task. + */ +static long +compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd) +{ + long util, max_util, sum_util, energy = 0; + int cpu; + + for (; pd; pd = pd->next) { + max_util = sum_util = 0; + /* + * The capacity state of CPUs of the current rd can be driven by + * CPUs of another rd if they belong to the same performance + * domain. So, account for the utilization of these CPUs too + * by masking pd with cpu_online_mask instead of the rd span. + * + * If an entire performance domain is outside of the current rd, + * it will not appear in its pd list and will not be accounted + * by compute_energy(). + */ + for_each_cpu_and(cpu, perf_domain_span(pd), cpu_online_mask) { + util = cpu_util_next(cpu, p, dst_cpu); + util = schedutil_energy_util(cpu, util); + max_util = max(util, max_util); + sum_util += util; + } + + energy += em_pd_energy(pd->em_pd, max_util, sum_util); + } + + return energy; +} + +/* + * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the + * waking task. find_energy_efficient_cpu() looks for the CPU with maximum + * spare capacity in each performance domain and uses it as a potential + * candidate to execute the task. Then, it uses the Energy Model to figure + * out which of the CPU candidates is the most energy-efficient. + * + * The rationale for this heuristic is as follows. In a performance domain, + * all the most energy efficient CPU candidates (according to the Energy + * Model) are those for which we'll request a low frequency. When there are + * several CPUs for which the frequency request will be the same, we don't + * have enough data to break the tie between them, because the Energy Model + * only includes active power costs. With this model, if we assume that + * frequency requests follow utilization (e.g. using schedutil), the CPU with + * the maximum spare capacity in a performance domain is guaranteed to be among + * the best candidates of the performance domain. + * + * In practice, it could be preferable from an energy standpoint to pack + * small tasks on a CPU in order to let other CPUs go in deeper idle states, + * but that could also hurt our chances to go cluster idle, and we have no + * ways to tell with the current Energy Model if this is actually a good + * idea or not. So, find_energy_efficient_cpu() basically favors + * cluster-packing, and spreading inside a cluster. That should at least be + * a good thing for latency, and this is consistent with the idea that most + * of the energy savings of EAS come from the asymmetry of the system, and + * not so much from breaking the tie between identical CPUs. That's also the + * reason why EAS is enabled in the topology code only for systems where + * SD_ASYM_CPUCAPACITY is set. + * + * NOTE: Forkees are not accepted in the energy-aware wake-up path because + * they don't have any useful utilization data yet and it's not possible to + * forecast their impact on energy consumption. Consequently, they will be + * placed by find_idlest_cpu() on the least loaded CPU, which might turn out + * to be energy-inefficient in some use-cases. The alternative would be to + * bias new tasks towards specific types of CPUs first, or to try to infer + * their util_avg from the parent task, but those heuristics could hurt + * other use-cases too. So, until someone finds a better way to solve this, + * let's keep things simple by re-using the existing slow path. + */ + +static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) +{ + unsigned long prev_energy = ULONG_MAX, best_energy = ULONG_MAX; + struct root_domain *rd = cpu_rq(smp_processor_id())->rd; + int cpu, best_energy_cpu = prev_cpu; + struct perf_domain *head, *pd; + unsigned long cpu_cap, util; + struct sched_domain *sd; + + rcu_read_lock(); + pd = rcu_dereference(rd->pd); + if (!pd || READ_ONCE(rd->overutilized)) + goto fail; + head = pd; + + /* + * Energy-aware wake-up happens on the lowest sched_domain starting + * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. + */ + sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); + while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) + sd = sd->parent; + if (!sd) + goto fail; + + sync_entity_load_avg(&p->se); + if (!task_util_est(p)) + goto unlock; + + for (; pd; pd = pd->next) { + unsigned long cur_energy, spare_cap, max_spare_cap = 0; + int max_spare_cap_cpu = -1; + + for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) { + if (!cpumask_test_cpu(cpu, &p->cpus_allowed)) + continue; + + /* Skip CPUs that will be overutilized. */ + util = cpu_util_next(cpu, p, cpu); + cpu_cap = capacity_of(cpu); + if (cpu_cap * 1024 < util * capacity_margin) + continue; + + /* Always use prev_cpu as a candidate. */ + if (cpu == prev_cpu) { + prev_energy = compute_energy(p, prev_cpu, head); + best_energy = min(best_energy, prev_energy); + continue; + } + + /* + * Find the CPU with the maximum spare capacity in + * the performance domain + */ + spare_cap = cpu_cap - util; + if (spare_cap > max_spare_cap) { + max_spare_cap = spare_cap; + max_spare_cap_cpu = cpu; + } + } + + /* Evaluate the energy impact of using this CPU. */ + if (max_spare_cap_cpu >= 0) { + cur_energy = compute_energy(p, max_spare_cap_cpu, head); + if (cur_energy < best_energy) { + best_energy = cur_energy; + best_energy_cpu = max_spare_cap_cpu; + } + } + } +unlock: + rcu_read_unlock(); + + /* + * Pick the best CPU if prev_cpu cannot be used, or if it saves at + * least 6% of the energy used by prev_cpu. + */ + if (prev_energy == ULONG_MAX) + return best_energy_cpu; + + if ((prev_energy - best_energy) > (prev_energy >> 4)) + return best_energy_cpu; + + return prev_cpu; + +fail: + rcu_read_unlock(); + + return -1; +} + +/* * select_task_rq_fair: Select target runqueue for the waking task in domains * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE, * SD_BALANCE_FORK, or SD_BALANCE_EXEC. @@ -6355,8 +6607,16 @@ select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_f if (sd_flag & SD_BALANCE_WAKE) { record_wakee(p); - want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu) - && cpumask_test_cpu(cpu, &p->cpus_allowed); + + if (static_branch_unlikely(&sched_energy_present)) { + new_cpu = find_energy_efficient_cpu(p, prev_cpu); + if (new_cpu >= 0) + return new_cpu; + new_cpu = prev_cpu; + } + + want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu) && + cpumask_test_cpu(cpu, &p->cpus_allowed); } rcu_read_lock(); @@ -6520,7 +6780,7 @@ wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) static void set_last_buddy(struct sched_entity *se) { - if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) + if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se)))) return; for_each_sched_entity(se) { @@ -6532,7 +6792,7 @@ static void set_last_buddy(struct sched_entity *se) static void set_next_buddy(struct sched_entity *se) { - if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) + if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se)))) return; for_each_sched_entity(se) { @@ -6590,8 +6850,8 @@ static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_ return; /* Idle tasks are by definition preempted by non-idle tasks. */ - if (unlikely(curr->policy == SCHED_IDLE) && - likely(p->policy != SCHED_IDLE)) + if (unlikely(task_has_idle_policy(curr)) && + likely(!task_has_idle_policy(p))) goto preempt; /* @@ -7012,7 +7272,7 @@ static int task_hot(struct task_struct *p, struct lb_env *env) if (p->sched_class != &fair_sched_class) return 0; - if (unlikely(p->policy == SCHED_IDLE)) + if (unlikely(task_has_idle_policy(p))) return 0; /* @@ -7896,16 +8156,16 @@ static bool update_nohz_stats(struct rq *rq, bool force) * update_sg_lb_stats - Update sched_group's statistics for load balancing. * @env: The load balancing environment. * @group: sched_group whose statistics are to be updated. - * @load_idx: Load index of sched_domain of this_cpu for load calc. - * @local_group: Does group contain this_cpu. * @sgs: variable to hold the statistics for this group. - * @overload: Indicate pullable load (e.g. >1 runnable task). + * @sg_status: Holds flag indicating the status of the sched_group */ static inline void update_sg_lb_stats(struct lb_env *env, - struct sched_group *group, int load_idx, - int local_group, struct sg_lb_stats *sgs, - bool *overload) + struct sched_group *group, + struct sg_lb_stats *sgs, + int *sg_status) { + int local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group)); + int load_idx = get_sd_load_idx(env->sd, env->idle); unsigned long load; int i, nr_running; @@ -7929,7 +8189,10 @@ static inline void update_sg_lb_stats(struct lb_env *env, nr_running = rq->nr_running; if (nr_running > 1) - *overload = true; + *sg_status |= SG_OVERLOAD; + + if (cpu_overutilized(i)) + *sg_status |= SG_OVERUTILIZED; #ifdef CONFIG_NUMA_BALANCING sgs->nr_numa_running += rq->nr_numa_running; @@ -7945,7 +8208,7 @@ static inline void update_sg_lb_stats(struct lb_env *env, if (env->sd->flags & SD_ASYM_CPUCAPACITY && sgs->group_misfit_task_load < rq->misfit_task_load) { sgs->group_misfit_task_load = rq->misfit_task_load; - *overload = 1; + *sg_status |= SG_OVERLOAD; } } @@ -8090,17 +8353,14 @@ static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sd struct sched_group *sg = env->sd->groups; struct sg_lb_stats *local = &sds->local_stat; struct sg_lb_stats tmp_sgs; - int load_idx; - bool overload = false; bool prefer_sibling = child && child->flags & SD_PREFER_SIBLING; + int sg_status = 0; #ifdef CONFIG_NO_HZ_COMMON if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked)) env->flags |= LBF_NOHZ_STATS; #endif - load_idx = get_sd_load_idx(env->sd, env->idle); - do { struct sg_lb_stats *sgs = &tmp_sgs; int local_group; @@ -8115,8 +8375,7 @@ static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sd update_group_capacity(env->sd, env->dst_cpu); } - update_sg_lb_stats(env, sg, load_idx, local_group, sgs, - &overload); + update_sg_lb_stats(env, sg, sgs, &sg_status); if (local_group) goto next_group; @@ -8165,9 +8424,15 @@ next_group: env->fbq_type = fbq_classify_group(&sds->busiest_stat); if (!env->sd->parent) { + struct root_domain *rd = env->dst_rq->rd; + /* update overload indicator if we are at root domain */ - if (READ_ONCE(env->dst_rq->rd->overload) != overload) - WRITE_ONCE(env->dst_rq->rd->overload, overload); + WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD); + + /* Update over-utilization (tipping point, U >= 0) indicator */ + WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED); + } else if (sg_status & SG_OVERUTILIZED) { + WRITE_ONCE(env->dst_rq->rd->overutilized, SG_OVERUTILIZED); } } @@ -8394,6 +8659,14 @@ static struct sched_group *find_busiest_group(struct lb_env *env) * this level. */ update_sd_lb_stats(env, &sds); + + if (static_branch_unlikely(&sched_energy_present)) { + struct root_domain *rd = env->dst_rq->rd; + + if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized)) + goto out_balanced; + } + local = &sds.local_stat; busiest = &sds.busiest_stat; @@ -8910,13 +9183,22 @@ out_all_pinned: sd->nr_balance_failed = 0; out_one_pinned: + ld_moved = 0; + + /* + * idle_balance() disregards balance intervals, so we could repeatedly + * reach this code, which would lead to balance_interval skyrocketting + * in a short amount of time. Skip the balance_interval increase logic + * to avoid that. + */ + if (env.idle == CPU_NEWLY_IDLE) + goto out; + /* tune up the balancing interval */ - if (((env.flags & LBF_ALL_PINNED) && - sd->balance_interval < MAX_PINNED_INTERVAL) || - (sd->balance_interval < sd->max_interval)) + if ((env.flags & LBF_ALL_PINNED && + sd->balance_interval < MAX_PINNED_INTERVAL) || + sd->balance_interval < sd->max_interval) sd->balance_interval *= 2; - - ld_moved = 0; out: return ld_moved; } @@ -9281,7 +9563,7 @@ static void nohz_balancer_kick(struct rq *rq) } } - sd = rcu_dereference(per_cpu(sd_asym, cpu)); + sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); if (sd) { for_each_cpu(i, sched_domain_span(sd)) { if (i == cpu || @@ -9783,6 +10065,7 @@ static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) task_tick_numa(rq, curr); update_misfit_status(curr, rq); + update_overutilized_status(task_rq(curr)); } /* |