diff options
author | Suresh Siddha <suresh.b.siddha@intel.com> | 2010-02-12 17:14:22 -0800 |
---|---|---|
committer | Thomas Gleixner <tglx@linutronix.de> | 2010-02-16 15:13:59 +0100 |
commit | 9000f05c6d1607f79c0deacf42b09693be673f4c (patch) | |
tree | de24233877ccf6008bd65278820251bac442fa97 /kernel/exit.c | |
parent | 28f5318167adf23b16c844b9c2253f355cb21796 (diff) |
sched: Fix SMT scheduler regression in find_busiest_queue()
Fix a SMT scheduler performance regression that is leading to a scenario
where SMT threads in one core are completely idle while both the SMT threads
in another core (on the same socket) are busy.
This is caused by this commit (with the problematic code highlighted)
commit bdb94aa5dbd8b55e75f5a50b61312fe589e2c2d1
Author: Peter Zijlstra <a.p.zijlstra@chello.nl>
Date: Tue Sep 1 10:34:38 2009 +0200
sched: Try to deal with low capacity
@@ -4203,15 +4223,18 @@ find_busiest_queue()
...
for_each_cpu(i, sched_group_cpus(group)) {
+ unsigned long power = power_of(i);
...
- wl = weighted_cpuload(i);
+ wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
+ wl /= power;
- if (rq->nr_running == 1 && wl > imbalance)
+ if (capacity && rq->nr_running == 1 && wl > imbalance)
continue;
On a SMT system, power of the HT logical cpu will be 589 and
the scheduler load imbalance (for scenarios like the one mentioned above)
can be approximately 1024 (SCHED_LOAD_SCALE). The above change of scaling
the weighted load with the power will result in "wl > imbalance" and
ultimately resulting in find_busiest_queue() return NULL, causing
load_balance() to think that the load is well balanced. But infact
one of the tasks can be moved to the idle core for optimal performance.
We don't need to use the weighted load (wl) scaled by the cpu power to
compare with imabalance. In that condition, we already know there is only a
single task "rq->nr_running == 1" and the comparison between imbalance,
wl is to make sure that we select the correct priority thread which matches
imbalance. So we really need to compare the imabalnce with the original
weighted load of the cpu and not the scaled load.
But in other conditions where we want the most hammered(busiest) cpu, we can
use scaled load to ensure that we consider the cpu power in addition to the
actual load on that cpu, so that we can move the load away from the
guy that is getting most hammered with respect to the actual capacity,
as compared with the rest of the cpu's in that busiest group.
Fix it.
Reported-by: Ma Ling <ling.ma@intel.com>
Initial-Analysis-by: Zhang, Yanmin <yanmin_zhang@linux.intel.com>
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1266023662.2808.118.camel@sbs-t61.sc.intel.com>
Cc: stable@kernel.org [2.6.32.x]
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Diffstat (limited to 'kernel/exit.c')
0 files changed, 0 insertions, 0 deletions