diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2017-09-04 11:52:29 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2017-09-04 11:52:29 -0700 |
commit | 5f82e71a001d14824a7728ad9e49f6aea420f161 (patch) | |
tree | bf5dfa7cf0840ec834899ae925913973bd1e65d1 /Documentation/memory-barriers.txt | |
parent | 6c51e67b64d169419fb13318035bb442f9176612 (diff) | |
parent | edc2988c548db05e33b921fed15821010bc74895 (diff) |
Merge branch 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull locking updates from Ingo Molnar:
- Add 'cross-release' support to lockdep, which allows APIs like
completions, where it's not the 'owner' who releases the lock, to be
tracked. It's all activated automatically under
CONFIG_PROVE_LOCKING=y.
- Clean up (restructure) the x86 atomics op implementation to be more
readable, in preparation of KASAN annotations. (Dmitry Vyukov)
- Fix static keys (Paolo Bonzini)
- Add killable versions of down_read() et al (Kirill Tkhai)
- Rework and fix jump_label locking (Marc Zyngier, Paolo Bonzini)
- Rework (and fix) tlb_flush_pending() barriers (Peter Zijlstra)
- Remove smp_mb__before_spinlock() and convert its usages, introduce
smp_mb__after_spinlock() (Peter Zijlstra)
* 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (56 commits)
locking/lockdep/selftests: Fix mixed read-write ABBA tests
sched/completion: Avoid unnecessary stack allocation for COMPLETION_INITIALIZER_ONSTACK()
acpi/nfit: Fix COMPLETION_INITIALIZER_ONSTACK() abuse
locking/pvqspinlock: Relax cmpxchg's to improve performance on some architectures
smp: Avoid using two cache lines for struct call_single_data
locking/lockdep: Untangle xhlock history save/restore from task independence
locking/refcounts, x86/asm: Disable CONFIG_ARCH_HAS_REFCOUNT for the time being
futex: Remove duplicated code and fix undefined behaviour
Documentation/locking/atomic: Finish the document...
locking/lockdep: Fix workqueue crossrelease annotation
workqueue/lockdep: 'Fix' flush_work() annotation
locking/lockdep/selftests: Add mixed read-write ABBA tests
mm, locking/barriers: Clarify tlb_flush_pending() barriers
locking/lockdep: Make CONFIG_LOCKDEP_CROSSRELEASE and CONFIG_LOCKDEP_COMPLETIONS truly non-interactive
locking/lockdep: Explicitly initialize wq_barrier::done::map
locking/lockdep: Rename CONFIG_LOCKDEP_COMPLETE to CONFIG_LOCKDEP_COMPLETIONS
locking/lockdep: Reword title of LOCKDEP_CROSSRELEASE config
locking/lockdep: Make CONFIG_LOCKDEP_CROSSRELEASE part of CONFIG_PROVE_LOCKING
locking/refcounts, x86/asm: Implement fast refcount overflow protection
locking/lockdep: Fix the rollback and overwrite detection logic in crossrelease
...
Diffstat (limited to 'Documentation/memory-barriers.txt')
-rw-r--r-- | Documentation/memory-barriers.txt | 101 |
1 files changed, 8 insertions, 93 deletions
diff --git a/Documentation/memory-barriers.txt b/Documentation/memory-barriers.txt index e2ee0a1c299a..b759a60624fd 100644 --- a/Documentation/memory-barriers.txt +++ b/Documentation/memory-barriers.txt @@ -498,11 +498,11 @@ And a couple of implicit varieties: This means that ACQUIRE acts as a minimal "acquire" operation and RELEASE acts as a minimal "release" operation. -A subset of the atomic operations described in core-api/atomic_ops.rst have -ACQUIRE and RELEASE variants in addition to fully-ordered and relaxed (no -barrier semantics) definitions. For compound atomics performing both a load -and a store, ACQUIRE semantics apply only to the load and RELEASE semantics -apply only to the store portion of the operation. +A subset of the atomic operations described in atomic_t.txt have ACQUIRE and +RELEASE variants in addition to fully-ordered and relaxed (no barrier +semantics) definitions. For compound atomics performing both a load and a +store, ACQUIRE semantics apply only to the load and RELEASE semantics apply +only to the store portion of the operation. Memory barriers are only required where there's a possibility of interaction between two CPUs or between a CPU and a device. If it can be guaranteed that @@ -1883,8 +1883,7 @@ There are some more advanced barrier functions: This makes sure that the death mark on the object is perceived to be set *before* the reference counter is decremented. - See Documentation/core-api/atomic_ops.rst for more information. See the - "Atomic operations" subsection for information on where to use these. + See Documentation/atomic_{t,bitops}.txt for more information. (*) lockless_dereference(); @@ -1989,10 +1988,7 @@ for each construct. These operations all imply certain barriers: ACQUIRE operation has completed. Memory operations issued before the ACQUIRE may be completed after - the ACQUIRE operation has completed. An smp_mb__before_spinlock(), - combined with a following ACQUIRE, orders prior stores against - subsequent loads and stores. Note that this is weaker than smp_mb()! - The smp_mb__before_spinlock() primitive is free on many architectures. + the ACQUIRE operation has completed. (2) RELEASE operation implication: @@ -2510,88 +2506,7 @@ operations are noted specially as some of them imply full memory barriers and some don't, but they're very heavily relied on as a group throughout the kernel. -Any atomic operation that modifies some state in memory and returns information -about the state (old or new) implies an SMP-conditional general memory barrier -(smp_mb()) on each side of the actual operation (with the exception of -explicit lock operations, described later). These include: - - xchg(); - atomic_xchg(); atomic_long_xchg(); - atomic_inc_return(); atomic_long_inc_return(); - atomic_dec_return(); atomic_long_dec_return(); - atomic_add_return(); atomic_long_add_return(); - atomic_sub_return(); atomic_long_sub_return(); - atomic_inc_and_test(); atomic_long_inc_and_test(); - atomic_dec_and_test(); atomic_long_dec_and_test(); - atomic_sub_and_test(); atomic_long_sub_and_test(); - atomic_add_negative(); atomic_long_add_negative(); - test_and_set_bit(); - test_and_clear_bit(); - test_and_change_bit(); - - /* when succeeds */ - cmpxchg(); - atomic_cmpxchg(); atomic_long_cmpxchg(); - atomic_add_unless(); atomic_long_add_unless(); - -These are used for such things as implementing ACQUIRE-class and RELEASE-class -operations and adjusting reference counters towards object destruction, and as -such the implicit memory barrier effects are necessary. - - -The following operations are potential problems as they do _not_ imply memory -barriers, but might be used for implementing such things as RELEASE-class -operations: - - atomic_set(); - set_bit(); - clear_bit(); - change_bit(); - -With these the appropriate explicit memory barrier should be used if necessary -(smp_mb__before_atomic() for instance). - - -The following also do _not_ imply memory barriers, and so may require explicit -memory barriers under some circumstances (smp_mb__before_atomic() for -instance): - - atomic_add(); - atomic_sub(); - atomic_inc(); - atomic_dec(); - -If they're used for statistics generation, then they probably don't need memory -barriers, unless there's a coupling between statistical data. - -If they're used for reference counting on an object to control its lifetime, -they probably don't need memory barriers because either the reference count -will be adjusted inside a locked section, or the caller will already hold -sufficient references to make the lock, and thus a memory barrier unnecessary. - -If they're used for constructing a lock of some description, then they probably -do need memory barriers as a lock primitive generally has to do things in a -specific order. - -Basically, each usage case has to be carefully considered as to whether memory -barriers are needed or not. - -The following operations are special locking primitives: - - test_and_set_bit_lock(); - clear_bit_unlock(); - __clear_bit_unlock(); - -These implement ACQUIRE-class and RELEASE-class operations. These should be -used in preference to other operations when implementing locking primitives, -because their implementations can be optimised on many architectures. - -[!] Note that special memory barrier primitives are available for these -situations because on some CPUs the atomic instructions used imply full memory -barriers, and so barrier instructions are superfluous in conjunction with them, -and in such cases the special barrier primitives will be no-ops. - -See Documentation/core-api/atomic_ops.rst for more information. +See Documentation/atomic_t.txt for more information. ACCESSING DEVICES |