summaryrefslogtreecommitdiff
path: root/arch/powerpc/kernel/smp.c
blob: 693334c20d07db70e46224333c565abc457be11a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * SMP support for ppc.
 *
 * Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great
 * deal of code from the sparc and intel versions.
 *
 * Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu>
 *
 * PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and
 * Mike Corrigan {engebret|bergner|mikec}@us.ibm.com
 */

#undef DEBUG

#include <linux/kernel.h>
#include <linux/export.h>
#include <linux/sched/mm.h>
#include <linux/sched/task_stack.h>
#include <linux/sched/topology.h>
#include <linux/smp.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/cache.h>
#include <linux/err.h>
#include <linux/device.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/topology.h>
#include <linux/profile.h>
#include <linux/processor.h>
#include <linux/random.h>
#include <linux/stackprotector.h>
#include <linux/pgtable.h>
#include <linux/clockchips.h>
#include <linux/kexec.h>

#include <asm/ptrace.h>
#include <linux/atomic.h>
#include <asm/irq.h>
#include <asm/hw_irq.h>
#include <asm/kvm_ppc.h>
#include <asm/dbell.h>
#include <asm/page.h>
#include <asm/smp.h>
#include <asm/time.h>
#include <asm/machdep.h>
#include <asm/mmu_context.h>
#include <asm/cputhreads.h>
#include <asm/cputable.h>
#include <asm/mpic.h>
#include <asm/vdso_datapage.h>
#ifdef CONFIG_PPC64
#include <asm/paca.h>
#endif
#include <asm/vdso.h>
#include <asm/debug.h>
#include <asm/cpu_has_feature.h>
#include <asm/ftrace.h>
#include <asm/kup.h>
#include <asm/fadump.h>

#include <trace/events/ipi.h>

#ifdef DEBUG
#include <asm/udbg.h>
#define DBG(fmt...) udbg_printf(fmt)
#else
#define DBG(fmt...)
#endif

#ifdef CONFIG_HOTPLUG_CPU
/* State of each CPU during hotplug phases */
static DEFINE_PER_CPU(int, cpu_state) = { 0 };
#endif

struct task_struct *secondary_current;
bool has_big_cores __ro_after_init;
bool coregroup_enabled __ro_after_init;
bool thread_group_shares_l2 __ro_after_init;
bool thread_group_shares_l3 __ro_after_init;

DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map);
DEFINE_PER_CPU(cpumask_var_t, cpu_smallcore_map);
DEFINE_PER_CPU(cpumask_var_t, cpu_l2_cache_map);
DEFINE_PER_CPU(cpumask_var_t, cpu_core_map);
static DEFINE_PER_CPU(cpumask_var_t, cpu_coregroup_map);

EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
EXPORT_PER_CPU_SYMBOL(cpu_l2_cache_map);
EXPORT_PER_CPU_SYMBOL(cpu_core_map);
EXPORT_SYMBOL_GPL(has_big_cores);

#define MAX_THREAD_LIST_SIZE	8
#define THREAD_GROUP_SHARE_L1   1
#define THREAD_GROUP_SHARE_L2_L3 2
struct thread_groups {
	unsigned int property;
	unsigned int nr_groups;
	unsigned int threads_per_group;
	unsigned int thread_list[MAX_THREAD_LIST_SIZE];
};

/* Maximum number of properties that groups of threads within a core can share */
#define MAX_THREAD_GROUP_PROPERTIES 2

struct thread_groups_list {
	unsigned int nr_properties;
	struct thread_groups property_tgs[MAX_THREAD_GROUP_PROPERTIES];
};

static struct thread_groups_list tgl[NR_CPUS] __initdata;
/*
 * On big-cores system, thread_group_l1_cache_map for each CPU corresponds to
 * the set its siblings that share the L1-cache.
 */
DEFINE_PER_CPU(cpumask_var_t, thread_group_l1_cache_map);

/*
 * On some big-cores system, thread_group_l2_cache_map for each CPU
 * corresponds to the set its siblings within the core that share the
 * L2-cache.
 */
DEFINE_PER_CPU(cpumask_var_t, thread_group_l2_cache_map);

/*
 * On P10, thread_group_l3_cache_map for each CPU is equal to the
 * thread_group_l2_cache_map
 */
DEFINE_PER_CPU(cpumask_var_t, thread_group_l3_cache_map);

/* SMP operations for this machine */
struct smp_ops_t *smp_ops;

/* Can't be static due to PowerMac hackery */
volatile unsigned int cpu_callin_map[NR_CPUS];

int smt_enabled_at_boot = 1;

/*
 * Returns 1 if the specified cpu should be brought up during boot.
 * Used to inhibit booting threads if they've been disabled or
 * limited on the command line
 */
int smp_generic_cpu_bootable(unsigned int nr)
{
	/* Special case - we inhibit secondary thread startup
	 * during boot if the user requests it.
	 */
	if (system_state < SYSTEM_RUNNING && cpu_has_feature(CPU_FTR_SMT)) {
		if (!smt_enabled_at_boot && cpu_thread_in_core(nr) != 0)
			return 0;
		if (smt_enabled_at_boot
		    && cpu_thread_in_core(nr) >= smt_enabled_at_boot)
			return 0;
	}

	return 1;
}


#ifdef CONFIG_PPC64
int smp_generic_kick_cpu(int nr)
{
	if (nr < 0 || nr >= nr_cpu_ids)
		return -EINVAL;

	/*
	 * The processor is currently spinning, waiting for the
	 * cpu_start field to become non-zero After we set cpu_start,
	 * the processor will continue on to secondary_start
	 */
	if (!paca_ptrs[nr]->cpu_start) {
		paca_ptrs[nr]->cpu_start = 1;
		smp_mb();
		return 0;
	}

#ifdef CONFIG_HOTPLUG_CPU
	/*
	 * Ok it's not there, so it might be soft-unplugged, let's
	 * try to bring it back
	 */
	generic_set_cpu_up(nr);
	smp_wmb();
	smp_send_reschedule(nr);
#endif /* CONFIG_HOTPLUG_CPU */

	return 0;
}
#endif /* CONFIG_PPC64 */

static irqreturn_t call_function_action(int irq, void *data)
{
	generic_smp_call_function_interrupt();
	return IRQ_HANDLED;
}

static irqreturn_t reschedule_action(int irq, void *data)
{
	scheduler_ipi();
	return IRQ_HANDLED;
}

#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
static irqreturn_t tick_broadcast_ipi_action(int irq, void *data)
{
	timer_broadcast_interrupt();
	return IRQ_HANDLED;
}
#endif

#ifdef CONFIG_NMI_IPI
static irqreturn_t nmi_ipi_action(int irq, void *data)
{
	smp_handle_nmi_ipi(get_irq_regs());
	return IRQ_HANDLED;
}
#endif

static irq_handler_t smp_ipi_action[] = {
	[PPC_MSG_CALL_FUNCTION] =  call_function_action,
	[PPC_MSG_RESCHEDULE] = reschedule_action,
#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
	[PPC_MSG_TICK_BROADCAST] = tick_broadcast_ipi_action,
#endif
#ifdef CONFIG_NMI_IPI
	[PPC_MSG_NMI_IPI] = nmi_ipi_action,
#endif
};

/*
 * The NMI IPI is a fallback and not truly non-maskable. It is simpler
 * than going through the call function infrastructure, and strongly
 * serialized, so it is more appropriate for debugging.
 */
const char *smp_ipi_name[] = {
	[PPC_MSG_CALL_FUNCTION] =  "ipi call function",
	[PPC_MSG_RESCHEDULE] = "ipi reschedule",
#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
	[PPC_MSG_TICK_BROADCAST] = "ipi tick-broadcast",
#endif
#ifdef CONFIG_NMI_IPI
	[PPC_MSG_NMI_IPI] = "nmi ipi",
#endif
};

/* optional function to request ipi, for controllers with >= 4 ipis */
int smp_request_message_ipi(int virq, int msg)
{
	int err;

	if (msg < 0 || msg > PPC_MSG_NMI_IPI)
		return -EINVAL;
#ifndef CONFIG_NMI_IPI
	if (msg == PPC_MSG_NMI_IPI)
		return 1;
#endif

	err = request_irq(virq, smp_ipi_action[msg],
			  IRQF_PERCPU | IRQF_NO_THREAD | IRQF_NO_SUSPEND,
			  smp_ipi_name[msg], NULL);
	WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n",
		virq, smp_ipi_name[msg], err);

	return err;
}

#ifdef CONFIG_PPC_SMP_MUXED_IPI
struct cpu_messages {
	long messages;			/* current messages */
};
static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages, ipi_message);

void smp_muxed_ipi_set_message(int cpu, int msg)
{
	struct cpu_messages *info = &per_cpu(ipi_message, cpu);
	char *message = (char *)&info->messages;

	/*
	 * Order previous accesses before accesses in the IPI handler.
	 */
	smp_mb();
	WRITE_ONCE(message[msg], 1);
}

void smp_muxed_ipi_message_pass(int cpu, int msg)
{
	smp_muxed_ipi_set_message(cpu, msg);

	/*
	 * cause_ipi functions are required to include a full barrier
	 * before doing whatever causes the IPI.
	 */
	smp_ops->cause_ipi(cpu);
}

#ifdef __BIG_ENDIAN__
#define IPI_MESSAGE(A) (1uL << ((BITS_PER_LONG - 8) - 8 * (A)))
#else
#define IPI_MESSAGE(A) (1uL << (8 * (A)))
#endif

irqreturn_t smp_ipi_demux(void)
{
	mb();	/* order any irq clear */

	return smp_ipi_demux_relaxed();
}

/* sync-free variant. Callers should ensure synchronization */
irqreturn_t smp_ipi_demux_relaxed(void)
{
	struct cpu_messages *info;
	unsigned long all;

	info = this_cpu_ptr(&ipi_message);
	do {
		all = xchg(&info->messages, 0);
#if defined(CONFIG_KVM_XICS) && defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
		/*
		 * Must check for PPC_MSG_RM_HOST_ACTION messages
		 * before PPC_MSG_CALL_FUNCTION messages because when
		 * a VM is destroyed, we call kick_all_cpus_sync()
		 * to ensure that any pending PPC_MSG_RM_HOST_ACTION
		 * messages have completed before we free any VCPUs.
		 */
		if (all & IPI_MESSAGE(PPC_MSG_RM_HOST_ACTION))
			kvmppc_xics_ipi_action();
#endif
		if (all & IPI_MESSAGE(PPC_MSG_CALL_FUNCTION))
			generic_smp_call_function_interrupt();
		if (all & IPI_MESSAGE(PPC_MSG_RESCHEDULE))
			scheduler_ipi();
#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
		if (all & IPI_MESSAGE(PPC_MSG_TICK_BROADCAST))
			timer_broadcast_interrupt();
#endif
#ifdef CONFIG_NMI_IPI
		if (all & IPI_MESSAGE(PPC_MSG_NMI_IPI))
			nmi_ipi_action(0, NULL);
#endif
	} while (READ_ONCE(info->messages));

	return IRQ_HANDLED;
}
#endif /* CONFIG_PPC_SMP_MUXED_IPI */

static inline void do_message_pass(int cpu, int msg)
{
	if (smp_ops->message_pass)
		smp_ops->message_pass(cpu, msg);
#ifdef CONFIG_PPC_SMP_MUXED_IPI
	else
		smp_muxed_ipi_message_pass(cpu, msg);
#endif
}

void arch_smp_send_reschedule(int cpu)
{
	if (likely(smp_ops))
		do_message_pass(cpu, PPC_MSG_RESCHEDULE);
}
EXPORT_SYMBOL_GPL(arch_smp_send_reschedule);

void arch_send_call_function_single_ipi(int cpu)
{
	do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
}

void arch_send_call_function_ipi_mask(const struct cpumask *mask)
{
	unsigned int cpu;

	for_each_cpu(cpu, mask)
		do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
}

#ifdef CONFIG_NMI_IPI

/*
 * "NMI IPI" system.
 *
 * NMI IPIs may not be recoverable, so should not be used as ongoing part of
 * a running system. They can be used for crash, debug, halt/reboot, etc.
 *
 * The IPI call waits with interrupts disabled until all targets enter the
 * NMI handler, then returns. Subsequent IPIs can be issued before targets
 * have returned from their handlers, so there is no guarantee about
 * concurrency or re-entrancy.
 *
 * A new NMI can be issued before all targets exit the handler.
 *
 * The IPI call may time out without all targets entering the NMI handler.
 * In that case, there is some logic to recover (and ignore subsequent
 * NMI interrupts that may eventually be raised), but the platform interrupt
 * handler may not be able to distinguish this from other exception causes,
 * which may cause a crash.
 */

static atomic_t __nmi_ipi_lock = ATOMIC_INIT(0);
static struct cpumask nmi_ipi_pending_mask;
static bool nmi_ipi_busy = false;
static void (*nmi_ipi_function)(struct pt_regs *) = NULL;

noinstr static void nmi_ipi_lock_start(unsigned long *flags)
{
	raw_local_irq_save(*flags);
	hard_irq_disable();
	while (raw_atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) {
		raw_local_irq_restore(*flags);
		spin_until_cond(raw_atomic_read(&__nmi_ipi_lock) == 0);
		raw_local_irq_save(*flags);
		hard_irq_disable();
	}
}

noinstr static void nmi_ipi_lock(void)
{
	while (raw_atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1)
		spin_until_cond(raw_atomic_read(&__nmi_ipi_lock) == 0);
}

noinstr static void nmi_ipi_unlock(void)
{
	smp_mb();
	WARN_ON(raw_atomic_read(&__nmi_ipi_lock) != 1);
	raw_atomic_set(&__nmi_ipi_lock, 0);
}

noinstr static void nmi_ipi_unlock_end(unsigned long *flags)
{
	nmi_ipi_unlock();
	raw_local_irq_restore(*flags);
}

/*
 * Platform NMI handler calls this to ack
 */
noinstr int smp_handle_nmi_ipi(struct pt_regs *regs)
{
	void (*fn)(struct pt_regs *) = NULL;
	unsigned long flags;
	int me = raw_smp_processor_id();
	int ret = 0;

	/*
	 * Unexpected NMIs are possible here because the interrupt may not
	 * be able to distinguish NMI IPIs from other types of NMIs, or
	 * because the caller may have timed out.
	 */
	nmi_ipi_lock_start(&flags);
	if (cpumask_test_cpu(me, &nmi_ipi_pending_mask)) {
		cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
		fn = READ_ONCE(nmi_ipi_function);
		WARN_ON_ONCE(!fn);
		ret = 1;
	}
	nmi_ipi_unlock_end(&flags);

	if (fn)
		fn(regs);

	return ret;
}

static void do_smp_send_nmi_ipi(int cpu, bool safe)
{
	if (!safe && smp_ops->cause_nmi_ipi && smp_ops->cause_nmi_ipi(cpu))
		return;

	if (cpu >= 0) {
		do_message_pass(cpu, PPC_MSG_NMI_IPI);
	} else {
		int c;

		for_each_online_cpu(c) {
			if (c == raw_smp_processor_id())
				continue;
			do_message_pass(c, PPC_MSG_NMI_IPI);
		}
	}
}

/*
 * - cpu is the target CPU (must not be this CPU), or NMI_IPI_ALL_OTHERS.
 * - fn is the target callback function.
 * - delay_us > 0 is the delay before giving up waiting for targets to
 *   begin executing the handler, == 0 specifies indefinite delay.
 */
static int __smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *),
				u64 delay_us, bool safe)
{
	unsigned long flags;
	int me = raw_smp_processor_id();
	int ret = 1;

	BUG_ON(cpu == me);
	BUG_ON(cpu < 0 && cpu != NMI_IPI_ALL_OTHERS);

	if (unlikely(!smp_ops))
		return 0;

	nmi_ipi_lock_start(&flags);
	while (nmi_ipi_busy) {
		nmi_ipi_unlock_end(&flags);
		spin_until_cond(!nmi_ipi_busy);
		nmi_ipi_lock_start(&flags);
	}
	nmi_ipi_busy = true;
	nmi_ipi_function = fn;

	WARN_ON_ONCE(!cpumask_empty(&nmi_ipi_pending_mask));

	if (cpu < 0) {
		/* ALL_OTHERS */
		cpumask_copy(&nmi_ipi_pending_mask, cpu_online_mask);
		cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
	} else {
		cpumask_set_cpu(cpu, &nmi_ipi_pending_mask);
	}

	nmi_ipi_unlock();

	/* Interrupts remain hard disabled */

	do_smp_send_nmi_ipi(cpu, safe);

	nmi_ipi_lock();
	/* nmi_ipi_busy is set here, so unlock/lock is okay */
	while (!cpumask_empty(&nmi_ipi_pending_mask)) {
		nmi_ipi_unlock();
		udelay(1);
		nmi_ipi_lock();
		if (delay_us) {
			delay_us--;
			if (!delay_us)
				break;
		}
	}

	if (!cpumask_empty(&nmi_ipi_pending_mask)) {
		/* Timeout waiting for CPUs to call smp_handle_nmi_ipi */
		ret = 0;
		cpumask_clear(&nmi_ipi_pending_mask);
	}

	nmi_ipi_function = NULL;
	nmi_ipi_busy = false;

	nmi_ipi_unlock_end(&flags);

	return ret;
}

int smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
{
	return __smp_send_nmi_ipi(cpu, fn, delay_us, false);
}

int smp_send_safe_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
{
	return __smp_send_nmi_ipi(cpu, fn, delay_us, true);
}
#endif /* CONFIG_NMI_IPI */

#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
void tick_broadcast(const struct cpumask *mask)
{
	unsigned int cpu;

	for_each_cpu(cpu, mask)
		do_message_pass(cpu, PPC_MSG_TICK_BROADCAST);
}
#endif

#ifdef CONFIG_DEBUGGER
static void debugger_ipi_callback(struct pt_regs *regs)
{
	debugger_ipi(regs);
}

void smp_send_debugger_break(void)
{
	smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, debugger_ipi_callback, 1000000);
}
#endif

#ifdef CONFIG_KEXEC_CORE
void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *))
{
	int cpu;

	smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, crash_ipi_callback, 1000000);
	if (kdump_in_progress() && crash_wake_offline) {
		for_each_present_cpu(cpu) {
			if (cpu_online(cpu))
				continue;
			/*
			 * crash_ipi_callback will wait for
			 * all cpus, including offline CPUs.
			 * We don't care about nmi_ipi_function.
			 * Offline cpus will jump straight into
			 * crash_ipi_callback, we can skip the
			 * entire NMI dance and waiting for
			 * cpus to clear pending mask, etc.
			 */
			do_smp_send_nmi_ipi(cpu, false);
		}
	}
}
#endif

void crash_smp_send_stop(void)
{
	static bool stopped = false;

	/*
	 * In case of fadump, register data for all CPUs is captured by f/w
	 * on ibm,os-term rtas call. Skip IPI callbacks to other CPUs before
	 * this rtas call to avoid tricky post processing of those CPUs'
	 * backtraces.
	 */
	if (should_fadump_crash())
		return;

	if (stopped)
		return;

	stopped = true;

#ifdef CONFIG_KEXEC_CORE
	if (kexec_crash_image) {
		crash_kexec_prepare();
		return;
	}
#endif

	smp_send_stop();
}

#ifdef CONFIG_NMI_IPI
static void nmi_stop_this_cpu(struct pt_regs *regs)
{
	/*
	 * IRQs are already hard disabled by the smp_handle_nmi_ipi.
	 */
	set_cpu_online(smp_processor_id(), false);

	spin_begin();
	while (1)
		spin_cpu_relax();
}

void smp_send_stop(void)
{
	smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, nmi_stop_this_cpu, 1000000);
}

#else /* CONFIG_NMI_IPI */

static void stop_this_cpu(void *dummy)
{
	hard_irq_disable();

	/*
	 * Offlining CPUs in stop_this_cpu can result in scheduler warnings,
	 * (see commit de6e5d38417e), but printk_safe_flush_on_panic() wants
	 * to know other CPUs are offline before it breaks locks to flush
	 * printk buffers, in case we panic()ed while holding the lock.
	 */
	set_cpu_online(smp_processor_id(), false);

	spin_begin();
	while (1)
		spin_cpu_relax();
}

void smp_send_stop(void)
{
	static bool stopped = false;

	/*
	 * Prevent waiting on csd lock from a previous smp_send_stop.
	 * This is racy, but in general callers try to do the right
	 * thing and only fire off one smp_send_stop (e.g., see
	 * kernel/panic.c)
	 */
	if (stopped)
		return;

	stopped = true;

	smp_call_function(stop_this_cpu, NULL, 0);
}
#endif /* CONFIG_NMI_IPI */

static struct task_struct *current_set[NR_CPUS];

static void smp_store_cpu_info(int id)
{
	per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR);
#ifdef CONFIG_PPC_E500
	per_cpu(next_tlbcam_idx, id)
		= (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1;
#endif
}

/*
 * Relationships between CPUs are maintained in a set of per-cpu cpumasks so
 * rather than just passing around the cpumask we pass around a function that
 * returns the that cpumask for the given CPU.
 */
static void set_cpus_related(int i, int j, struct cpumask *(*get_cpumask)(int))
{
	cpumask_set_cpu(i, get_cpumask(j));
	cpumask_set_cpu(j, get_cpumask(i));
}

#ifdef CONFIG_HOTPLUG_CPU
static void set_cpus_unrelated(int i, int j,
		struct cpumask *(*get_cpumask)(int))
{
	cpumask_clear_cpu(i, get_cpumask(j));
	cpumask_clear_cpu(j, get_cpumask(i));
}
#endif

/*
 * Extends set_cpus_related. Instead of setting one CPU at a time in
 * dstmask, set srcmask at oneshot. dstmask should be super set of srcmask.
 */
static void or_cpumasks_related(int i, int j, struct cpumask *(*srcmask)(int),
				struct cpumask *(*dstmask)(int))
{
	struct cpumask *mask;
	int k;

	mask = srcmask(j);
	for_each_cpu(k, srcmask(i))
		cpumask_or(dstmask(k), dstmask(k), mask);

	if (i == j)
		return;

	mask = srcmask(i);
	for_each_cpu(k, srcmask(j))
		cpumask_or(dstmask(k), dstmask(k), mask);
}

/*
 * parse_thread_groups: Parses the "ibm,thread-groups" device tree
 *                      property for the CPU device node @dn and stores
 *                      the parsed output in the thread_groups_list
 *                      structure @tglp.
 *
 * @dn: The device node of the CPU device.
 * @tglp: Pointer to a thread group list structure into which the parsed
 *      output of "ibm,thread-groups" is stored.
 *
 * ibm,thread-groups[0..N-1] array defines which group of threads in
 * the CPU-device node can be grouped together based on the property.
 *
 * This array can represent thread groupings for multiple properties.
 *
 * ibm,thread-groups[i + 0] tells us the property based on which the
 * threads are being grouped together. If this value is 1, it implies
 * that the threads in the same group share L1, translation cache. If
 * the value is 2, it implies that the threads in the same group share
 * the same L2 cache.
 *
 * ibm,thread-groups[i+1] tells us how many such thread groups exist for the
 * property ibm,thread-groups[i]
 *
 * ibm,thread-groups[i+2] tells us the number of threads in each such
 * group.
 * Suppose k = (ibm,thread-groups[i+1] * ibm,thread-groups[i+2]), then,
 *
 * ibm,thread-groups[i+3..i+k+2] (is the list of threads identified by
 * "ibm,ppc-interrupt-server#s" arranged as per their membership in
 * the grouping.
 *
 * Example:
 * If "ibm,thread-groups" = [1,2,4,8,10,12,14,9,11,13,15,2,2,4,8,10,12,14,9,11,13,15]
 * This can be decomposed up into two consecutive arrays:
 * a) [1,2,4,8,10,12,14,9,11,13,15]
 * b) [2,2,4,8,10,12,14,9,11,13,15]
 *
 * where in,
 *
 * a) provides information of Property "1" being shared by "2" groups,
 *  each with "4" threads each. The "ibm,ppc-interrupt-server#s" of
 *  the first group is {8,10,12,14} and the
 *  "ibm,ppc-interrupt-server#s" of the second group is
 *  {9,11,13,15}. Property "1" is indicative of the thread in the
 *  group sharing L1 cache, translation cache and Instruction Data
 *  flow.
 *
 * b) provides information of Property "2" being shared by "2" groups,
 *  each group with "4" threads. The "ibm,ppc-interrupt-server#s" of
 *  the first group is {8,10,12,14} and the
 *  "ibm,ppc-interrupt-server#s" of the second group is
 *  {9,11,13,15}. Property "2" indicates that the threads in each
 *  group share the L2-cache.
 *
 * Returns 0 on success, -EINVAL if the property does not exist,
 * -ENODATA if property does not have a value, and -EOVERFLOW if the
 * property data isn't large enough.
 */
static int parse_thread_groups(struct device_node *dn,
			       struct thread_groups_list *tglp)
{
	unsigned int property_idx = 0;
	u32 *thread_group_array;
	size_t total_threads;
	int ret = 0, count;
	u32 *thread_list;
	int i = 0;

	count = of_property_count_u32_elems(dn, "ibm,thread-groups");
	thread_group_array = kcalloc(count, sizeof(u32), GFP_KERNEL);
	ret = of_property_read_u32_array(dn, "ibm,thread-groups",
					 thread_group_array, count);
	if (ret)
		goto out_free;

	while (i < count && property_idx < MAX_THREAD_GROUP_PROPERTIES) {
		int j;
		struct thread_groups *tg = &tglp->property_tgs[property_idx++];

		tg->property = thread_group_array[i];
		tg->nr_groups = thread_group_array[i + 1];
		tg->threads_per_group = thread_group_array[i + 2];
		total_threads = tg->nr_groups * tg->threads_per_group;

		thread_list = &thread_group_array[i + 3];

		for (j = 0; j < total_threads; j++)
			tg->thread_list[j] = thread_list[j];
		i = i + 3 + total_threads;
	}

	tglp->nr_properties = property_idx;

out_free:
	kfree(thread_group_array);
	return ret;
}

/*
 * get_cpu_thread_group_start : Searches the thread group in tg->thread_list
 *                              that @cpu belongs to.
 *
 * @cpu : The logical CPU whose thread group is being searched.
 * @tg : The thread-group structure of the CPU node which @cpu belongs
 *       to.
 *
 * Returns the index to tg->thread_list that points to the start
 * of the thread_group that @cpu belongs to.
 *
 * Returns -1 if cpu doesn't belong to any of the groups pointed to by
 * tg->thread_list.
 */
static int get_cpu_thread_group_start(int cpu, struct thread_groups *tg)
{
	int hw_cpu_id = get_hard_smp_processor_id(cpu);
	int i, j;

	for (i = 0; i < tg->nr_groups; i++) {
		int group_start = i * tg->threads_per_group;

		for (j = 0; j < tg->threads_per_group; j++) {
			int idx = group_start + j;

			if (tg->thread_list[idx] == hw_cpu_id)
				return group_start;
		}
	}

	return -1;
}

static struct thread_groups *__init get_thread_groups(int cpu,
						      int group_property,
						      int *err)
{
	struct device_node *dn = of_get_cpu_node(cpu, NULL);
	struct thread_groups_list *cpu_tgl = &tgl[cpu];
	struct thread_groups *tg = NULL;
	int i;
	*err = 0;

	if (!dn) {
		*err = -ENODATA;
		return NULL;
	}

	if (!cpu_tgl->nr_properties) {
		*err = parse_thread_groups(dn, cpu_tgl);
		if (*err)
			goto out;
	}

	for (i = 0; i < cpu_tgl->nr_properties; i++) {
		if (cpu_tgl->property_tgs[i].property == group_property) {
			tg = &cpu_tgl->property_tgs[i];
			break;
		}
	}

	if (!tg)
		*err = -EINVAL;
out:
	of_node_put(dn);
	return tg;
}

static int __init update_mask_from_threadgroup(cpumask_var_t *mask, struct thread_groups *tg,
					       int cpu, int cpu_group_start)
{
	int first_thread = cpu_first_thread_sibling(cpu);
	int i;

	zalloc_cpumask_var_node(mask, GFP_KERNEL, cpu_to_node(cpu));

	for (i = first_thread; i < first_thread + threads_per_core; i++) {
		int i_group_start = get_cpu_thread_group_start(i, tg);

		if (unlikely(i_group_start == -1)) {
			WARN_ON_ONCE(1);
			return -ENODATA;
		}

		if (i_group_start == cpu_group_start)
			cpumask_set_cpu(i, *mask);
	}

	return 0;
}

static int __init init_thread_group_cache_map(int cpu, int cache_property)

{
	int cpu_group_start = -1, err = 0;
	struct thread_groups *tg = NULL;
	cpumask_var_t *mask = NULL;

	if (cache_property != THREAD_GROUP_SHARE_L1 &&
	    cache_property != THREAD_GROUP_SHARE_L2_L3)
		return -EINVAL;

	tg = get_thread_groups(cpu, cache_property, &err);

	if (!tg)
		return err;

	cpu_group_start = get_cpu_thread_group_start(cpu, tg);

	if (unlikely(cpu_group_start == -1)) {
		WARN_ON_ONCE(1);
		return -ENODATA;
	}

	if (cache_property == THREAD_GROUP_SHARE_L1) {
		mask = &per_cpu(thread_group_l1_cache_map, cpu);
		update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start);
	}
	else if (cache_property == THREAD_GROUP_SHARE_L2_L3) {
		mask = &per_cpu(thread_group_l2_cache_map, cpu);
		update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start);
		mask = &per_cpu(thread_group_l3_cache_map, cpu);
		update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start);
	}


	return 0;
}

static bool shared_caches __ro_after_init;

#ifdef CONFIG_SCHED_SMT
/* cpumask of CPUs with asymmetric SMT dependency */
static int powerpc_smt_flags(void)
{
	int flags = SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;

	if (cpu_has_feature(CPU_FTR_ASYM_SMT)) {
		printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n");
		flags |= SD_ASYM_PACKING;
	}
	return flags;
}
#endif

/*
 * On shared processor LPARs scheduled on a big core (which has two or more
 * independent thread groups per core), prefer lower numbered CPUs, so
 * that workload consolidates to lesser number of cores.
 */
static __ro_after_init DEFINE_STATIC_KEY_FALSE(splpar_asym_pack);

/*
 * P9 has a slightly odd architecture where pairs of cores share an L2 cache.
 * This topology makes it *much* cheaper to migrate tasks between adjacent cores
 * since the migrated task remains cache hot. We want to take advantage of this
 * at the scheduler level so an extra topology level is required.
 */
static int powerpc_shared_cache_flags(void)
{
	if (static_branch_unlikely(&splpar_asym_pack))
		return SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING;

	return SD_SHARE_PKG_RESOURCES;
}

static int powerpc_shared_proc_flags(void)
{
	if (static_branch_unlikely(&splpar_asym_pack))
		return SD_ASYM_PACKING;

	return 0;
}

/*
 * We can't just pass cpu_l2_cache_mask() directly because
 * returns a non-const pointer and the compiler barfs on that.
 */
static const struct cpumask *shared_cache_mask(int cpu)
{
	return per_cpu(cpu_l2_cache_map, cpu);
}

#ifdef CONFIG_SCHED_SMT
static const struct cpumask *smallcore_smt_mask(int cpu)
{
	return cpu_smallcore_mask(cpu);
}
#endif

static struct cpumask *cpu_coregroup_mask(int cpu)
{
	return per_cpu(cpu_coregroup_map, cpu);
}

static bool has_coregroup_support(void)
{
	/* Coregroup identification not available on shared systems */
	if (is_shared_processor())
		return 0;

	return coregroup_enabled;
}

static const struct cpumask *cpu_mc_mask(int cpu)
{
	return cpu_coregroup_mask(cpu);
}

static int __init init_big_cores(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		int err = init_thread_group_cache_map(cpu, THREAD_GROUP_SHARE_L1);

		if (err)
			return err;

		zalloc_cpumask_var_node(&per_cpu(cpu_smallcore_map, cpu),
					GFP_KERNEL,
					cpu_to_node(cpu));
	}

	has_big_cores = true;

	for_each_possible_cpu(cpu) {
		int err = init_thread_group_cache_map(cpu, THREAD_GROUP_SHARE_L2_L3);

		if (err)
			return err;
	}

	thread_group_shares_l2 = true;
	thread_group_shares_l3 = true;
	pr_debug("L2/L3 cache only shared by the threads in the small core\n");

	return 0;
}

void __init smp_prepare_cpus(unsigned int max_cpus)
{
	unsigned int cpu, num_threads;

	DBG("smp_prepare_cpus\n");

	/* 
	 * setup_cpu may need to be called on the boot cpu. We haven't
	 * spun any cpus up but lets be paranoid.
	 */
	BUG_ON(boot_cpuid != smp_processor_id());

	/* Fixup boot cpu */
	smp_store_cpu_info(boot_cpuid);
	cpu_callin_map[boot_cpuid] = 1;

	for_each_possible_cpu(cpu) {
		zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu),
					GFP_KERNEL, cpu_to_node(cpu));
		zalloc_cpumask_var_node(&per_cpu(cpu_l2_cache_map, cpu),
					GFP_KERNEL, cpu_to_node(cpu));
		zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu),
					GFP_KERNEL, cpu_to_node(cpu));
		if (has_coregroup_support())
			zalloc_cpumask_var_node(&per_cpu(cpu_coregroup_map, cpu),
						GFP_KERNEL, cpu_to_node(cpu));

#ifdef CONFIG_NUMA
		/*
		 * numa_node_id() works after this.
		 */
		if (cpu_present(cpu)) {
			set_cpu_numa_node(cpu, numa_cpu_lookup_table[cpu]);
			set_cpu_numa_mem(cpu,
				local_memory_node(numa_cpu_lookup_table[cpu]));
		}
#endif
	}

	/* Init the cpumasks so the boot CPU is related to itself */
	cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid));
	cpumask_set_cpu(boot_cpuid, cpu_l2_cache_mask(boot_cpuid));
	cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid));

	if (has_coregroup_support())
		cpumask_set_cpu(boot_cpuid, cpu_coregroup_mask(boot_cpuid));

	init_big_cores();
	if (has_big_cores) {
		cpumask_set_cpu(boot_cpuid,
				cpu_smallcore_mask(boot_cpuid));
	}

	if (cpu_to_chip_id(boot_cpuid) != -1) {
		int idx = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);

		/*
		 * All threads of a core will all belong to the same core,
		 * chip_id_lookup_table will have one entry per core.
		 * Assumption: if boot_cpuid doesn't have a chip-id, then no
		 * other CPUs, will also not have chip-id.
		 */
		chip_id_lookup_table = kcalloc(idx, sizeof(int), GFP_KERNEL);
		if (chip_id_lookup_table)
			memset(chip_id_lookup_table, -1, sizeof(int) * idx);
	}

	if (smp_ops && smp_ops->probe)
		smp_ops->probe();

	// Initalise the generic SMT topology support
	num_threads = 1;
	if (smt_enabled_at_boot)
		num_threads = smt_enabled_at_boot;
	cpu_smt_set_num_threads(num_threads, threads_per_core);
}

void smp_prepare_boot_cpu(void)
{
	BUG_ON(smp_processor_id() != boot_cpuid);
#ifdef CONFIG_PPC64
	paca_ptrs[boot_cpuid]->__current = current;
#endif
	set_numa_node(numa_cpu_lookup_table[boot_cpuid]);
	current_set[boot_cpuid] = current;
}

#ifdef CONFIG_HOTPLUG_CPU

int generic_cpu_disable(void)
{
	unsigned int cpu = smp_processor_id();

	if (cpu == boot_cpuid)
		return -EBUSY;

	set_cpu_online(cpu, false);
#ifdef CONFIG_PPC64
	vdso_data->processorCount--;
#endif
	/* Update affinity of all IRQs previously aimed at this CPU */
	irq_migrate_all_off_this_cpu();

	/*
	 * Depending on the details of the interrupt controller, it's possible
	 * that one of the interrupts we just migrated away from this CPU is
	 * actually already pending on this CPU. If we leave it in that state
	 * the interrupt will never be EOI'ed, and will never fire again. So
	 * temporarily enable interrupts here, to allow any pending interrupt to
	 * be received (and EOI'ed), before we take this CPU offline.
	 */
	local_irq_enable();
	mdelay(1);
	local_irq_disable();

	return 0;
}

void generic_cpu_die(unsigned int cpu)
{
	int i;

	for (i = 0; i < 100; i++) {
		smp_rmb();
		if (is_cpu_dead(cpu))
			return;
		msleep(100);
	}
	printk(KERN_ERR "CPU%d didn't die...\n", cpu);
}

void generic_set_cpu_dead(unsigned int cpu)
{
	per_cpu(cpu_state, cpu) = CPU_DEAD;
}

/*
 * The cpu_state should be set to CPU_UP_PREPARE in kick_cpu(), otherwise
 * the cpu_state is always CPU_DEAD after calling generic_set_cpu_dead(),
 * which makes the delay in generic_cpu_die() not happen.
 */
void generic_set_cpu_up(unsigned int cpu)
{
	per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
}

int generic_check_cpu_restart(unsigned int cpu)
{
	return per_cpu(cpu_state, cpu) == CPU_UP_PREPARE;
}

int is_cpu_dead(unsigned int cpu)
{
	return per_cpu(cpu_state, cpu) == CPU_DEAD;
}

static bool secondaries_inhibited(void)
{
	return kvm_hv_mode_active();
}

#else /* HOTPLUG_CPU */

#define secondaries_inhibited()		0

#endif

static void cpu_idle_thread_init(unsigned int cpu, struct task_struct *idle)
{
#ifdef CONFIG_PPC64
	paca_ptrs[cpu]->__current = idle;
	paca_ptrs[cpu]->kstack = (unsigned long)task_stack_page(idle) +
				 THREAD_SIZE - STACK_FRAME_MIN_SIZE;
#endif
	task_thread_info(idle)->cpu = cpu;
	secondary_current = current_set[cpu] = idle;
}

int __cpu_up(unsigned int cpu, struct task_struct *tidle)
{
	const unsigned long boot_spin_ms = 5 * MSEC_PER_SEC;
	const bool booting = system_state < SYSTEM_RUNNING;
	const unsigned long hp_spin_ms = 1;
	unsigned long deadline;
	int rc;
	const unsigned long spin_wait_ms = booting ? boot_spin_ms : hp_spin_ms;

	/*
	 * Don't allow secondary threads to come online if inhibited
	 */
	if (threads_per_core > 1 && secondaries_inhibited() &&
	    cpu_thread_in_subcore(cpu))
		return -EBUSY;

	if (smp_ops == NULL ||
	    (smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu)))
		return -EINVAL;

	cpu_idle_thread_init(cpu, tidle);

	/*
	 * The platform might need to allocate resources prior to bringing
	 * up the CPU
	 */
	if (smp_ops->prepare_cpu) {
		rc = smp_ops->prepare_cpu(cpu);
		if (rc)
			return rc;
	}

	/* Make sure callin-map entry is 0 (can be leftover a CPU
	 * hotplug
	 */
	cpu_callin_map[cpu] = 0;

	/* The information for processor bringup must
	 * be written out to main store before we release
	 * the processor.
	 */
	smp_mb();

	/* wake up cpus */
	DBG("smp: kicking cpu %d\n", cpu);
	rc = smp_ops->kick_cpu(cpu);
	if (rc) {
		pr_err("smp: failed starting cpu %d (rc %d)\n", cpu, rc);
		return rc;
	}

	/*
	 * At boot time, simply spin on the callin word until the
	 * deadline passes.
	 *
	 * At run time, spin for an optimistic amount of time to avoid
	 * sleeping in the common case.
	 */
	deadline = jiffies + msecs_to_jiffies(spin_wait_ms);
	spin_until_cond(cpu_callin_map[cpu] || time_is_before_jiffies(deadline));

	if (!cpu_callin_map[cpu] && system_state >= SYSTEM_RUNNING) {
		const unsigned long sleep_interval_us = 10 * USEC_PER_MSEC;
		const unsigned long sleep_wait_ms = 100 * MSEC_PER_SEC;

		deadline = jiffies + msecs_to_jiffies(sleep_wait_ms);
		while (!cpu_callin_map[cpu] && time_is_after_jiffies(deadline))
			fsleep(sleep_interval_us);
	}

	if (!cpu_callin_map[cpu]) {
		printk(KERN_ERR "Processor %u is stuck.\n", cpu);
		return -ENOENT;
	}

	DBG("Processor %u found.\n", cpu);

	if (smp_ops->give_timebase)
		smp_ops->give_timebase();

	/* Wait until cpu puts itself in the online & active maps */
	spin_until_cond(cpu_online(cpu));

	return 0;
}

/* Return the value of the reg property corresponding to the given
 * logical cpu.
 */
int cpu_to_core_id(int cpu)
{
	struct device_node *np;
	int id = -1;

	np = of_get_cpu_node(cpu, NULL);
	if (!np)
		goto out;

	id = of_get_cpu_hwid(np, 0);
out:
	of_node_put(np);
	return id;
}
EXPORT_SYMBOL_GPL(cpu_to_core_id);

/* Helper routines for cpu to core mapping */
int cpu_core_index_of_thread(int cpu)
{
	return cpu >> threads_shift;
}
EXPORT_SYMBOL_GPL(cpu_core_index_of_thread);

int cpu_first_thread_of_core(int core)
{
	return core << threads_shift;
}
EXPORT_SYMBOL_GPL(cpu_first_thread_of_core);

/* Must be called when no change can occur to cpu_present_mask,
 * i.e. during cpu online or offline.
 */
static struct device_node *cpu_to_l2cache(int cpu)
{
	struct device_node *np;
	struct device_node *cache;

	if (!cpu_present(cpu))
		return NULL;

	np = of_get_cpu_node(cpu, NULL);
	if (np == NULL)
		return NULL;

	cache = of_find_next_cache_node(np);

	of_node_put(np);

	return cache;
}

static bool update_mask_by_l2(int cpu, cpumask_var_t *mask)
{
	struct cpumask *(*submask_fn)(int) = cpu_sibling_mask;
	struct device_node *l2_cache, *np;
	int i;

	if (has_big_cores)
		submask_fn = cpu_smallcore_mask;

	/*
	 * If the threads in a thread-group share L2 cache, then the
	 * L2-mask can be obtained from thread_group_l2_cache_map.
	 */
	if (thread_group_shares_l2) {
		cpumask_set_cpu(cpu, cpu_l2_cache_mask(cpu));

		for_each_cpu(i, per_cpu(thread_group_l2_cache_map, cpu)) {
			if (cpu_online(i))
				set_cpus_related(i, cpu, cpu_l2_cache_mask);
		}

		/* Verify that L1-cache siblings are a subset of L2 cache-siblings */
		if (!cpumask_equal(submask_fn(cpu), cpu_l2_cache_mask(cpu)) &&
		    !cpumask_subset(submask_fn(cpu), cpu_l2_cache_mask(cpu))) {
			pr_warn_once("CPU %d : Inconsistent L1 and L2 cache siblings\n",
				     cpu);
		}

		return true;
	}

	l2_cache = cpu_to_l2cache(cpu);
	if (!l2_cache || !*mask) {
		/* Assume only core siblings share cache with this CPU */
		for_each_cpu(i, cpu_sibling_mask(cpu))
			set_cpus_related(cpu, i, cpu_l2_cache_mask);

		return false;
	}

	cpumask_and(*mask, cpu_online_mask, cpu_cpu_mask(cpu));

	/* Update l2-cache mask with all the CPUs that are part of submask */
	or_cpumasks_related(cpu, cpu, submask_fn, cpu_l2_cache_mask);

	/* Skip all CPUs already part of current CPU l2-cache mask */
	cpumask_andnot(*mask, *mask, cpu_l2_cache_mask(cpu));

	for_each_cpu(i, *mask) {
		/*
		 * when updating the marks the current CPU has not been marked
		 * online, but we need to update the cache masks
		 */
		np = cpu_to_l2cache(i);

		/* Skip all CPUs already part of current CPU l2-cache */
		if (np == l2_cache) {
			or_cpumasks_related(cpu, i, submask_fn, cpu_l2_cache_mask);
			cpumask_andnot(*mask, *mask, submask_fn(i));
		} else {
			cpumask_andnot(*mask, *mask, cpu_l2_cache_mask(i));
		}

		of_node_put(np);
	}
	of_node_put(l2_cache);

	return true;
}

#ifdef CONFIG_HOTPLUG_CPU
static void remove_cpu_from_masks(int cpu)
{
	struct cpumask *(*mask_fn)(int) = cpu_sibling_mask;
	int i;

	unmap_cpu_from_node(cpu);

	if (shared_caches)
		mask_fn = cpu_l2_cache_mask;

	for_each_cpu(i, mask_fn(cpu)) {
		set_cpus_unrelated(cpu, i, cpu_l2_cache_mask);
		set_cpus_unrelated(cpu, i, cpu_sibling_mask);
		if (has_big_cores)
			set_cpus_unrelated(cpu, i, cpu_smallcore_mask);
	}

	for_each_cpu(i, cpu_core_mask(cpu))
		set_cpus_unrelated(cpu, i, cpu_core_mask);

	if (has_coregroup_support()) {
		for_each_cpu(i, cpu_coregroup_mask(cpu))
			set_cpus_unrelated(cpu, i, cpu_coregroup_mask);
	}
}
#endif

static inline void add_cpu_to_smallcore_masks(int cpu)
{
	int i;

	if (!has_big_cores)
		return;

	cpumask_set_cpu(cpu, cpu_smallcore_mask(cpu));

	for_each_cpu(i, per_cpu(thread_group_l1_cache_map, cpu)) {
		if (cpu_online(i))
			set_cpus_related(i, cpu, cpu_smallcore_mask);
	}
}

static void update_coregroup_mask(int cpu, cpumask_var_t *mask)
{
	struct cpumask *(*submask_fn)(int) = cpu_sibling_mask;
	int coregroup_id = cpu_to_coregroup_id(cpu);
	int i;

	if (shared_caches)
		submask_fn = cpu_l2_cache_mask;

	if (!*mask) {
		/* Assume only siblings are part of this CPU's coregroup */
		for_each_cpu(i, submask_fn(cpu))
			set_cpus_related(cpu, i, cpu_coregroup_mask);

		return;
	}

	cpumask_and(*mask, cpu_online_mask, cpu_cpu_mask(cpu));

	/* Update coregroup mask with all the CPUs that are part of submask */
	or_cpumasks_related(cpu, cpu, submask_fn, cpu_coregroup_mask);

	/* Skip all CPUs already part of coregroup mask */
	cpumask_andnot(*mask, *mask, cpu_coregroup_mask(cpu));

	for_each_cpu(i, *mask) {
		/* Skip all CPUs not part of this coregroup */
		if (coregroup_id == cpu_to_coregroup_id(i)) {
			or_cpumasks_related(cpu, i, submask_fn, cpu_coregroup_mask);
			cpumask_andnot(*mask, *mask, submask_fn(i));
		} else {
			cpumask_andnot(*mask, *mask, cpu_coregroup_mask(i));
		}
	}
}

static void add_cpu_to_masks(int cpu)
{
	struct cpumask *(*submask_fn)(int) = cpu_sibling_mask;
	int first_thread = cpu_first_thread_sibling(cpu);
	cpumask_var_t mask;
	int chip_id = -1;
	bool ret;
	int i;

	/*
	 * This CPU will not be in the online mask yet so we need to manually
	 * add it to it's own thread sibling mask.
	 */
	map_cpu_to_node(cpu, cpu_to_node(cpu));
	cpumask_set_cpu(cpu, cpu_sibling_mask(cpu));
	cpumask_set_cpu(cpu, cpu_core_mask(cpu));

	for (i = first_thread; i < first_thread + threads_per_core; i++)
		if (cpu_online(i))
			set_cpus_related(i, cpu, cpu_sibling_mask);

	add_cpu_to_smallcore_masks(cpu);

	/* In CPU-hotplug path, hence use GFP_ATOMIC */
	ret = alloc_cpumask_var_node(&mask, GFP_ATOMIC, cpu_to_node(cpu));
	update_mask_by_l2(cpu, &mask);

	if (has_coregroup_support())
		update_coregroup_mask(cpu, &mask);

	if (chip_id_lookup_table && ret)
		chip_id = cpu_to_chip_id(cpu);

	if (shared_caches)
		submask_fn = cpu_l2_cache_mask;

	/* Update core_mask with all the CPUs that are part of submask */
	or_cpumasks_related(cpu, cpu, submask_fn, cpu_core_mask);

	/* Skip all CPUs already part of current CPU core mask */
	cpumask_andnot(mask, cpu_online_mask, cpu_core_mask(cpu));

	/* If chip_id is -1; limit the cpu_core_mask to within PKG */
	if (chip_id == -1)
		cpumask_and(mask, mask, cpu_cpu_mask(cpu));

	for_each_cpu(i, mask) {
		if (chip_id == cpu_to_chip_id(i)) {
			or_cpumasks_related(cpu, i, submask_fn, cpu_core_mask);
			cpumask_andnot(mask, mask, submask_fn(i));
		} else {
			cpumask_andnot(mask, mask, cpu_core_mask(i));
		}
	}

	free_cpumask_var(mask);
}

/* Activate a secondary processor. */
__no_stack_protector
void start_secondary(void *unused)
{
	unsigned int cpu = raw_smp_processor_id();

	/* PPC64 calls setup_kup() in early_setup_secondary() */
	if (IS_ENABLED(CONFIG_PPC32))
		setup_kup();

	mmgrab_lazy_tlb(&init_mm);
	current->active_mm = &init_mm;
	VM_WARN_ON(cpumask_test_cpu(smp_processor_id(), mm_cpumask(&init_mm)));
	cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
	inc_mm_active_cpus(&init_mm);

	smp_store_cpu_info(cpu);
	set_dec(tb_ticks_per_jiffy);
	rcutree_report_cpu_starting(cpu);
	cpu_callin_map[cpu] = 1;

	if (smp_ops->setup_cpu)
		smp_ops->setup_cpu(cpu);
	if (smp_ops->take_timebase)
		smp_ops->take_timebase();

	secondary_cpu_time_init();

#ifdef CONFIG_PPC64
	if (system_state == SYSTEM_RUNNING)
		vdso_data->processorCount++;

	vdso_getcpu_init();
#endif
	set_numa_node(numa_cpu_lookup_table[cpu]);
	set_numa_mem(local_memory_node(numa_cpu_lookup_table[cpu]));

	/* Update topology CPU masks */
	add_cpu_to_masks(cpu);

	/*
	 * Check for any shared caches. Note that this must be done on a
	 * per-core basis because one core in the pair might be disabled.
	 */
	if (!shared_caches) {
		struct cpumask *(*sibling_mask)(int) = cpu_sibling_mask;
		struct cpumask *mask = cpu_l2_cache_mask(cpu);

		if (has_big_cores)
			sibling_mask = cpu_smallcore_mask;

		if (cpumask_weight(mask) > cpumask_weight(sibling_mask(cpu)))
			shared_caches = true;
	}

	smp_wmb();
	notify_cpu_starting(cpu);
	set_cpu_online(cpu, true);

	boot_init_stack_canary();

	local_irq_enable();

	/* We can enable ftrace for secondary cpus now */
	this_cpu_enable_ftrace();

	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);

	BUG();
}

static struct sched_domain_topology_level powerpc_topology[6];

static void __init build_sched_topology(void)
{
	int i = 0;

	if (is_shared_processor() && has_big_cores)
		static_branch_enable(&splpar_asym_pack);

#ifdef CONFIG_SCHED_SMT
	if (has_big_cores) {
		pr_info("Big cores detected but using small core scheduling\n");
		powerpc_topology[i++] = (struct sched_domain_topology_level){
			smallcore_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT)
		};
	} else {
		powerpc_topology[i++] = (struct sched_domain_topology_level){
			cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT)
		};
	}
#endif
	if (shared_caches) {
		powerpc_topology[i++] = (struct sched_domain_topology_level){
			shared_cache_mask, powerpc_shared_cache_flags, SD_INIT_NAME(CACHE)
		};
	}
	if (has_coregroup_support()) {
		powerpc_topology[i++] = (struct sched_domain_topology_level){
			cpu_mc_mask, powerpc_shared_proc_flags, SD_INIT_NAME(MC)
		};
	}
	powerpc_topology[i++] = (struct sched_domain_topology_level){
		cpu_cpu_mask, powerpc_shared_proc_flags, SD_INIT_NAME(PKG)
	};

	/* There must be one trailing NULL entry left.  */
	BUG_ON(i >= ARRAY_SIZE(powerpc_topology) - 1);

	set_sched_topology(powerpc_topology);
}

void __init smp_cpus_done(unsigned int max_cpus)
{
	/*
	 * We are running pinned to the boot CPU, see rest_init().
	 */
	if (smp_ops && smp_ops->setup_cpu)
		smp_ops->setup_cpu(boot_cpuid);

	if (smp_ops && smp_ops->bringup_done)
		smp_ops->bringup_done();

	dump_numa_cpu_topology();
	build_sched_topology();
}

/*
 * For asym packing, by default lower numbered CPU has higher priority.
 * On shared processors, pack to lower numbered core. However avoid moving
 * between thread_groups within the same core.
 */
int arch_asym_cpu_priority(int cpu)
{
	if (static_branch_unlikely(&splpar_asym_pack))
		return -cpu / threads_per_core;

	return -cpu;
}

#ifdef CONFIG_HOTPLUG_CPU
int __cpu_disable(void)
{
	int cpu = smp_processor_id();
	int err;

	if (!smp_ops->cpu_disable)
		return -ENOSYS;

	this_cpu_disable_ftrace();

	err = smp_ops->cpu_disable();
	if (err)
		return err;

	/* Update sibling maps */
	remove_cpu_from_masks(cpu);

	return 0;
}

void __cpu_die(unsigned int cpu)
{
	/*
	 * This could perhaps be a generic call in idlea_task_dead(), but
	 * that requires testing from all archs, so first put it here to
	 */
	VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu, mm_cpumask(&init_mm)));
	dec_mm_active_cpus(&init_mm);
	cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));

	if (smp_ops->cpu_die)
		smp_ops->cpu_die(cpu);
}

void __noreturn arch_cpu_idle_dead(void)
{
	/*
	 * Disable on the down path. This will be re-enabled by
	 * start_secondary() via start_secondary_resume() below
	 */
	this_cpu_disable_ftrace();

	if (smp_ops->cpu_offline_self)
		smp_ops->cpu_offline_self();

	/* If we return, we re-enter start_secondary */
	start_secondary_resume();
}

#endif