// SPDX-License-Identifier: GPL-2.0-only /* * Driver for STM32 DMA controller * * Inspired by dma-jz4740.c and tegra20-apb-dma.c * * Copyright (C) M'boumba Cedric Madianga 2015 * Author: M'boumba Cedric Madianga * Pierre-Yves Mordret */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "virt-dma.h" #define STM32_DMA_LISR 0x0000 /* DMA Low Int Status Reg */ #define STM32_DMA_HISR 0x0004 /* DMA High Int Status Reg */ #define STM32_DMA_LIFCR 0x0008 /* DMA Low Int Flag Clear Reg */ #define STM32_DMA_HIFCR 0x000c /* DMA High Int Flag Clear Reg */ #define STM32_DMA_TCI BIT(5) /* Transfer Complete Interrupt */ #define STM32_DMA_HTI BIT(4) /* Half Transfer Interrupt */ #define STM32_DMA_TEI BIT(3) /* Transfer Error Interrupt */ #define STM32_DMA_DMEI BIT(2) /* Direct Mode Error Interrupt */ #define STM32_DMA_FEI BIT(0) /* FIFO Error Interrupt */ #define STM32_DMA_MASKI (STM32_DMA_TCI \ | STM32_DMA_TEI \ | STM32_DMA_DMEI \ | STM32_DMA_FEI) /* DMA Stream x Configuration Register */ #define STM32_DMA_SCR(x) (0x0010 + 0x18 * (x)) /* x = 0..7 */ #define STM32_DMA_SCR_REQ(n) ((n & 0x7) << 25) #define STM32_DMA_SCR_MBURST_MASK GENMASK(24, 23) #define STM32_DMA_SCR_MBURST(n) ((n & 0x3) << 23) #define STM32_DMA_SCR_PBURST_MASK GENMASK(22, 21) #define STM32_DMA_SCR_PBURST(n) ((n & 0x3) << 21) #define STM32_DMA_SCR_PL_MASK GENMASK(17, 16) #define STM32_DMA_SCR_PL(n) ((n & 0x3) << 16) #define STM32_DMA_SCR_MSIZE_MASK GENMASK(14, 13) #define STM32_DMA_SCR_MSIZE(n) ((n & 0x3) << 13) #define STM32_DMA_SCR_PSIZE_MASK GENMASK(12, 11) #define STM32_DMA_SCR_PSIZE(n) ((n & 0x3) << 11) #define STM32_DMA_SCR_PSIZE_GET(n) ((n & STM32_DMA_SCR_PSIZE_MASK) >> 11) #define STM32_DMA_SCR_DIR_MASK GENMASK(7, 6) #define STM32_DMA_SCR_DIR(n) ((n & 0x3) << 6) #define STM32_DMA_SCR_TRBUFF BIT(20) /* Bufferable transfer for USART/UART */ #define STM32_DMA_SCR_CT BIT(19) /* Target in double buffer */ #define STM32_DMA_SCR_DBM BIT(18) /* Double Buffer Mode */ #define STM32_DMA_SCR_PINCOS BIT(15) /* Peripheral inc offset size */ #define STM32_DMA_SCR_MINC BIT(10) /* Memory increment mode */ #define STM32_DMA_SCR_PINC BIT(9) /* Peripheral increment mode */ #define STM32_DMA_SCR_CIRC BIT(8) /* Circular mode */ #define STM32_DMA_SCR_PFCTRL BIT(5) /* Peripheral Flow Controller */ #define STM32_DMA_SCR_TCIE BIT(4) /* Transfer Complete Int Enable */ #define STM32_DMA_SCR_TEIE BIT(2) /* Transfer Error Int Enable */ #define STM32_DMA_SCR_DMEIE BIT(1) /* Direct Mode Err Int Enable */ #define STM32_DMA_SCR_EN BIT(0) /* Stream Enable */ #define STM32_DMA_SCR_CFG_MASK (STM32_DMA_SCR_PINC \ | STM32_DMA_SCR_MINC \ | STM32_DMA_SCR_PINCOS \ | STM32_DMA_SCR_PL_MASK) #define STM32_DMA_SCR_IRQ_MASK (STM32_DMA_SCR_TCIE \ | STM32_DMA_SCR_TEIE \ | STM32_DMA_SCR_DMEIE) /* DMA Stream x number of data register */ #define STM32_DMA_SNDTR(x) (0x0014 + 0x18 * (x)) /* DMA stream peripheral address register */ #define STM32_DMA_SPAR(x) (0x0018 + 0x18 * (x)) /* DMA stream x memory 0 address register */ #define STM32_DMA_SM0AR(x) (0x001c + 0x18 * (x)) /* DMA stream x memory 1 address register */ #define STM32_DMA_SM1AR(x) (0x0020 + 0x18 * (x)) /* DMA stream x FIFO control register */ #define STM32_DMA_SFCR(x) (0x0024 + 0x18 * (x)) #define STM32_DMA_SFCR_FTH_MASK GENMASK(1, 0) #define STM32_DMA_SFCR_FTH(n) (n & STM32_DMA_SFCR_FTH_MASK) #define STM32_DMA_SFCR_FEIE BIT(7) /* FIFO error interrupt enable */ #define STM32_DMA_SFCR_DMDIS BIT(2) /* Direct mode disable */ #define STM32_DMA_SFCR_MASK (STM32_DMA_SFCR_FEIE \ | STM32_DMA_SFCR_DMDIS) /* DMA direction */ #define STM32_DMA_DEV_TO_MEM 0x00 #define STM32_DMA_MEM_TO_DEV 0x01 #define STM32_DMA_MEM_TO_MEM 0x02 /* DMA priority level */ #define STM32_DMA_PRIORITY_LOW 0x00 #define STM32_DMA_PRIORITY_MEDIUM 0x01 #define STM32_DMA_PRIORITY_HIGH 0x02 #define STM32_DMA_PRIORITY_VERY_HIGH 0x03 /* DMA FIFO threshold selection */ #define STM32_DMA_FIFO_THRESHOLD_1QUARTERFULL 0x00 #define STM32_DMA_FIFO_THRESHOLD_HALFFULL 0x01 #define STM32_DMA_FIFO_THRESHOLD_3QUARTERSFULL 0x02 #define STM32_DMA_FIFO_THRESHOLD_FULL 0x03 #define STM32_DMA_FIFO_THRESHOLD_NONE 0x04 #define STM32_DMA_MAX_DATA_ITEMS 0xffff /* * Valid transfer starts from @0 to @0xFFFE leading to unaligned scatter * gather at boundary. Thus it's safer to round down this value on FIFO * size (16 Bytes) */ #define STM32_DMA_ALIGNED_MAX_DATA_ITEMS \ ALIGN_DOWN(STM32_DMA_MAX_DATA_ITEMS, 16) #define STM32_DMA_MAX_CHANNELS 0x08 #define STM32_DMA_MAX_REQUEST_ID 0x08 #define STM32_DMA_MAX_DATA_PARAM 0x03 #define STM32_DMA_FIFO_SIZE 16 /* FIFO is 16 bytes */ #define STM32_DMA_MIN_BURST 4 #define STM32_DMA_MAX_BURST 16 /* DMA Features */ #define STM32_DMA_THRESHOLD_FTR_MASK GENMASK(1, 0) #define STM32_DMA_THRESHOLD_FTR_GET(n) ((n) & STM32_DMA_THRESHOLD_FTR_MASK) #define STM32_DMA_DIRECT_MODE_MASK BIT(2) #define STM32_DMA_DIRECT_MODE_GET(n) (((n) & STM32_DMA_DIRECT_MODE_MASK) >> 2) #define STM32_DMA_ALT_ACK_MODE_MASK BIT(4) #define STM32_DMA_ALT_ACK_MODE_GET(n) (((n) & STM32_DMA_ALT_ACK_MODE_MASK) >> 4) enum stm32_dma_width { STM32_DMA_BYTE, STM32_DMA_HALF_WORD, STM32_DMA_WORD, }; enum stm32_dma_burst_size { STM32_DMA_BURST_SINGLE, STM32_DMA_BURST_INCR4, STM32_DMA_BURST_INCR8, STM32_DMA_BURST_INCR16, }; /** * struct stm32_dma_cfg - STM32 DMA custom configuration * @channel_id: channel ID * @request_line: DMA request * @stream_config: 32bit mask specifying the DMA channel configuration * @features: 32bit mask specifying the DMA Feature list */ struct stm32_dma_cfg { u32 channel_id; u32 request_line; u32 stream_config; u32 features; }; struct stm32_dma_chan_reg { u32 dma_lisr; u32 dma_hisr; u32 dma_lifcr; u32 dma_hifcr; u32 dma_scr; u32 dma_sndtr; u32 dma_spar; u32 dma_sm0ar; u32 dma_sm1ar; u32 dma_sfcr; }; struct stm32_dma_sg_req { u32 len; struct stm32_dma_chan_reg chan_reg; }; struct stm32_dma_desc { struct virt_dma_desc vdesc; bool cyclic; u32 num_sgs; struct stm32_dma_sg_req sg_req[]; }; struct stm32_dma_chan { struct virt_dma_chan vchan; bool config_init; bool busy; u32 id; u32 irq; struct stm32_dma_desc *desc; u32 next_sg; struct dma_slave_config dma_sconfig; struct stm32_dma_chan_reg chan_reg; u32 threshold; u32 mem_burst; u32 mem_width; }; struct stm32_dma_device { struct dma_device ddev; void __iomem *base; struct clk *clk; bool mem2mem; struct stm32_dma_chan chan[STM32_DMA_MAX_CHANNELS]; }; static struct stm32_dma_device *stm32_dma_get_dev(struct stm32_dma_chan *chan) { return container_of(chan->vchan.chan.device, struct stm32_dma_device, ddev); } static struct stm32_dma_chan *to_stm32_dma_chan(struct dma_chan *c) { return container_of(c, struct stm32_dma_chan, vchan.chan); } static struct stm32_dma_desc *to_stm32_dma_desc(struct virt_dma_desc *vdesc) { return container_of(vdesc, struct stm32_dma_desc, vdesc); } static struct device *chan2dev(struct stm32_dma_chan *chan) { return &chan->vchan.chan.dev->device; } static u32 stm32_dma_read(struct stm32_dma_device *dmadev, u32 reg) { return readl_relaxed(dmadev->base + reg); } static void stm32_dma_write(struct stm32_dma_device *dmadev, u32 reg, u32 val) { writel_relaxed(val, dmadev->base + reg); } static int stm32_dma_get_width(struct stm32_dma_chan *chan, enum dma_slave_buswidth width) { switch (width) { case DMA_SLAVE_BUSWIDTH_1_BYTE: return STM32_DMA_BYTE; case DMA_SLAVE_BUSWIDTH_2_BYTES: return STM32_DMA_HALF_WORD; case DMA_SLAVE_BUSWIDTH_4_BYTES: return STM32_DMA_WORD; default: dev_err(chan2dev(chan), "Dma bus width not supported\n"); return -EINVAL; } } static enum dma_slave_buswidth stm32_dma_get_max_width(u32 buf_len, dma_addr_t buf_addr, u32 threshold) { enum dma_slave_buswidth max_width; u64 addr = buf_addr; if (threshold == STM32_DMA_FIFO_THRESHOLD_FULL) max_width = DMA_SLAVE_BUSWIDTH_4_BYTES; else max_width = DMA_SLAVE_BUSWIDTH_2_BYTES; while ((buf_len < max_width || buf_len % max_width) && max_width > DMA_SLAVE_BUSWIDTH_1_BYTE) max_width = max_width >> 1; if (do_div(addr, max_width)) max_width = DMA_SLAVE_BUSWIDTH_1_BYTE; return max_width; } static bool stm32_dma_fifo_threshold_is_allowed(u32 burst, u32 threshold, enum dma_slave_buswidth width) { u32 remaining; if (threshold == STM32_DMA_FIFO_THRESHOLD_NONE) return false; if (width != DMA_SLAVE_BUSWIDTH_UNDEFINED) { if (burst != 0) { /* * If number of beats fit in several whole bursts * this configuration is allowed. */ remaining = ((STM32_DMA_FIFO_SIZE / width) * (threshold + 1) / 4) % burst; if (remaining == 0) return true; } else { return true; } } return false; } static bool stm32_dma_is_burst_possible(u32 buf_len, u32 threshold) { /* If FIFO direct mode, burst is not possible */ if (threshold == STM32_DMA_FIFO_THRESHOLD_NONE) return false; /* * Buffer or period length has to be aligned on FIFO depth. * Otherwise bytes may be stuck within FIFO at buffer or period * length. */ return ((buf_len % ((threshold + 1) * 4)) == 0); } static u32 stm32_dma_get_best_burst(u32 buf_len, u32 max_burst, u32 threshold, enum dma_slave_buswidth width) { u32 best_burst = max_burst; if (best_burst == 1 || !stm32_dma_is_burst_possible(buf_len, threshold)) return 0; while ((buf_len < best_burst * width && best_burst > 1) || !stm32_dma_fifo_threshold_is_allowed(best_burst, threshold, width)) { if (best_burst > STM32_DMA_MIN_BURST) best_burst = best_burst >> 1; else best_burst = 0; } return best_burst; } static int stm32_dma_get_burst(struct stm32_dma_chan *chan, u32 maxburst) { switch (maxburst) { case 0: case 1: return STM32_DMA_BURST_SINGLE; case 4: return STM32_DMA_BURST_INCR4; case 8: return STM32_DMA_BURST_INCR8; case 16: return STM32_DMA_BURST_INCR16; default: dev_err(chan2dev(chan), "Dma burst size not supported\n"); return -EINVAL; } } static void stm32_dma_set_fifo_config(struct stm32_dma_chan *chan, u32 src_burst, u32 dst_burst) { chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_MASK; chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_DMEIE; if (!src_burst && !dst_burst) { /* Using direct mode */ chan->chan_reg.dma_scr |= STM32_DMA_SCR_DMEIE; } else { /* Using FIFO mode */ chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK; } } static int stm32_dma_slave_config(struct dma_chan *c, struct dma_slave_config *config) { struct stm32_dma_chan *chan = to_stm32_dma_chan(c); memcpy(&chan->dma_sconfig, config, sizeof(*config)); chan->config_init = true; return 0; } static u32 stm32_dma_irq_status(struct stm32_dma_chan *chan) { struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); u32 flags, dma_isr; /* * Read "flags" from DMA_xISR register corresponding to the selected * DMA channel at the correct bit offset inside that register. * * If (ch % 4) is 2 or 3, left shift the mask by 16 bits. * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits. */ if (chan->id & 4) dma_isr = stm32_dma_read(dmadev, STM32_DMA_HISR); else dma_isr = stm32_dma_read(dmadev, STM32_DMA_LISR); flags = dma_isr >> (((chan->id & 2) << 3) | ((chan->id & 1) * 6)); return flags & STM32_DMA_MASKI; } static void stm32_dma_irq_clear(struct stm32_dma_chan *chan, u32 flags) { struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); u32 dma_ifcr; /* * Write "flags" to the DMA_xIFCR register corresponding to the selected * DMA channel at the correct bit offset inside that register. * * If (ch % 4) is 2 or 3, left shift the mask by 16 bits. * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits. */ flags &= STM32_DMA_MASKI; dma_ifcr = flags << (((chan->id & 2) << 3) | ((chan->id & 1) * 6)); if (chan->id & 4) stm32_dma_write(dmadev, STM32_DMA_HIFCR, dma_ifcr); else stm32_dma_write(dmadev, STM32_DMA_LIFCR, dma_ifcr); } static int stm32_dma_disable_chan(struct stm32_dma_chan *chan) { struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); u32 dma_scr, id, reg; id = chan->id; reg = STM32_DMA_SCR(id); dma_scr = stm32_dma_read(dmadev, reg); if (dma_scr & STM32_DMA_SCR_EN) { dma_scr &= ~STM32_DMA_SCR_EN; stm32_dma_write(dmadev, reg, dma_scr); return readl_relaxed_poll_timeout_atomic(dmadev->base + reg, dma_scr, !(dma_scr & STM32_DMA_SCR_EN), 10, 1000000); } return 0; } static void stm32_dma_stop(struct stm32_dma_chan *chan) { struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); u32 dma_scr, dma_sfcr, status; int ret; /* Disable interrupts */ dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id)); dma_scr &= ~STM32_DMA_SCR_IRQ_MASK; stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr); dma_sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id)); dma_sfcr &= ~STM32_DMA_SFCR_FEIE; stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), dma_sfcr); /* Disable DMA */ ret = stm32_dma_disable_chan(chan); if (ret < 0) return; /* Clear interrupt status if it is there */ status = stm32_dma_irq_status(chan); if (status) { dev_dbg(chan2dev(chan), "%s(): clearing interrupt: 0x%08x\n", __func__, status); stm32_dma_irq_clear(chan, status); } chan->busy = false; } static int stm32_dma_terminate_all(struct dma_chan *c) { struct stm32_dma_chan *chan = to_stm32_dma_chan(c); unsigned long flags; LIST_HEAD(head); spin_lock_irqsave(&chan->vchan.lock, flags); if (chan->desc) { vchan_terminate_vdesc(&chan->desc->vdesc); if (chan->busy) stm32_dma_stop(chan); chan->desc = NULL; } vchan_get_all_descriptors(&chan->vchan, &head); spin_unlock_irqrestore(&chan->vchan.lock, flags); vchan_dma_desc_free_list(&chan->vchan, &head); return 0; } static void stm32_dma_synchronize(struct dma_chan *c) { struct stm32_dma_chan *chan = to_stm32_dma_chan(c); vchan_synchronize(&chan->vchan); } static void stm32_dma_dump_reg(struct stm32_dma_chan *chan) { struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); u32 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id)); u32 ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id)); u32 spar = stm32_dma_read(dmadev, STM32_DMA_SPAR(chan->id)); u32 sm0ar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(chan->id)); u32 sm1ar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(chan->id)); u32 sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id)); dev_dbg(chan2dev(chan), "SCR: 0x%08x\n", scr); dev_dbg(chan2dev(chan), "NDTR: 0x%08x\n", ndtr); dev_dbg(chan2dev(chan), "SPAR: 0x%08x\n", spar); dev_dbg(chan2dev(chan), "SM0AR: 0x%08x\n", sm0ar); dev_dbg(chan2dev(chan), "SM1AR: 0x%08x\n", sm1ar); dev_dbg(chan2dev(chan), "SFCR: 0x%08x\n", sfcr); } static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan); static void stm32_dma_start_transfer(struct stm32_dma_chan *chan) { struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); struct virt_dma_desc *vdesc; struct stm32_dma_sg_req *sg_req; struct stm32_dma_chan_reg *reg; u32 status; int ret; ret = stm32_dma_disable_chan(chan); if (ret < 0) return; if (!chan->desc) { vdesc = vchan_next_desc(&chan->vchan); if (!vdesc) return; list_del(&vdesc->node); chan->desc = to_stm32_dma_desc(vdesc); chan->next_sg = 0; } if (chan->next_sg == chan->desc->num_sgs) chan->next_sg = 0; sg_req = &chan->desc->sg_req[chan->next_sg]; reg = &sg_req->chan_reg; reg->dma_scr &= ~STM32_DMA_SCR_EN; stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr); stm32_dma_write(dmadev, STM32_DMA_SPAR(chan->id), reg->dma_spar); stm32_dma_write(dmadev, STM32_DMA_SM0AR(chan->id), reg->dma_sm0ar); stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), reg->dma_sfcr); stm32_dma_write(dmadev, STM32_DMA_SM1AR(chan->id), reg->dma_sm1ar); stm32_dma_write(dmadev, STM32_DMA_SNDTR(chan->id), reg->dma_sndtr); chan->next_sg++; /* Clear interrupt status if it is there */ status = stm32_dma_irq_status(chan); if (status) stm32_dma_irq_clear(chan, status); if (chan->desc->cyclic) stm32_dma_configure_next_sg(chan); stm32_dma_dump_reg(chan); /* Start DMA */ reg->dma_scr |= STM32_DMA_SCR_EN; stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr); chan->busy = true; dev_dbg(chan2dev(chan), "vchan %pK: started\n", &chan->vchan); } static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan) { struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); struct stm32_dma_sg_req *sg_req; u32 dma_scr, dma_sm0ar, dma_sm1ar, id; id = chan->id; dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id)); if (dma_scr & STM32_DMA_SCR_DBM) { if (chan->next_sg == chan->desc->num_sgs) chan->next_sg = 0; sg_req = &chan->desc->sg_req[chan->next_sg]; if (dma_scr & STM32_DMA_SCR_CT) { dma_sm0ar = sg_req->chan_reg.dma_sm0ar; stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), dma_sm0ar); dev_dbg(chan2dev(chan), "CT=1 <=> SM0AR: 0x%08x\n", stm32_dma_read(dmadev, STM32_DMA_SM0AR(id))); } else { dma_sm1ar = sg_req->chan_reg.dma_sm1ar; stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), dma_sm1ar); dev_dbg(chan2dev(chan), "CT=0 <=> SM1AR: 0x%08x\n", stm32_dma_read(dmadev, STM32_DMA_SM1AR(id))); } } } static void stm32_dma_handle_chan_done(struct stm32_dma_chan *chan) { if (chan->desc) { if (chan->desc->cyclic) { vchan_cyclic_callback(&chan->desc->vdesc); chan->next_sg++; stm32_dma_configure_next_sg(chan); } else { chan->busy = false; if (chan->next_sg == chan->desc->num_sgs) { vchan_cookie_complete(&chan->desc->vdesc); chan->desc = NULL; } stm32_dma_start_transfer(chan); } } } static irqreturn_t stm32_dma_chan_irq(int irq, void *devid) { struct stm32_dma_chan *chan = devid; struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); u32 status, scr, sfcr; spin_lock(&chan->vchan.lock); status = stm32_dma_irq_status(chan); scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id)); sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id)); if (status & STM32_DMA_FEI) { stm32_dma_irq_clear(chan, STM32_DMA_FEI); status &= ~STM32_DMA_FEI; if (sfcr & STM32_DMA_SFCR_FEIE) { if (!(scr & STM32_DMA_SCR_EN) && !(status & STM32_DMA_TCI)) dev_err(chan2dev(chan), "FIFO Error\n"); else dev_dbg(chan2dev(chan), "FIFO over/underrun\n"); } } if (status & STM32_DMA_DMEI) { stm32_dma_irq_clear(chan, STM32_DMA_DMEI); status &= ~STM32_DMA_DMEI; if (sfcr & STM32_DMA_SCR_DMEIE) dev_dbg(chan2dev(chan), "Direct mode overrun\n"); } if (status & STM32_DMA_TCI) { stm32_dma_irq_clear(chan, STM32_DMA_TCI); if (scr & STM32_DMA_SCR_TCIE) stm32_dma_handle_chan_done(chan); status &= ~STM32_DMA_TCI; } if (status & STM32_DMA_HTI) { stm32_dma_irq_clear(chan, STM32_DMA_HTI); status &= ~STM32_DMA_HTI; } if (status) { stm32_dma_irq_clear(chan, status); dev_err(chan2dev(chan), "DMA error: status=0x%08x\n", status); if (!(scr & STM32_DMA_SCR_EN)) dev_err(chan2dev(chan), "chan disabled by HW\n"); } spin_unlock(&chan->vchan.lock); return IRQ_HANDLED; } static void stm32_dma_issue_pending(struct dma_chan *c) { struct stm32_dma_chan *chan = to_stm32_dma_chan(c); unsigned long flags; spin_lock_irqsave(&chan->vchan.lock, flags); if (vchan_issue_pending(&chan->vchan) && !chan->desc && !chan->busy) { dev_dbg(chan2dev(chan), "vchan %pK: issued\n", &chan->vchan); stm32_dma_start_transfer(chan); } spin_unlock_irqrestore(&chan->vchan.lock, flags); } static int stm32_dma_set_xfer_param(struct stm32_dma_chan *chan, enum dma_transfer_direction direction, enum dma_slave_buswidth *buswidth, u32 buf_len, dma_addr_t buf_addr) { enum dma_slave_buswidth src_addr_width, dst_addr_width; int src_bus_width, dst_bus_width; int src_burst_size, dst_burst_size; u32 src_maxburst, dst_maxburst, src_best_burst, dst_best_burst; u32 dma_scr, fifoth; src_addr_width = chan->dma_sconfig.src_addr_width; dst_addr_width = chan->dma_sconfig.dst_addr_width; src_maxburst = chan->dma_sconfig.src_maxburst; dst_maxburst = chan->dma_sconfig.dst_maxburst; fifoth = chan->threshold; switch (direction) { case DMA_MEM_TO_DEV: /* Set device data size */ dst_bus_width = stm32_dma_get_width(chan, dst_addr_width); if (dst_bus_width < 0) return dst_bus_width; /* Set device burst size */ dst_best_burst = stm32_dma_get_best_burst(buf_len, dst_maxburst, fifoth, dst_addr_width); dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst); if (dst_burst_size < 0) return dst_burst_size; /* Set memory data size */ src_addr_width = stm32_dma_get_max_width(buf_len, buf_addr, fifoth); chan->mem_width = src_addr_width; src_bus_width = stm32_dma_get_width(chan, src_addr_width); if (src_bus_width < 0) return src_bus_width; /* Set memory burst size */ src_maxburst = STM32_DMA_MAX_BURST; src_best_burst = stm32_dma_get_best_burst(buf_len, src_maxburst, fifoth, src_addr_width); src_burst_size = stm32_dma_get_burst(chan, src_best_burst); if (src_burst_size < 0) return src_burst_size; dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_DEV) | STM32_DMA_SCR_PSIZE(dst_bus_width) | STM32_DMA_SCR_MSIZE(src_bus_width) | STM32_DMA_SCR_PBURST(dst_burst_size) | STM32_DMA_SCR_MBURST(src_burst_size); /* Set FIFO threshold */ chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK; if (fifoth != STM32_DMA_FIFO_THRESHOLD_NONE) chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(fifoth); /* Set peripheral address */ chan->chan_reg.dma_spar = chan->dma_sconfig.dst_addr; *buswidth = dst_addr_width; break; case DMA_DEV_TO_MEM: /* Set device data size */ src_bus_width = stm32_dma_get_width(chan, src_addr_width); if (src_bus_width < 0) return src_bus_width; /* Set device burst size */ src_best_burst = stm32_dma_get_best_burst(buf_len, src_maxburst, fifoth, src_addr_width); chan->mem_burst = src_best_burst; src_burst_size = stm32_dma_get_burst(chan, src_best_burst); if (src_burst_size < 0) return src_burst_size; /* Set memory data size */ dst_addr_width = stm32_dma_get_max_width(buf_len, buf_addr, fifoth); chan->mem_width = dst_addr_width; dst_bus_width = stm32_dma_get_width(chan, dst_addr_width); if (dst_bus_width < 0) return dst_bus_width; /* Set memory burst size */ dst_maxburst = STM32_DMA_MAX_BURST; dst_best_burst = stm32_dma_get_best_burst(buf_len, dst_maxburst, fifoth, dst_addr_width); chan->mem_burst = dst_best_burst; dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst); if (dst_burst_size < 0) return dst_burst_size; dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_DEV_TO_MEM) | STM32_DMA_SCR_PSIZE(src_bus_width) | STM32_DMA_SCR_MSIZE(dst_bus_width) | STM32_DMA_SCR_PBURST(src_burst_size) | STM32_DMA_SCR_MBURST(dst_burst_size); /* Set FIFO threshold */ chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK; if (fifoth != STM32_DMA_FIFO_THRESHOLD_NONE) chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(fifoth); /* Set peripheral address */ chan->chan_reg.dma_spar = chan->dma_sconfig.src_addr; *buswidth = chan->dma_sconfig.src_addr_width; break; default: dev_err(chan2dev(chan), "Dma direction is not supported\n"); return -EINVAL; } stm32_dma_set_fifo_config(chan, src_best_burst, dst_best_burst); /* Set DMA control register */ chan->chan_reg.dma_scr &= ~(STM32_DMA_SCR_DIR_MASK | STM32_DMA_SCR_PSIZE_MASK | STM32_DMA_SCR_MSIZE_MASK | STM32_DMA_SCR_PBURST_MASK | STM32_DMA_SCR_MBURST_MASK); chan->chan_reg.dma_scr |= dma_scr; return 0; } static void stm32_dma_clear_reg(struct stm32_dma_chan_reg *regs) { memset(regs, 0, sizeof(struct stm32_dma_chan_reg)); } static struct dma_async_tx_descriptor *stm32_dma_prep_slave_sg( struct dma_chan *c, struct scatterlist *sgl, u32 sg_len, enum dma_transfer_direction direction, unsigned long flags, void *context) { struct stm32_dma_chan *chan = to_stm32_dma_chan(c); struct stm32_dma_desc *desc; struct scatterlist *sg; enum dma_slave_buswidth buswidth; u32 nb_data_items; int i, ret; if (!chan->config_init) { dev_err(chan2dev(chan), "dma channel is not configured\n"); return NULL; } if (sg_len < 1) { dev_err(chan2dev(chan), "Invalid segment length %d\n", sg_len); return NULL; } desc = kzalloc(struct_size(desc, sg_req, sg_len), GFP_NOWAIT); if (!desc) return NULL; /* Set peripheral flow controller */ if (chan->dma_sconfig.device_fc) chan->chan_reg.dma_scr |= STM32_DMA_SCR_PFCTRL; else chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL; for_each_sg(sgl, sg, sg_len, i) { ret = stm32_dma_set_xfer_param(chan, direction, &buswidth, sg_dma_len(sg), sg_dma_address(sg)); if (ret < 0) goto err; desc->sg_req[i].len = sg_dma_len(sg); nb_data_items = desc->sg_req[i].len / buswidth; if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) { dev_err(chan2dev(chan), "nb items not supported\n"); goto err; } stm32_dma_clear_reg(&desc->sg_req[i].chan_reg); desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr; desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr; desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar; desc->sg_req[i].chan_reg.dma_sm0ar = sg_dma_address(sg); desc->sg_req[i].chan_reg.dma_sm1ar = sg_dma_address(sg); desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items; } desc->num_sgs = sg_len; desc->cyclic = false; return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags); err: kfree(desc); return NULL; } static struct dma_async_tx_descriptor *stm32_dma_prep_dma_cyclic( struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len, size_t period_len, enum dma_transfer_direction direction, unsigned long flags) { struct stm32_dma_chan *chan = to_stm32_dma_chan(c); struct stm32_dma_desc *desc; enum dma_slave_buswidth buswidth; u32 num_periods, nb_data_items; int i, ret; if (!buf_len || !period_len) { dev_err(chan2dev(chan), "Invalid buffer/period len\n"); return NULL; } if (!chan->config_init) { dev_err(chan2dev(chan), "dma channel is not configured\n"); return NULL; } if (buf_len % period_len) { dev_err(chan2dev(chan), "buf_len not multiple of period_len\n"); return NULL; } /* * We allow to take more number of requests till DMA is * not started. The driver will loop over all requests. * Once DMA is started then new requests can be queued only after * terminating the DMA. */ if (chan->busy) { dev_err(chan2dev(chan), "Request not allowed when dma busy\n"); return NULL; } ret = stm32_dma_set_xfer_param(chan, direction, &buswidth, period_len, buf_addr); if (ret < 0) return NULL; nb_data_items = period_len / buswidth; if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) { dev_err(chan2dev(chan), "number of items not supported\n"); return NULL; } /* Enable Circular mode or double buffer mode */ if (buf_len == period_len) chan->chan_reg.dma_scr |= STM32_DMA_SCR_CIRC; else chan->chan_reg.dma_scr |= STM32_DMA_SCR_DBM; /* Clear periph ctrl if client set it */ chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL; num_periods = buf_len / period_len; desc = kzalloc(struct_size(desc, sg_req, num_periods), GFP_NOWAIT); if (!desc) return NULL; for (i = 0; i < num_periods; i++) { desc->sg_req[i].len = period_len; stm32_dma_clear_reg(&desc->sg_req[i].chan_reg); desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr; desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr; desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar; desc->sg_req[i].chan_reg.dma_sm0ar = buf_addr; desc->sg_req[i].chan_reg.dma_sm1ar = buf_addr; desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items; buf_addr += period_len; } desc->num_sgs = num_periods; desc->cyclic = true; return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags); } static struct dma_async_tx_descriptor *stm32_dma_prep_dma_memcpy( struct dma_chan *c, dma_addr_t dest, dma_addr_t src, size_t len, unsigned long flags) { struct stm32_dma_chan *chan = to_stm32_dma_chan(c); enum dma_slave_buswidth max_width; struct stm32_dma_desc *desc; size_t xfer_count, offset; u32 num_sgs, best_burst, dma_burst, threshold; int i; num_sgs = DIV_ROUND_UP(len, STM32_DMA_ALIGNED_MAX_DATA_ITEMS); desc = kzalloc(struct_size(desc, sg_req, num_sgs), GFP_NOWAIT); if (!desc) return NULL; threshold = chan->threshold; for (offset = 0, i = 0; offset < len; offset += xfer_count, i++) { xfer_count = min_t(size_t, len - offset, STM32_DMA_ALIGNED_MAX_DATA_ITEMS); /* Compute best burst size */ max_width = DMA_SLAVE_BUSWIDTH_1_BYTE; best_burst = stm32_dma_get_best_burst(len, STM32_DMA_MAX_BURST, threshold, max_width); dma_burst = stm32_dma_get_burst(chan, best_burst); stm32_dma_clear_reg(&desc->sg_req[i].chan_reg); desc->sg_req[i].chan_reg.dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_MEM) | STM32_DMA_SCR_PBURST(dma_burst) | STM32_DMA_SCR_MBURST(dma_burst) | STM32_DMA_SCR_MINC | STM32_DMA_SCR_PINC | STM32_DMA_SCR_TCIE | STM32_DMA_SCR_TEIE; desc->sg_req[i].chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK; desc->sg_req[i].chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(threshold); desc->sg_req[i].chan_reg.dma_spar = src + offset; desc->sg_req[i].chan_reg.dma_sm0ar = dest + offset; desc->sg_req[i].chan_reg.dma_sndtr = xfer_count; desc->sg_req[i].len = xfer_count; } desc->num_sgs = num_sgs; desc->cyclic = false; return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags); } static u32 stm32_dma_get_remaining_bytes(struct stm32_dma_chan *chan) { u32 dma_scr, width, ndtr; struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id)); width = STM32_DMA_SCR_PSIZE_GET(dma_scr); ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id)); return ndtr << width; } /** * stm32_dma_is_current_sg - check that expected sg_req is currently transferred * @chan: dma channel * * This function called when IRQ are disable, checks that the hardware has not * switched on the next transfer in double buffer mode. The test is done by * comparing the next_sg memory address with the hardware related register * (based on CT bit value). * * Returns true if expected current transfer is still running or double * buffer mode is not activated. */ static bool stm32_dma_is_current_sg(struct stm32_dma_chan *chan) { struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); struct stm32_dma_sg_req *sg_req; u32 dma_scr, dma_smar, id; id = chan->id; dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id)); if (!(dma_scr & STM32_DMA_SCR_DBM)) return true; sg_req = &chan->desc->sg_req[chan->next_sg]; if (dma_scr & STM32_DMA_SCR_CT) { dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(id)); return (dma_smar == sg_req->chan_reg.dma_sm0ar); } dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(id)); return (dma_smar == sg_req->chan_reg.dma_sm1ar); } static size_t stm32_dma_desc_residue(struct stm32_dma_chan *chan, struct stm32_dma_desc *desc, u32 next_sg) { u32 modulo, burst_size; u32 residue; u32 n_sg = next_sg; struct stm32_dma_sg_req *sg_req = &chan->desc->sg_req[chan->next_sg]; int i; /* * Calculate the residue means compute the descriptors * information: * - the sg_req currently transferred * - the Hardware remaining position in this sg (NDTR bits field). * * A race condition may occur if DMA is running in cyclic or double * buffer mode, since the DMA register are automatically reloaded at end * of period transfer. The hardware may have switched to the next * transfer (CT bit updated) just before the position (SxNDTR reg) is * read. * In this case the SxNDTR reg could (or not) correspond to the new * transfer position, and not the expected one. * The strategy implemented in the stm32 driver is to: * - read the SxNDTR register * - crosscheck that hardware is still in current transfer. * In case of switch, we can assume that the DMA is at the beginning of * the next transfer. So we approximate the residue in consequence, by * pointing on the beginning of next transfer. * * This race condition doesn't apply for none cyclic mode, as double * buffer is not used. In such situation registers are updated by the * software. */ residue = stm32_dma_get_remaining_bytes(chan); if (!stm32_dma_is_current_sg(chan)) { n_sg++; if (n_sg == chan->desc->num_sgs) n_sg = 0; residue = sg_req->len; } /* * In cyclic mode, for the last period, residue = remaining bytes * from NDTR, * else for all other periods in cyclic mode, and in sg mode, * residue = remaining bytes from NDTR + remaining * periods/sg to be transferred */ if (!chan->desc->cyclic || n_sg != 0) for (i = n_sg; i < desc->num_sgs; i++) residue += desc->sg_req[i].len; if (!chan->mem_burst) return residue; burst_size = chan->mem_burst * chan->mem_width; modulo = residue % burst_size; if (modulo) residue = residue - modulo + burst_size; return residue; } static enum dma_status stm32_dma_tx_status(struct dma_chan *c, dma_cookie_t cookie, struct dma_tx_state *state) { struct stm32_dma_chan *chan = to_stm32_dma_chan(c); struct virt_dma_desc *vdesc; enum dma_status status; unsigned long flags; u32 residue = 0; status = dma_cookie_status(c, cookie, state); if (status == DMA_COMPLETE || !state) return status; spin_lock_irqsave(&chan->vchan.lock, flags); vdesc = vchan_find_desc(&chan->vchan, cookie); if (chan->desc && cookie == chan->desc->vdesc.tx.cookie) residue = stm32_dma_desc_residue(chan, chan->desc, chan->next_sg); else if (vdesc) residue = stm32_dma_desc_residue(chan, to_stm32_dma_desc(vdesc), 0); dma_set_residue(state, residue); spin_unlock_irqrestore(&chan->vchan.lock, flags); return status; } static int stm32_dma_alloc_chan_resources(struct dma_chan *c) { struct stm32_dma_chan *chan = to_stm32_dma_chan(c); struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); int ret; chan->config_init = false; ret = pm_runtime_get_sync(dmadev->ddev.dev); if (ret < 0) return ret; ret = stm32_dma_disable_chan(chan); if (ret < 0) pm_runtime_put(dmadev->ddev.dev); return ret; } static void stm32_dma_free_chan_resources(struct dma_chan *c) { struct stm32_dma_chan *chan = to_stm32_dma_chan(c); struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); unsigned long flags; dev_dbg(chan2dev(chan), "Freeing channel %d\n", chan->id); if (chan->busy) { spin_lock_irqsave(&chan->vchan.lock, flags); stm32_dma_stop(chan); chan->desc = NULL; spin_unlock_irqrestore(&chan->vchan.lock, flags); } pm_runtime_put(dmadev->ddev.dev); vchan_free_chan_resources(to_virt_chan(c)); stm32_dma_clear_reg(&chan->chan_reg); chan->threshold = 0; } static void stm32_dma_desc_free(struct virt_dma_desc *vdesc) { kfree(container_of(vdesc, struct stm32_dma_desc, vdesc)); } static void stm32_dma_set_config(struct stm32_dma_chan *chan, struct stm32_dma_cfg *cfg) { stm32_dma_clear_reg(&chan->chan_reg); chan->chan_reg.dma_scr = cfg->stream_config & STM32_DMA_SCR_CFG_MASK; chan->chan_reg.dma_scr |= STM32_DMA_SCR_REQ(cfg->request_line); /* Enable Interrupts */ chan->chan_reg.dma_scr |= STM32_DMA_SCR_TEIE | STM32_DMA_SCR_TCIE; chan->threshold = STM32_DMA_THRESHOLD_FTR_GET(cfg->features); if (STM32_DMA_DIRECT_MODE_GET(cfg->features)) chan->threshold = STM32_DMA_FIFO_THRESHOLD_NONE; if (STM32_DMA_ALT_ACK_MODE_GET(cfg->features)) chan->chan_reg.dma_scr |= STM32_DMA_SCR_TRBUFF; } static struct dma_chan *stm32_dma_of_xlate(struct of_phandle_args *dma_spec, struct of_dma *ofdma) { struct stm32_dma_device *dmadev = ofdma->of_dma_data; struct device *dev = dmadev->ddev.dev; struct stm32_dma_cfg cfg; struct stm32_dma_chan *chan; struct dma_chan *c; if (dma_spec->args_count < 4) { dev_err(dev, "Bad number of cells\n"); return NULL; } cfg.channel_id = dma_spec->args[0]; cfg.request_line = dma_spec->args[1]; cfg.stream_config = dma_spec->args[2]; cfg.features = dma_spec->args[3]; if (cfg.channel_id >= STM32_DMA_MAX_CHANNELS || cfg.request_line >= STM32_DMA_MAX_REQUEST_ID) { dev_err(dev, "Bad channel and/or request id\n"); return NULL; } chan = &dmadev->chan[cfg.channel_id]; c = dma_get_slave_channel(&chan->vchan.chan); if (!c) { dev_err(dev, "No more channels available\n"); return NULL; } stm32_dma_set_config(chan, &cfg); return c; } static const struct of_device_id stm32_dma_of_match[] = { { .compatible = "st,stm32-dma", }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, stm32_dma_of_match); static int stm32_dma_probe(struct platform_device *pdev) { struct stm32_dma_chan *chan; struct stm32_dma_device *dmadev; struct dma_device *dd; const struct of_device_id *match; struct resource *res; struct reset_control *rst; int i, ret; match = of_match_device(stm32_dma_of_match, &pdev->dev); if (!match) { dev_err(&pdev->dev, "Error: No device match found\n"); return -ENODEV; } dmadev = devm_kzalloc(&pdev->dev, sizeof(*dmadev), GFP_KERNEL); if (!dmadev) return -ENOMEM; dd = &dmadev->ddev; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); dmadev->base = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(dmadev->base)) return PTR_ERR(dmadev->base); dmadev->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(dmadev->clk)) return dev_err_probe(&pdev->dev, PTR_ERR(dmadev->clk), "Can't get clock\n"); ret = clk_prepare_enable(dmadev->clk); if (ret < 0) { dev_err(&pdev->dev, "clk_prep_enable error: %d\n", ret); return ret; } dmadev->mem2mem = of_property_read_bool(pdev->dev.of_node, "st,mem2mem"); rst = devm_reset_control_get(&pdev->dev, NULL); if (IS_ERR(rst)) { ret = PTR_ERR(rst); if (ret == -EPROBE_DEFER) goto clk_free; } else { reset_control_assert(rst); udelay(2); reset_control_deassert(rst); } dma_set_max_seg_size(&pdev->dev, STM32_DMA_ALIGNED_MAX_DATA_ITEMS); dma_cap_set(DMA_SLAVE, dd->cap_mask); dma_cap_set(DMA_PRIVATE, dd->cap_mask); dma_cap_set(DMA_CYCLIC, dd->cap_mask); dd->device_alloc_chan_resources = stm32_dma_alloc_chan_resources; dd->device_free_chan_resources = stm32_dma_free_chan_resources; dd->device_tx_status = stm32_dma_tx_status; dd->device_issue_pending = stm32_dma_issue_pending; dd->device_prep_slave_sg = stm32_dma_prep_slave_sg; dd->device_prep_dma_cyclic = stm32_dma_prep_dma_cyclic; dd->device_config = stm32_dma_slave_config; dd->device_terminate_all = stm32_dma_terminate_all; dd->device_synchronize = stm32_dma_synchronize; dd->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | BIT(DMA_SLAVE_BUSWIDTH_4_BYTES); dd->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | BIT(DMA_SLAVE_BUSWIDTH_4_BYTES); dd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); dd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; dd->copy_align = DMAENGINE_ALIGN_32_BYTES; dd->max_burst = STM32_DMA_MAX_BURST; dd->descriptor_reuse = true; dd->dev = &pdev->dev; INIT_LIST_HEAD(&dd->channels); if (dmadev->mem2mem) { dma_cap_set(DMA_MEMCPY, dd->cap_mask); dd->device_prep_dma_memcpy = stm32_dma_prep_dma_memcpy; dd->directions |= BIT(DMA_MEM_TO_MEM); } for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) { chan = &dmadev->chan[i]; chan->id = i; chan->vchan.desc_free = stm32_dma_desc_free; vchan_init(&chan->vchan, dd); } ret = dma_async_device_register(dd); if (ret) goto clk_free; for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) { chan = &dmadev->chan[i]; ret = platform_get_irq(pdev, i); if (ret < 0) goto err_unregister; chan->irq = ret; ret = devm_request_irq(&pdev->dev, chan->irq, stm32_dma_chan_irq, 0, dev_name(chan2dev(chan)), chan); if (ret) { dev_err(&pdev->dev, "request_irq failed with err %d channel %d\n", ret, i); goto err_unregister; } } ret = of_dma_controller_register(pdev->dev.of_node, stm32_dma_of_xlate, dmadev); if (ret < 0) { dev_err(&pdev->dev, "STM32 DMA DMA OF registration failed %d\n", ret); goto err_unregister; } platform_set_drvdata(pdev, dmadev); pm_runtime_set_active(&pdev->dev); pm_runtime_enable(&pdev->dev); pm_runtime_get_noresume(&pdev->dev); pm_runtime_put(&pdev->dev); dev_info(&pdev->dev, "STM32 DMA driver registered\n"); return 0; err_unregister: dma_async_device_unregister(dd); clk_free: clk_disable_unprepare(dmadev->clk); return ret; } #ifdef CONFIG_PM static int stm32_dma_runtime_suspend(struct device *dev) { struct stm32_dma_device *dmadev = dev_get_drvdata(dev); clk_disable_unprepare(dmadev->clk); return 0; } static int stm32_dma_runtime_resume(struct device *dev) { struct stm32_dma_device *dmadev = dev_get_drvdata(dev); int ret; ret = clk_prepare_enable(dmadev->clk); if (ret) { dev_err(dev, "failed to prepare_enable clock\n"); return ret; } return 0; } #endif #ifdef CONFIG_PM_SLEEP static int stm32_dma_suspend(struct device *dev) { struct stm32_dma_device *dmadev = dev_get_drvdata(dev); int id, ret, scr; ret = pm_runtime_get_sync(dev); if (ret < 0) return ret; for (id = 0; id < STM32_DMA_MAX_CHANNELS; id++) { scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id)); if (scr & STM32_DMA_SCR_EN) { dev_warn(dev, "Suspend is prevented by Chan %i\n", id); return -EBUSY; } } pm_runtime_put_sync(dev); pm_runtime_force_suspend(dev); return 0; } static int stm32_dma_resume(struct device *dev) { return pm_runtime_force_resume(dev); } #endif static const struct dev_pm_ops stm32_dma_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(stm32_dma_suspend, stm32_dma_resume) SET_RUNTIME_PM_OPS(stm32_dma_runtime_suspend, stm32_dma_runtime_resume, NULL) }; static struct platform_driver stm32_dma_driver = { .driver = { .name = "stm32-dma", .of_match_table = stm32_dma_of_match, .pm = &stm32_dma_pm_ops, }, .probe = stm32_dma_probe, }; static int __init stm32_dma_init(void) { return platform_driver_register(&stm32_dma_driver); } subsys_initcall(stm32_dma_init);