Age | Commit message (Collapse) | Author | Files | Lines |
|
The new mseal() is an syscall on 64 bit CPU, and with following signature:
int mseal(void addr, size_t len, unsigned long flags)
addr/len: memory range.
flags: reserved.
mseal() blocks following operations for the given memory range.
1> Unmapping, moving to another location, and shrinking the size,
via munmap() and mremap(), can leave an empty space, therefore can
be replaced with a VMA with a new set of attributes.
2> Moving or expanding a different VMA into the current location,
via mremap().
3> Modifying a VMA via mmap(MAP_FIXED).
4> Size expansion, via mremap(), does not appear to pose any specific
risks to sealed VMAs. It is included anyway because the use case is
unclear. In any case, users can rely on merging to expand a sealed VMA.
5> mprotect() and pkey_mprotect().
6> Some destructive madvice() behaviors (e.g. MADV_DONTNEED) for anonymous
memory, when users don't have write permission to the memory. Those
behaviors can alter region contents by discarding pages, effectively a
memset(0) for anonymous memory.
Following input during RFC are incooperated into this patch:
Jann Horn: raising awareness and providing valuable insights on the
destructive madvise operations.
Linus Torvalds: assisting in defining system call signature and scope.
Liam R. Howlett: perf optimization.
Theo de Raadt: sharing the experiences and insight gained from
implementing mimmutable() in OpenBSD.
Finally, the idea that inspired this patch comes from Stephen Röttger's
work in Chrome V8 CFI.
[jeffxu@chromium.org: add branch prediction hint, per Pedro]
Link: https://lkml.kernel.org/r/20240423192825.1273679-2-jeffxu@chromium.org
Link: https://lkml.kernel.org/r/20240415163527.626541-3-jeffxu@chromium.org
Signed-off-by: Jeff Xu <jeffxu@chromium.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Pedro Falcato <pedro.falcato@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guenter Roeck <groeck@chromium.org>
Cc: Jann Horn <jannh@google.com>
Cc: Jeff Xu <jeffxu@google.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Jorge Lucangeli Obes <jorgelo@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Muhammad Usama Anjum <usama.anjum@collabora.com>
Cc: Pedro Falcato <pedro.falcato@gmail.com>
Cc: Stephen Röttger <sroettger@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Amer Al Shanawany <amer.shanawany@gmail.com>
Cc: Javier Carrasco <javier.carrasco.cruz@gmail.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull mm updates from Andrew Morton:
"The usual shower of singleton fixes and minor series all over MM,
documented (hopefully adequately) in the respective changelogs.
Notable series include:
- Lucas Stach has provided some page-mapping cleanup/consolidation/
maintainability work in the series "mm/treewide: Remove pXd_huge()
API".
- In the series "Allow migrate on protnone reference with
MPOL_PREFERRED_MANY policy", Donet Tom has optimized mempolicy's
MPOL_PREFERRED_MANY mode, yielding almost doubled performance in
one test.
- In their series "Memory allocation profiling" Kent Overstreet and
Suren Baghdasaryan have contributed a means of determining (via
/proc/allocinfo) whereabouts in the kernel memory is being
allocated: number of calls and amount of memory.
- Matthew Wilcox has provided the series "Various significant MM
patches" which does a number of rather unrelated things, but in
largely similar code sites.
- In his series "mm: page_alloc: freelist migratetype hygiene"
Johannes Weiner has fixed the page allocator's handling of
migratetype requests, with resulting improvements in compaction
efficiency.
- In the series "make the hugetlb migration strategy consistent"
Baolin Wang has fixed a hugetlb migration issue, which should
improve hugetlb allocation reliability.
- Liu Shixin has hit an I/O meltdown caused by readahead in a
memory-tight memcg. Addressed in the series "Fix I/O high when
memory almost met memcg limit".
- In the series "mm/filemap: optimize folio adding and splitting"
Kairui Song has optimized pagecache insertion, yielding ~10%
performance improvement in one test.
- Baoquan He has cleaned up and consolidated the early zone
initialization code in the series "mm/mm_init.c: refactor
free_area_init_core()".
- Baoquan has also redone some MM initializatio code in the series
"mm/init: minor clean up and improvement".
- MM helper cleanups from Christoph Hellwig in his series "remove
follow_pfn".
- More cleanups from Matthew Wilcox in the series "Various
page->flags cleanups".
- Vlastimil Babka has contributed maintainability improvements in the
series "memcg_kmem hooks refactoring".
- More folio conversions and cleanups in Matthew Wilcox's series:
"Convert huge_zero_page to huge_zero_folio"
"khugepaged folio conversions"
"Remove page_idle and page_young wrappers"
"Use folio APIs in procfs"
"Clean up __folio_put()"
"Some cleanups for memory-failure"
"Remove page_mapping()"
"More folio compat code removal"
- David Hildenbrand chipped in with "fs/proc/task_mmu: convert
hugetlb functions to work on folis".
- Code consolidation and cleanup work related to GUP's handling of
hugetlbs in Peter Xu's series "mm/gup: Unify hugetlb, part 2".
- Rick Edgecombe has developed some fixes to stack guard gaps in the
series "Cover a guard gap corner case".
- Jinjiang Tu has fixed KSM's behaviour after a fork+exec in the
series "mm/ksm: fix ksm exec support for prctl".
- Baolin Wang has implemented NUMA balancing for multi-size THPs.
This is a simple first-cut implementation for now. The series is
"support multi-size THP numa balancing".
- Cleanups to vma handling helper functions from Matthew Wilcox in
the series "Unify vma_address and vma_pgoff_address".
- Some selftests maintenance work from Dev Jain in the series
"selftests/mm: mremap_test: Optimizations and style fixes".
- Improvements to the swapping of multi-size THPs from Ryan Roberts
in the series "Swap-out mTHP without splitting".
- Kefeng Wang has significantly optimized the handling of arm64's
permission page faults in the series
"arch/mm/fault: accelerate pagefault when badaccess"
"mm: remove arch's private VM_FAULT_BADMAP/BADACCESS"
- GUP cleanups from David Hildenbrand in "mm/gup: consistently call
it GUP-fast".
- hugetlb fault code cleanups from Vishal Moola in "Hugetlb fault
path to use struct vm_fault".
- selftests build fixes from John Hubbard in the series "Fix
selftests/mm build without requiring "make headers"".
- Memory tiering fixes/improvements from Ho-Ren (Jack) Chuang in the
series "Improved Memory Tier Creation for CPUless NUMA Nodes".
Fixes the initialization code so that migration between different
memory types works as intended.
- David Hildenbrand has improved follow_pte() and fixed an errant
driver in the series "mm: follow_pte() improvements and acrn
follow_pte() fixes".
- David also did some cleanup work on large folio mapcounts in his
series "mm: mapcount for large folios + page_mapcount() cleanups".
- Folio conversions in KSM in Alex Shi's series "transfer page to
folio in KSM".
- Barry Song has added some sysfs stats for monitoring multi-size
THP's in the series "mm: add per-order mTHP alloc and swpout
counters".
- Some zswap cleanups from Yosry Ahmed in the series "zswap
same-filled and limit checking cleanups".
- Matthew Wilcox has been looking at buffer_head code and found the
documentation to be lacking. The series is "Improve buffer head
documentation".
- Multi-size THPs get more work, this time from Lance Yang. His
series "mm/madvise: enhance lazyfreeing with mTHP in madvise_free"
optimizes the freeing of these things.
- Kemeng Shi has added more userspace-visible writeback
instrumentation in the series "Improve visibility of writeback".
- Kemeng Shi then sent some maintenance work on top in the series
"Fix and cleanups to page-writeback".
- Matthew Wilcox reduces mmap_lock traffic in the anon vma code in
the series "Improve anon_vma scalability for anon VMAs". Intel's
test bot reported an improbable 3x improvement in one test.
- SeongJae Park adds some DAMON feature work in the series
"mm/damon: add a DAMOS filter type for page granularity access recheck"
"selftests/damon: add DAMOS quota goal test"
- Also some maintenance work in the series
"mm/damon/paddr: simplify page level access re-check for pageout"
"mm/damon: misc fixes and improvements"
- David Hildenbrand has disabled some known-to-fail selftests ni the
series "selftests: mm: cow: flag vmsplice() hugetlb tests as
XFAIL".
- memcg metadata storage optimizations from Shakeel Butt in "memcg:
reduce memory consumption by memcg stats".
- DAX fixes and maintenance work from Vishal Verma in the series
"dax/bus.c: Fixups for dax-bus locking""
* tag 'mm-stable-2024-05-17-19-19' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (426 commits)
memcg, oom: cleanup unused memcg_oom_gfp_mask and memcg_oom_order
selftests/mm: hugetlb_madv_vs_map: avoid test skipping by querying hugepage size at runtime
mm/hugetlb: add missing VM_FAULT_SET_HINDEX in hugetlb_wp
mm/hugetlb: add missing VM_FAULT_SET_HINDEX in hugetlb_fault
selftests: cgroup: add tests to verify the zswap writeback path
mm: memcg: make alloc_mem_cgroup_per_node_info() return bool
mm/damon/core: fix return value from damos_wmark_metric_value
mm: do not update memcg stats for NR_{FILE/SHMEM}_PMDMAPPED
selftests: cgroup: remove redundant enabling of memory controller
Docs/mm/damon/maintainer-profile: allow posting patches based on damon/next tree
Docs/mm/damon/maintainer-profile: change the maintainer's timezone from PST to PT
Docs/mm/damon/design: use a list for supported filters
Docs/admin-guide/mm/damon/usage: fix wrong schemes effective quota update command
Docs/admin-guide/mm/damon/usage: fix wrong example of DAMOS filter matching sysfs file
selftests/damon: classify tests for functionalities and regressions
selftests/damon/_damon_sysfs: use 'is' instead of '==' for 'None'
selftests/damon/_damon_sysfs: find sysfs mount point from /proc/mounts
selftests/damon/_damon_sysfs: check errors from nr_schemes file reads
mm/damon/core: initialize ->esz_bp from damos_quota_init_priv()
selftests/damon: add a test for DAMOS quota goal
...
|
|
accountable_mapping() can return bool, so change it.
Link: https://lkml.kernel.org/r/20240407063843.804274-1-gehao@kylinos.cn
Signed-off-by: Hao Ge <gehao@kylinos.cn>
Cc: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
vma_wants_writenotify() should return bool, so change it.
Link: https://lkml.kernel.org/r/20240407062653.803142-1-gehao@kylinos.cn
Signed-off-by: Hao Ge <gehao@kylinos.cn>
Cc: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
When memory is being placed, mmap() will take care to respect the guard
gaps of certain types of memory (VM_SHADOWSTACK, VM_GROWSUP and
VM_GROWSDOWN). In order to ensure guard gaps between mappings, mmap()
needs to consider two things:
1. That the new mapping isn't placed in an any existing mappings guard
gaps.
2. That the new mapping isn't placed such that any existing mappings
are not in *its* guard gaps.
The longstanding behavior of mmap() is to ensure 1, but not take any care
around 2. So for example, if there is a PAGE_SIZE free area, and a mmap()
with a PAGE_SIZE size, and a type that has a guard gap is being placed,
mmap() may place the shadow stack in the PAGE_SIZE free area. Then the
mapping that is supposed to have a guard gap will not have a gap to the
adjacent VMA.
For MAP_GROWSDOWN/VM_GROWSDOWN and MAP_GROWSUP/VM_GROWSUP this has not
been a problem in practice because applications place these kinds of
mappings very early, when there is not many mappings to find a space
between. But for shadow stacks, they may be placed throughout the
lifetime of the application.
Use the start_gap field to find a space that includes the guard gap for
the new mapping. Take care to not interfere with the alignment.
Link: https://lkml.kernel.org/r/20240326021656.202649-12-rick.p.edgecombe@intel.com
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Reviewed-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Aneesh Kumar K.V <aneesh.kumar@kernel.org>
Cc: Borislav Petkov (AMD) <bp@alien8.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Deepak Gupta <debug@rivosinc.com>
Cc: Guo Ren <guoren@kernel.org>
Cc: Helge Deller <deller@gmx.de>
Cc: H. Peter Anvin (Intel) <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Mark Brown <broonie@kernel.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Naveen N. Rao <naveen.n.rao@linux.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Future changes will need to add a new member to struct
vm_unmapped_area_info. This would cause trouble for any call site that
doesn't initialize the struct. Currently every caller sets each member
manually, so if new ones are added they will be uninitialized and the core
code parsing the struct will see garbage in the new member.
It could be possible to initialize the new member manually to 0 at each
call site. This and a couple other options were discussed. Having some
struct vm_unmapped_area_info instances not zero initialized will put those
sites at risk of feeding garbage into vm_unmapped_area(), if the
convention is to zero initialize the struct and any new field addition
missed a call site that initializes each field manually. So it is useful
to do things similar across the kernel.
The consensus (see links) was that in general the best way to accomplish
taking into account both code cleanliness and minimizing the chance of
introducing bugs, was to do C99 static initialization. As in: struct
vm_unmapped_area_info info = {};
With this method of initialization, the whole struct will be zero
initialized, and any statements setting fields to zero will be unneeded.
The change should not leave cleanup at the call sides.
While iterating though the possible solutions a few archs kindly acked
other variations that still zero initialized the struct. These sites have
been modified in previous changes using the pattern acked by the
respective arch.
So to be reduce the chance of bugs via uninitialized fields, perform a
tree wide change using the consensus for the best general way to do this
change. Use C99 static initializing to zero the struct and remove and
statements that simply set members to zero.
Link: https://lkml.kernel.org/r/20240326021656.202649-11-rick.p.edgecombe@intel.com
Link: https://lore.kernel.org/lkml/202402280912.33AEE7A9CF@keescook/#t
Link: https://lore.kernel.org/lkml/j7bfvig3gew3qruouxrh7z7ehjjafrgkbcmg6tcghhfh3rhmzi@wzlcoecgy5rs/
Link: https://lore.kernel.org/lkml/ec3e377a-c0a0-4dd3-9cb9-96517e54d17e@csgroup.eu/
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Aneesh Kumar K.V <aneesh.kumar@kernel.org>
Cc: Borislav Petkov (AMD) <bp@alien8.de>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Deepak Gupta <debug@rivosinc.com>
Cc: Guo Ren <guoren@kernel.org>
Cc: Helge Deller <deller@gmx.de>
Cc: H. Peter Anvin (Intel) <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Mark Brown <broonie@kernel.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Naveen N. Rao <naveen.n.rao@linux.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
When memory is being placed, mmap() will take care to respect the guard
gaps of certain types of memory (VM_SHADOWSTACK, VM_GROWSUP and
VM_GROWSDOWN). In order to ensure guard gaps between mappings, mmap()
needs to consider two things:
1. That the new mapping isn't placed in an any existing mappings guard
gaps.
2. That the new mapping isn't placed such that any existing mappings
are not in *its* guard gaps.
The longstanding behavior of mmap() is to ensure 1, but not take any care
around 2. So for example, if there is a PAGE_SIZE free area, and a mmap()
with a PAGE_SIZE size, and a type that has a guard gap is being placed,
mmap() may place the shadow stack in the PAGE_SIZE free area. Then the
mapping that is supposed to have a guard gap will not have a gap to the
adjacent VMA.
Add a THP implementations of the vm_flags variant of get_unmapped_area().
Future changes will call this from mmap.c in the do_mmap() path to allow
shadow stacks to be placed with consideration taken for the start guard
gap. Shadow stack memory is always private and anonymous and so special
guard gap logic is not needed in a lot of caseis, but it can be mapped by
THP, so needs to be handled.
Link: https://lkml.kernel.org/r/20240326021656.202649-7-rick.p.edgecombe@intel.com
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Reviewed-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Aneesh Kumar K.V <aneesh.kumar@kernel.org>
Cc: Borislav Petkov (AMD) <bp@alien8.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Deepak Gupta <debug@rivosinc.com>
Cc: Guo Ren <guoren@kernel.org>
Cc: Helge Deller <deller@gmx.de>
Cc: H. Peter Anvin (Intel) <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Mark Brown <broonie@kernel.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Naveen N. Rao <naveen.n.rao@linux.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
When memory is being placed, mmap() will take care to respect the guard
gaps of certain types of memory (VM_SHADOWSTACK, VM_GROWSUP and
VM_GROWSDOWN). In order to ensure guard gaps between mappings, mmap()
needs to consider two things:
1. That the new mapping isn't placed in an any existing mappings guard
gaps.
2. That the new mapping isn't placed such that any existing mappings
are not in *its* guard gaps.
The long standing behavior of mmap() is to ensure 1, but not take any care
around 2. So for example, if there is a PAGE_SIZE free area, and a mmap()
with a PAGE_SIZE size, and a type that has a guard gap is being placed,
mmap() may place the shadow stack in the PAGE_SIZE free area. Then the
mapping that is supposed to have a guard gap will not have a gap to the
adjacent VMA.
Use mm_get_unmapped_area_vmflags() in the do_mmap() so future changes can
cause shadow stack mappings to be placed with a guard gap. Also use the
THP variant that takes vm_flags, such that THP shadow stack can get the
same treatment. Adjust the vm_flags calculation to happen earlier so that
the vm_flags can be passed into __get_unmapped_area().
Link: https://lkml.kernel.org/r/20240326021656.202649-6-rick.p.edgecombe@intel.com
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Reviewed-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Aneesh Kumar K.V <aneesh.kumar@kernel.org>
Cc: Borislav Petkov (AMD) <bp@alien8.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Deepak Gupta <debug@rivosinc.com>
Cc: Guo Ren <guoren@kernel.org>
Cc: Helge Deller <deller@gmx.de>
Cc: H. Peter Anvin (Intel) <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Mark Brown <broonie@kernel.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Naveen N. Rao <naveen.n.rao@linux.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The mm/mmap.c function get_unmapped_area() is not used from any modules,
so it doesn't need to be exported. Remove the export.
Link: https://lkml.kernel.org/r/20240326021656.202649-5-rick.p.edgecombe@intel.com
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Aneesh Kumar K.V <aneesh.kumar@kernel.org>
Cc: Borislav Petkov (AMD) <bp@alien8.de>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Deepak Gupta <debug@rivosinc.com>
Cc: Guo Ren <guoren@kernel.org>
Cc: Helge Deller <deller@gmx.de>
Cc: H. Peter Anvin (Intel) <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Mark Brown <broonie@kernel.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Naveen N. Rao <naveen.n.rao@linux.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
When memory is being placed, mmap() will take care to respect the guard
gaps of certain types of memory (VM_SHADOWSTACK, VM_GROWSUP and
VM_GROWSDOWN). In order to ensure guard gaps between mappings, mmap()
needs to consider two things:
1. That the new mapping isn't placed in an any existing mappings guard
gaps.
2. That the new mapping isn't placed such that any existing mappings
are not in *its* guard gaps.
The longstanding behavior of mmap() is to ensure 1, but not take any care
around 2. So for example, if there is a PAGE_SIZE free area, and a mmap()
with a PAGE_SIZE size, and a type that has a guard gap is being placed,
mmap() may place the shadow stack in the PAGE_SIZE free area. Then the
mapping that is supposed to have a guard gap will not have a gap to the
adjacent VMA.
In order to take the start gap into account, the maple tree search needs
to know the size of start gap the new mapping will need. The call chain
from do_mmap() to the actual maple tree search looks like this:
do_mmap(size, vm_flags, map_flags, ..)
mm/mmap.c:get_unmapped_area(size, map_flags, ...)
arch_get_unmapped_area(size, map_flags, ...)
vm_unmapped_area(struct vm_unmapped_area_info)
One option would be to add another MAP_ flag to mean a one page start gap
(as is for shadow stack), but this consumes a flag unnecessarily. Another
option could be to simply increase the size passed in do_mmap() by the
start gap size, and adjust after the fact, but this will interfere with
the alignment requirements passed in struct vm_unmapped_area_info, and
unknown to mmap.c. Instead, introduce variants of
arch_get_unmapped_area/_topdown() that take vm_flags. In future changes,
these variants can be used in mmap.c:get_unmapped_area() to allow the
vm_flags to be passed through to vm_unmapped_area(), while preserving the
normal arch_get_unmapped_area/_topdown() for the existing callers.
Link: https://lkml.kernel.org/r/20240326021656.202649-4-rick.p.edgecombe@intel.com
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Aneesh Kumar K.V <aneesh.kumar@kernel.org>
Cc: Borislav Petkov (AMD) <bp@alien8.de>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Deepak Gupta <debug@rivosinc.com>
Cc: Guo Ren <guoren@kernel.org>
Cc: Helge Deller <deller@gmx.de>
Cc: H. Peter Anvin (Intel) <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Mark Brown <broonie@kernel.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Naveen N. Rao <naveen.n.rao@linux.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The mm_struct contains a function pointer *get_unmapped_area(), which is
set to either arch_get_unmapped_area() or arch_get_unmapped_area_topdown()
during the initialization of the mm.
Since the function pointer only ever points to two functions that are
named the same across all arch's, a function pointer is not really
required. In addition future changes will want to add versions of the
functions that take additional arguments. So to save a pointers worth of
bytes in mm_struct, and prevent adding additional function pointers to
mm_struct in future changes, remove it and keep the information about
which get_unmapped_area() to use in a flag.
Add the new flag to MMF_INIT_MASK so it doesn't get clobbered on fork by
mmf_init_flags(). Most MM flags get clobbered on fork. In the
pre-existing behavior mm->get_unmapped_area() would get copied to the new
mm in dup_mm(), so not clobbering the flag preserves the existing behavior
around inheriting the topdown-ness.
Introduce a helper, mm_get_unmapped_area(), to easily convert code that
refers to the old function pointer to instead select and call either
arch_get_unmapped_area() or arch_get_unmapped_area_topdown() based on the
flag. Then drop the mm->get_unmapped_area() function pointer. Leave the
get_unmapped_area() pointer in struct file_operations alone. The main
purpose of this change is to reorganize in preparation for future changes,
but it also converts the calls of mm->get_unmapped_area() from indirect
branches into a direct ones.
The stress-ng bigheap benchmark calls realloc a lot, which calls through
get_unmapped_area() in the kernel. On x86, the change yielded a ~1%
improvement there on a retpoline config.
In testing a few x86 configs, removing the pointer unfortunately didn't
result in any actual size reductions in the compiled layout of mm_struct.
But depending on compiler or arch alignment requirements, the change could
shrink the size of mm_struct.
Link: https://lkml.kernel.org/r/20240326021656.202649-3-rick.p.edgecombe@intel.com
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Aneesh Kumar K.V <aneesh.kumar@kernel.org>
Cc: Borislav Petkov (AMD) <bp@alien8.de>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Deepak Gupta <debug@rivosinc.com>
Cc: Guo Ren <guoren@kernel.org>
Cc: Helge Deller <deller@gmx.de>
Cc: H. Peter Anvin (Intel) <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Mark Brown <broonie@kernel.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Naveen N. Rao <naveen.n.rao@linux.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
There are two types of iterators mas and vmi in the current code. If the
maple tree comes from the mm structure, we can use the vma iterator.
Avoid using mas directly as possible.
Keep using mas for the mt_detach tree, since it doesn't come from the mm
structure.
Remove as many uses of mas as possible, but we will still have a few that
must be passed through in unmap_vmas() and free_pgtables().
Also introduce vma_iter_reset, vma_iter_{prev, next}_range_limit and
vma_iter_area_{lowest, highest} helper functions for using the vma
interator.
Link: https://lkml.kernel.org/r/20240325063258.1437618-1-yajun.deng@linux.dev
Signed-off-by: Yajun Deng <yajun.deng@linux.dev>
Tested-by: Helge Deller <deller@gmx.de> [parisc]
Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
There's a bunch of flags that are purely based on what the file
operations support while also never being conditionally set or unset.
IOW, they're not subject to change for individual files. Imho, such
flags don't need to live in f_mode they might as well live in the fops
structs itself. And the fops struct already has that lonely
mmap_supported_flags member. We might as well turn that into a generic
fop_flags member and move a few flags from FMODE_* space into FOP_*
space. That gets us four FMODE_* bits back and the ability for new
static flags that are about file ops to not have to live in FMODE_*
space but in their own FOP_* space. It's not the most beautiful thing
ever but it gets the job done. Yes, there'll be an additional pointer
chase but hopefully that won't matter for these flags.
I suspect there's a few more we can move into there and that we can also
redirect a bunch of new flag suggestions that follow this pattern into
the fop_flags field instead of f_mode.
Link: https://lore.kernel.org/r/20240328-gewendet-spargel-aa60a030ef74@brauner
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Christian Brauner <brauner@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux
Pull RISC-V updates from Palmer Dabbelt:
- Support for various vector-accelerated crypto routines
- Hibernation is now enabled for portable kernel builds
- mmap_rnd_bits_max is larger on systems with larger VAs
- Support for fast GUP
- Support for membarrier-based instruction cache synchronization
- Support for the Andes hart-level interrupt controller and PMU
- Some cleanups around unaligned access speed probing and Kconfig
settings
- Support for ACPI LPI and CPPC
- Various cleanus related to barriers
- A handful of fixes
* tag 'riscv-for-linus-6.9-mw2' of git://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux: (66 commits)
riscv: Fix syscall wrapper for >word-size arguments
crypto: riscv - add vector crypto accelerated AES-CBC-CTS
crypto: riscv - parallelize AES-CBC decryption
riscv: Only flush the mm icache when setting an exec pte
riscv: Use kcalloc() instead of kzalloc()
riscv/barrier: Add missing space after ','
riscv/barrier: Consolidate fence definitions
riscv/barrier: Define RISCV_FULL_BARRIER
riscv/barrier: Define __{mb,rmb,wmb}
RISC-V: defconfig: Enable CONFIG_ACPI_CPPC_CPUFREQ
cpufreq: Move CPPC configs to common Kconfig and add RISC-V
ACPI: RISC-V: Add CPPC driver
ACPI: Enable ACPI_PROCESSOR for RISC-V
ACPI: RISC-V: Add LPI driver
cpuidle: RISC-V: Move few functions to arch/riscv
riscv: Introduce set_compat_task() in asm/compat.h
riscv: Introduce is_compat_thread() into compat.h
riscv: add compile-time test into is_compat_task()
riscv: Replace direct thread flag check with is_compat_task()
riscv: Improve arch_get_mmap_end() macro
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- Sumanth Korikkar has taught s390 to allocate hotplug-time page frames
from hotplugged memory rather than only from main memory. Series
"implement "memmap on memory" feature on s390".
- More folio conversions from Matthew Wilcox in the series
"Convert memcontrol charge moving to use folios"
"mm: convert mm counter to take a folio"
- Chengming Zhou has optimized zswap's rbtree locking, providing
significant reductions in system time and modest but measurable
reductions in overall runtimes. The series is "mm/zswap: optimize the
scalability of zswap rb-tree".
- Chengming Zhou has also provided the series "mm/zswap: optimize zswap
lru list" which provides measurable runtime benefits in some
swap-intensive situations.
- And Chengming Zhou further optimizes zswap in the series "mm/zswap:
optimize for dynamic zswap_pools". Measured improvements are modest.
- zswap cleanups and simplifications from Yosry Ahmed in the series
"mm: zswap: simplify zswap_swapoff()".
- In the series "Add DAX ABI for memmap_on_memory", Vishal Verma has
contributed several DAX cleanups as well as adding a sysfs tunable to
control the memmap_on_memory setting when the dax device is
hotplugged as system memory.
- Johannes Weiner has added the large series "mm: zswap: cleanups",
which does that.
- More DAMON work from SeongJae Park in the series
"mm/damon: make DAMON debugfs interface deprecation unignorable"
"selftests/damon: add more tests for core functionalities and corner cases"
"Docs/mm/damon: misc readability improvements"
"mm/damon: let DAMOS feeds and tame/auto-tune itself"
- In the series "mm/mempolicy: weighted interleave mempolicy and sysfs
extension" Rakie Kim has developed a new mempolicy interleaving
policy wherein we allocate memory across nodes in a weighted fashion
rather than uniformly. This is beneficial in heterogeneous memory
environments appearing with CXL.
- Christophe Leroy has contributed some cleanup and consolidation work
against the ARM pagetable dumping code in the series "mm: ptdump:
Refactor CONFIG_DEBUG_WX and check_wx_pages debugfs attribute".
- Luis Chamberlain has added some additional xarray selftesting in the
series "test_xarray: advanced API multi-index tests".
- Muhammad Usama Anjum has reworked the selftest code to make its
human-readable output conform to the TAP ("Test Anything Protocol")
format. Amongst other things, this opens up the use of third-party
tools to parse and process out selftesting results.
- Ryan Roberts has added fork()-time PTE batching of THP ptes in the
series "mm/memory: optimize fork() with PTE-mapped THP". Mainly
targeted at arm64, this significantly speeds up fork() when the
process has a large number of pte-mapped folios.
- David Hildenbrand also gets in on the THP pte batching game in his
series "mm/memory: optimize unmap/zap with PTE-mapped THP". It
implements batching during munmap() and other pte teardown
situations. The microbenchmark improvements are nice.
- And in the series "Transparent Contiguous PTEs for User Mappings"
Ryan Roberts further utilizes arm's pte's contiguous bit ("contpte
mappings"). Kernel build times on arm64 improved nicely. Ryan's
series "Address some contpte nits" provides some followup work.
- In the series "mm/hugetlb: Restore the reservation" Breno Leitao has
fixed an obscure hugetlb race which was causing unnecessary page
faults. He has also added a reproducer under the selftest code.
- In the series "selftests/mm: Output cleanups for the compaction
test", Mark Brown did what the title claims.
- Kinsey Ho has added the series "mm/mglru: code cleanup and
refactoring".
- Even more zswap material from Nhat Pham. The series "fix and extend
zswap kselftests" does as claimed.
- In the series "Introduce cpu_dcache_is_aliasing() to fix DAX
regression" Mathieu Desnoyers has cleaned up and fixed rather a mess
in our handling of DAX on archiecctures which have virtually aliasing
data caches. The arm architecture is the main beneficiary.
- Lokesh Gidra's series "per-vma locks in userfaultfd" provides
dramatic improvements in worst-case mmap_lock hold times during
certain userfaultfd operations.
- Some page_owner enhancements and maintenance work from Oscar Salvador
in his series
"page_owner: print stacks and their outstanding allocations"
"page_owner: Fixup and cleanup"
- Uladzislau Rezki has contributed some vmalloc scalability
improvements in his series "Mitigate a vmap lock contention". It
realizes a 12x improvement for a certain microbenchmark.
- Some kexec/crash cleanup work from Baoquan He in the series "Split
crash out from kexec and clean up related config items".
- Some zsmalloc maintenance work from Chengming Zhou in the series
"mm/zsmalloc: fix and optimize objects/page migration"
"mm/zsmalloc: some cleanup for get/set_zspage_mapping()"
- Zi Yan has taught the MM to perform compaction on folios larger than
order=0. This a step along the path to implementaton of the merging
of large anonymous folios. The series is named "Enable >0 order folio
memory compaction".
- Christoph Hellwig has done quite a lot of cleanup work in the
pagecache writeback code in his series "convert write_cache_pages()
to an iterator".
- Some modest hugetlb cleanups and speedups in Vishal Moola's series
"Handle hugetlb faults under the VMA lock".
- Zi Yan has changed the page splitting code so we can split huge pages
into sizes other than order-0 to better utilize large folios. The
series is named "Split a folio to any lower order folios".
- David Hildenbrand has contributed the series "mm: remove
total_mapcount()", a cleanup.
- Matthew Wilcox has sought to improve the performance of bulk memory
freeing in his series "Rearrange batched folio freeing".
- Gang Li's series "hugetlb: parallelize hugetlb page init on boot"
provides large improvements in bootup times on large machines which
are configured to use large numbers of hugetlb pages.
- Matthew Wilcox's series "PageFlags cleanups" does that.
- Qi Zheng's series "minor fixes and supplement for ptdesc" does that
also. S390 is affected.
- Cleanups to our pagemap utility functions from Peter Xu in his series
"mm/treewide: Replace pXd_large() with pXd_leaf()".
- Nico Pache has fixed a few things with our hugepage selftests in his
series "selftests/mm: Improve Hugepage Test Handling in MM
Selftests".
- Also, of course, many singleton patches to many things. Please see
the individual changelogs for details.
* tag 'mm-stable-2024-03-13-20-04' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (435 commits)
mm/zswap: remove the memcpy if acomp is not sleepable
crypto: introduce: acomp_is_async to expose if comp drivers might sleep
memtest: use {READ,WRITE}_ONCE in memory scanning
mm: prohibit the last subpage from reusing the entire large folio
mm: recover pud_leaf() definitions in nopmd case
selftests/mm: skip the hugetlb-madvise tests on unmet hugepage requirements
selftests/mm: skip uffd hugetlb tests with insufficient hugepages
selftests/mm: dont fail testsuite due to a lack of hugepages
mm/huge_memory: skip invalid debugfs new_order input for folio split
mm/huge_memory: check new folio order when split a folio
mm, vmscan: retry kswapd's priority loop with cache_trim_mode off on failure
mm: add an explicit smp_wmb() to UFFDIO_CONTINUE
mm: fix list corruption in put_pages_list
mm: remove folio from deferred split list before uncharging it
filemap: avoid unnecessary major faults in filemap_fault()
mm,page_owner: drop unnecessary check
mm,page_owner: check for null stack_record before bumping its refcount
mm: swap: fix race between free_swap_and_cache() and swapoff()
mm/treewide: align up pXd_leaf() retval across archs
mm/treewide: drop pXd_large()
...
|
|
When debugging issues with a workload using SysV shmem, Michal Hocko has
come up with a reproducer that shows how a series of mprotect() operations
can result in an elevated shm_nattch and thus leak of the resource.
The problem is caused by wrong assumptions in vma_merge() commit
714965ca8252 ("mm/mmap: start distinguishing if vma can be removed in
mergeability test"). The shmem vmas have a vma_ops->close callback that
decrements shm_nattch, and we remove the vma without calling it.
vma_merge() has thus historically avoided merging vma's with
vma_ops->close and commit 714965ca8252 was supposed to keep it that way.
It relaxed the checks for vma_ops->close in can_vma_merge_after() assuming
that it is never called on a vma that would be a candidate for removal.
However, the vma_merge() code does also use the result of this check in
the decision to remove a different vma in the merge case 7.
A robust solution would be to refactor vma_merge() code in a way that the
vma_ops->close check is only done for vma's that are actually going to be
removed, and not as part of the preliminary checks. That would both solve
the existing bug, and also allow additional merges that the checks
currently prevent unnecessarily in some cases.
However to fix the existing bug first with a minimized risk, and for
easier stable backports, this patch only adds a vma_ops->close check to
the buggy case 7 specifically. All other cases of vma removal are covered
by the can_vma_merge_before() check that includes the test for
vma_ops->close.
The reproducer code, adapted from Michal Hocko's code:
int main(int argc, char *argv[]) {
int segment_id;
size_t segment_size = 20 * PAGE_SIZE;
char * sh_mem;
struct shmid_ds shmid_ds;
key_t key = 0x1234;
segment_id = shmget(key, segment_size,
IPC_CREAT | IPC_EXCL | S_IRUSR | S_IWUSR);
sh_mem = (char *)shmat(segment_id, NULL, 0);
mprotect(sh_mem + 2*PAGE_SIZE, PAGE_SIZE, PROT_NONE);
mprotect(sh_mem + PAGE_SIZE, PAGE_SIZE, PROT_WRITE);
mprotect(sh_mem + 2*PAGE_SIZE, PAGE_SIZE, PROT_WRITE);
shmdt(sh_mem);
shmctl(segment_id, IPC_STAT, &shmid_ds);
printf("nattch after shmdt(): %lu (expected: 0)\n", shmid_ds.shm_nattch);
if (shmctl(segment_id, IPC_RMID, 0))
printf("IPCRM failed %d\n", errno);
return (shmid_ds.shm_nattch) ? 1 : 0;
}
Link: https://lkml.kernel.org/r/20240222215930.14637-2-vbabka@suse.cz
Fixes: 714965ca8252 ("mm/mmap: start distinguishing if vma can be removed in mergeability test")
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reported-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Lorenzo Stoakes <lstoakes@gmail.com>
Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
These vma_merge() callers will pass mm, anon_vma and file, they all from
the same vma. There is no need to pass three parameters at the same time.
Pass vma instead of mm, anon_vma and file to vma_merge(), so that it can
save two parameters.
Link: https://lkml.kernel.org/r/20240203014632.2726545-1-yajun.deng@linux.dev
Link: https://lore.kernel.org/lkml/20240125034922.1004671-2-yajun.deng@linux.dev/
Signed-off-by: Yajun Deng <yajun.deng@linux.dev>
Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Yajun Deng <yajun.deng@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Use SZ_{8K, 128K} helper macro instead of the number in init_user_reserve
and reserve_mem_notifier. This is more readable.
Link: https://lkml.kernel.org/r/20240131031913.2058597-1-yajun.deng@linux.dev
Signed-off-by: Yajun Deng <yajun.deng@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
There is a lot of code needs to set the range of vma in mmap.c, introduce
vma_set_range() to simplify the code.
Link: https://lkml.kernel.org/r/20240124035719.3685193-1-yajun.deng@linux.dev
Signed-off-by: Yajun Deng <yajun.deng@linux.dev>
Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
We avoid allocating THP for temporary stack, even though
khugepaged_enter_vma() is called for stack VMAs, it actualy returns
false. So no need to call it in the first place at all.
Link: https://lkml.kernel.org/r/20231221065943.2803551-1-shy828301@gmail.com
Signed-off-by: Yang Shi <yang@os.amperecomputing.com>
Reviewed-by: Yin Fengwei <fengwei.yin@intel.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: kernel test robot <oliver.sang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The file parameter in the __remove_shared_vm_struct is no longer used,
remove it.
These functions vma_link() and mmap_region() have some of the same code,
introduce vma_link_file() helper function to simplify the code.
Link: https://lkml.kernel.org/r/20240110084622.2425927-1-yajun.deng@linux.dev
Signed-off-by: Yajun Deng <yajun.deng@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The addition of commit efa7df3e3bb5 ("mm: align larger anonymous mappings
on THP boundaries") caused the "virtual_address_range" mm selftest to
start failing on arm64. Let's fix that regression.
There were 2 visible problems when running the test; 1) it takes much
longer to execute, and 2) the test fails. Both are related:
The (first part of the) test allocates as many 1GB anonymous blocks as it
can in the low 256TB of address space, passing NULL as the addr hint to
mmap. Before the faulty patch, all allocations were abutted and contained
in a single, merged VMA. However, after this patch, each allocation is in
its own VMA, and there is a 2M gap between each VMA. This causes the 2
problems in the test: 1) mmap becomes MUCH slower because there are so
many VMAs to check to find a new 1G gap. 2) mmap fails once it hits the
VMA limit (/proc/sys/vm/max_map_count). Hitting this limit then causes a
subsequent calloc() to fail, which causes the test to fail.
The problem is that arm64 (unlike x86) selects
ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT. But __thp_get_unmapped_area()
allocates len+2M then always aligns to the bottom of the discovered gap.
That causes the 2M hole.
Fix this by detecting cases where we can still achive the alignment goal
when moved to the top of the allocated area, if configured to prefer
top-down allocation.
While we are at it, fix thp_get_unmapped_area's use of pgoff, which should
always be zero for anonymous mappings. Prior to the faulty change, while
it was possible for user space to pass in pgoff!=0, the old
mm->get_unmapped_area() handler would not use it. thp_get_unmapped_area()
does use it, so let's explicitly zero it before calling the handler. This
should also be the correct behavior for arches that define their own
get_unmapped_area() handler.
Link: https://lkml.kernel.org/r/20240123171420.3970220-1-ryan.roberts@arm.com
Fixes: efa7df3e3bb5 ("mm: align larger anonymous mappings on THP boundaries")
Closes: https://lore.kernel.org/linux-mm/1e8f5ac7-54ce-433a-ae53-81522b2320e1@arm.com/
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Allow mmap_rnd_bits_max to be updated on architectures that
determine virtual address space size at runtime instead of relying
on Kconfig options by changing it from const to __ro_after_init.
Signed-off-by: Sami Tolvanen <samitolvanen@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Palmer Dabbelt <palmer@rivosinc.com>
Acked-by: Palmer Dabbelt <palmer@rivosinc.com>
Link: https://lore.kernel.org/r/20230929211155.3910949-5-samitolvanen@google.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
"Many singleton patches against the MM code. The patch series which are
included in this merge do the following:
- Peng Zhang has done some mapletree maintainance work in the series
'maple_tree: add mt_free_one() and mt_attr() helpers'
'Some cleanups of maple tree'
- In the series 'mm: use memmap_on_memory semantics for dax/kmem'
Vishal Verma has altered the interworking between memory-hotplug
and dax/kmem so that newly added 'device memory' can more easily
have its memmap placed within that newly added memory.
- Matthew Wilcox continues folio-related work (including a few fixes)
in the patch series
'Add folio_zero_tail() and folio_fill_tail()'
'Make folio_start_writeback return void'
'Fix fault handler's handling of poisoned tail pages'
'Convert aops->error_remove_page to ->error_remove_folio'
'Finish two folio conversions'
'More swap folio conversions'
- Kefeng Wang has also contributed folio-related work in the series
'mm: cleanup and use more folio in page fault'
- Jim Cromie has improved the kmemleak reporting output in the series
'tweak kmemleak report format'.
- In the series 'stackdepot: allow evicting stack traces' Andrey
Konovalov to permits clients (in this case KASAN) to cause eviction
of no longer needed stack traces.
- Charan Teja Kalla has fixed some accounting issues in the page
allocator's atomic reserve calculations in the series 'mm:
page_alloc: fixes for high atomic reserve caluculations'.
- Dmitry Rokosov has added to the samples/ dorectory some sample code
for a userspace memcg event listener application. See the series
'samples: introduce cgroup events listeners'.
- Some mapletree maintanance work from Liam Howlett in the series
'maple_tree: iterator state changes'.
- Nhat Pham has improved zswap's approach to writeback in the series
'workload-specific and memory pressure-driven zswap writeback'.
- DAMON/DAMOS feature and maintenance work from SeongJae Park in the
series
'mm/damon: let users feed and tame/auto-tune DAMOS'
'selftests/damon: add Python-written DAMON functionality tests'
'mm/damon: misc updates for 6.8'
- Yosry Ahmed has improved memcg's stats flushing in the series 'mm:
memcg: subtree stats flushing and thresholds'.
- In the series 'Multi-size THP for anonymous memory' Ryan Roberts
has added a runtime opt-in feature to transparent hugepages which
improves performance by allocating larger chunks of memory during
anonymous page faults.
- Matthew Wilcox has also contributed some cleanup and maintenance
work against eh buffer_head code int he series 'More buffer_head
cleanups'.
- Suren Baghdasaryan has done work on Andrea Arcangeli's series
'userfaultfd move option'. UFFDIO_MOVE permits userspace heap
compaction algorithms to move userspace's pages around rather than
UFFDIO_COPY'a alloc/copy/free.
- Stefan Roesch has developed a 'KSM Advisor', in the series 'mm/ksm:
Add ksm advisor'. This is a governor which tunes KSM's scanning
aggressiveness in response to userspace's current needs.
- Chengming Zhou has optimized zswap's temporary working memory use
in the series 'mm/zswap: dstmem reuse optimizations and cleanups'.
- Matthew Wilcox has performed some maintenance work on the writeback
code, both code and within filesystems. The series is 'Clean up the
writeback paths'.
- Andrey Konovalov has optimized KASAN's handling of alloc and free
stack traces for secondary-level allocators, in the series 'kasan:
save mempool stack traces'.
- Andrey also performed some KASAN maintenance work in the series
'kasan: assorted clean-ups'.
- David Hildenbrand has gone to town on the rmap code. Cleanups, more
pte batching, folio conversions and more. See the series 'mm/rmap:
interface overhaul'.
- Kinsey Ho has contributed some maintenance work on the MGLRU code
in the series 'mm/mglru: Kconfig cleanup'.
- Matthew Wilcox has contributed lruvec page accounting code cleanups
in the series 'Remove some lruvec page accounting functions'"
* tag 'mm-stable-2024-01-08-15-31' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (361 commits)
mm, treewide: rename MAX_ORDER to MAX_PAGE_ORDER
mm, treewide: introduce NR_PAGE_ORDERS
selftests/mm: add separate UFFDIO_MOVE test for PMD splitting
selftests/mm: skip test if application doesn't has root privileges
selftests/mm: conform test to TAP format output
selftests: mm: hugepage-mmap: conform to TAP format output
selftests/mm: gup_test: conform test to TAP format output
mm/selftests: hugepage-mremap: conform test to TAP format output
mm/vmstat: move pgdemote_* out of CONFIG_NUMA_BALANCING
mm: zsmalloc: return -ENOSPC rather than -EINVAL in zs_malloc while size is too large
mm/memcontrol: remove __mod_lruvec_page_state()
mm/khugepaged: use a folio more in collapse_file()
slub: use a folio in __kmalloc_large_node
slub: use folio APIs in free_large_kmalloc()
slub: use alloc_pages_node() in alloc_slab_page()
mm: remove inc/dec lruvec page state functions
mm: ratelimit stat flush from workingset shrinker
kasan: stop leaking stack trace handles
mm/mglru: remove CONFIG_TRANSPARENT_HUGEPAGE
mm/mglru: add dummy pmd_dirty()
...
|
|
Align larger anonymous memory mappings on THP boundaries by going through
thp_get_unmapped_area if THPs are enabled for the current process.
With this patch, larger anonymous mappings are now THP aligned. When a
malloc library allocates a 2MB or larger arena, that arena can now be
mapped with THPs right from the start, which can result in better TLB hit
rates and execution time.
Link: https://lkml.kernel.org/r/20220809142457.4751229f@imladris.surriel.com
Link: https://lkml.kernel.org/r/20231214223423.1133074-1-yang@os.amperecomputing.com
Signed-off-by: Rik van Riel <riel@surriel.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Christopher Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
With commit cf8e8658100d ("arch: Remove Itanium (IA-64) architecture"),
there is no need to keep the IA64-specific vma expansion.
Clean up the IA64-specific vma expansion implementation.
Link: https://lkml.kernel.org/r/20231113124728.3974-1-lukas.bulwahn@gmail.com
Signed-off-by: Lukas Bulwahn <lukas.bulwahn@gmail.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
In dup_mmap(), using __mt_dup() to duplicate the old maple tree and then
directly replacing the entries of VMAs in the new maple tree can result in
better performance. __mt_dup() uses DFS pre-order to duplicate the maple
tree, so it is efficient.
The average time complexity of __mt_dup() is O(n), where n is the number
of VMAs. The proof of the time complexity is provided in the commit log
that introduces __mt_dup(). After duplicating the maple tree, each
element is traversed and replaced (ignoring the cases of deletion, which
are rare). Since it is only a replacement operation for each element,
this process is also O(n).
Analyzing the exact time complexity of the previous algorithm is
challenging because each insertion can involve appending to a node,
pushing data to adjacent nodes, or even splitting nodes. The frequency of
each action is difficult to calculate. The worst-case scenario for a
single insertion is when the tree undergoes splitting at every level. If
we consider each insertion as the worst-case scenario, we can determine
that the upper bound of the time complexity is O(n*log(n)), although this
is a loose upper bound. However, based on the test data, it appears that
the actual time complexity is likely to be O(n).
As the entire maple tree is duplicated using __mt_dup(), if dup_mmap()
fails, there will be a portion of VMAs that have not been duplicated in
the maple tree. To handle this, we mark the failure point with
XA_ZERO_ENTRY. In exit_mmap(), if this marker is encountered, stop
releasing VMAs that have not been duplicated after this point.
There is a "spawn" in byte-unixbench[1], which can be used to test the
performance of fork(). I modified it slightly to make it work with
different number of VMAs.
Below are the test results. The first row shows the number of VMAs. The
second and third rows show the number of fork() calls per ten seconds,
corresponding to next-20231006 and the this patchset, respectively. The
test results were obtained with CPU binding to avoid scheduler load
balancing that could cause unstable results. There are still some
fluctuations in the test results, but at least they are better than the
original performance.
21 121 221 421 821 1621 3221 6421 12821 25621 51221
112100 76261 54227 34035 20195 11112 6017 3161 1606 802 393
114558 83067 65008 45824 28751 16072 8922 4747 2436 1233 599
2.19% 8.92% 19.88% 34.64% 42.37% 44.64% 48.28% 50.17% 51.68% 53.74% 52.42%
[1] https://github.com/kdlucas/byte-unixbench/tree/master
Link: https://lkml.kernel.org/r/20231027033845.90608-11-zhangpeng.00@bytedance.com
Signed-off-by: Peng Zhang <zhangpeng.00@bytedance.com>
Suggested-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Mateusz Guzik <mjguzik@gmail.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Mike Christie <michael.christie@oracle.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
"Many singleton patches against the MM code. The patch series which are
included in this merge do the following:
- Kemeng Shi has contributed some compation maintenance work in the
series 'Fixes and cleanups to compaction'
- Joel Fernandes has a patchset ('Optimize mremap during mutual
alignment within PMD') which fixes an obscure issue with mremap()'s
pagetable handling during a subsequent exec(), based upon an
implementation which Linus suggested
- More DAMON/DAMOS maintenance and feature work from SeongJae Park i
the following patch series:
mm/damon: misc fixups for documents, comments and its tracepoint
mm/damon: add a tracepoint for damos apply target regions
mm/damon: provide pseudo-moving sum based access rate
mm/damon: implement DAMOS apply intervals
mm/damon/core-test: Fix memory leaks in core-test
mm/damon/sysfs-schemes: Do DAMOS tried regions update for only one apply interval
- In the series 'Do not try to access unaccepted memory' Adrian
Hunter provides some fixups for the recently-added 'unaccepted
memory' feature. To increase the feature's checking coverage. 'Plug
a few gaps where RAM is exposed without checking if it is
unaccepted memory'
- In the series 'cleanups for lockless slab shrink' Qi Zheng has done
some maintenance work which is preparation for the lockless slab
shrinking code
- Qi Zheng has redone the earlier (and reverted) attempt to make slab
shrinking lockless in the series 'use refcount+RCU method to
implement lockless slab shrink'
- David Hildenbrand contributes some maintenance work for the rmap
code in the series 'Anon rmap cleanups'
- Kefeng Wang does more folio conversions and some maintenance work
in the migration code. Series 'mm: migrate: more folio conversion
and unification'
- Matthew Wilcox has fixed an issue in the buffer_head code which was
causing long stalls under some heavy memory/IO loads. Some cleanups
were added on the way. Series 'Add and use bdev_getblk()'
- In the series 'Use nth_page() in place of direct struct page
manipulation' Zi Yan has fixed a potential issue with the direct
manipulation of hugetlb page frames
- In the series 'mm: hugetlb: Skip initialization of gigantic tail
struct pages if freed by HVO' has improved our handling of gigantic
pages in the hugetlb vmmemmep optimizaton code. This provides
significant boot time improvements when significant amounts of
gigantic pages are in use
- Matthew Wilcox has sent the series 'Small hugetlb cleanups' - code
rationalization and folio conversions in the hugetlb code
- Yin Fengwei has improved mlock()'s handling of large folios in the
series 'support large folio for mlock'
- In the series 'Expose swapcache stat for memcg v1' Liu Shixin has
added statistics for memcg v1 users which are available (and
useful) under memcg v2
- Florent Revest has enhanced the MDWE (Memory-Deny-Write-Executable)
prctl so that userspace may direct the kernel to not automatically
propagate the denial to child processes. The series is named 'MDWE
without inheritance'
- Kefeng Wang has provided the series 'mm: convert numa balancing
functions to use a folio' which does what it says
- In the series 'mm/ksm: add fork-exec support for prctl' Stefan
Roesch makes is possible for a process to propagate KSM treatment
across exec()
- Huang Ying has enhanced memory tiering's calculation of memory
distances. This is used to permit the dax/kmem driver to use 'high
bandwidth memory' in addition to Optane Data Center Persistent
Memory Modules (DCPMM). The series is named 'memory tiering:
calculate abstract distance based on ACPI HMAT'
- In the series 'Smart scanning mode for KSM' Stefan Roesch has
optimized KSM by teaching it to retain and use some historical
information from previous scans
- Yosry Ahmed has fixed some inconsistencies in memcg statistics in
the series 'mm: memcg: fix tracking of pending stats updates
values'
- In the series 'Implement IOCTL to get and optionally clear info
about PTEs' Peter Xu has added an ioctl to /proc/<pid>/pagemap
which permits us to atomically read-then-clear page softdirty
state. This is mainly used by CRIU
- Hugh Dickins contributed the series 'shmem,tmpfs: general
maintenance', a bunch of relatively minor maintenance tweaks to
this code
- Matthew Wilcox has increased the use of the VMA lock over
file-backed page faults in the series 'Handle more faults under the
VMA lock'. Some rationalizations of the fault path became possible
as a result
- In the series 'mm/rmap: convert page_move_anon_rmap() to
folio_move_anon_rmap()' David Hildenbrand has implemented some
cleanups and folio conversions
- In the series 'various improvements to the GUP interface' Lorenzo
Stoakes has simplified and improved the GUP interface with an eye
to providing groundwork for future improvements
- Andrey Konovalov has sent along the series 'kasan: assorted fixes
and improvements' which does those things
- Some page allocator maintenance work from Kemeng Shi in the series
'Two minor cleanups to break_down_buddy_pages'
- In thes series 'New selftest for mm' Breno Leitao has developed
another MM self test which tickles a race we had between madvise()
and page faults
- In the series 'Add folio_end_read' Matthew Wilcox provides cleanups
and an optimization to the core pagecache code
- Nhat Pham has added memcg accounting for hugetlb memory in the
series 'hugetlb memcg accounting'
- Cleanups and rationalizations to the pagemap code from Lorenzo
Stoakes, in the series 'Abstract vma_merge() and split_vma()'
- Audra Mitchell has fixed issues in the procfs page_owner code's new
timestamping feature which was causing some misbehaviours. In the
series 'Fix page_owner's use of free timestamps'
- Lorenzo Stoakes has fixed the handling of new mappings of sealed
files in the series 'permit write-sealed memfd read-only shared
mappings'
- Mike Kravetz has optimized the hugetlb vmemmap optimization in the
series 'Batch hugetlb vmemmap modification operations'
- Some buffer_head folio conversions and cleanups from Matthew Wilcox
in the series 'Finish the create_empty_buffers() transition'
- As a page allocator performance optimization Huang Ying has added
automatic tuning to the allocator's per-cpu-pages feature, in the
series 'mm: PCP high auto-tuning'
- Roman Gushchin has contributed the patchset 'mm: improve
performance of accounted kernel memory allocations' which improves
their performance by ~30% as measured by a micro-benchmark
- folio conversions from Kefeng Wang in the series 'mm: convert page
cpupid functions to folios'
- Some kmemleak fixups in Liu Shixin's series 'Some bugfix about
kmemleak'
- Qi Zheng has improved our handling of memoryless nodes by keeping
them off the allocation fallback list. This is done in the series
'handle memoryless nodes more appropriately'
- khugepaged conversions from Vishal Moola in the series 'Some
khugepaged folio conversions'"
[ bcachefs conflicts with the dynamically allocated shrinkers have been
resolved as per Stephen Rothwell in
https://lore.kernel.org/all/20230913093553.4290421e@canb.auug.org.au/
with help from Qi Zheng.
The clone3 test filtering conflict was half-arsed by yours truly ]
* tag 'mm-stable-2023-11-01-14-33' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (406 commits)
mm/damon/sysfs: update monitoring target regions for online input commit
mm/damon/sysfs: remove requested targets when online-commit inputs
selftests: add a sanity check for zswap
Documentation: maple_tree: fix word spelling error
mm/vmalloc: fix the unchecked dereference warning in vread_iter()
zswap: export compression failure stats
Documentation: ubsan: drop "the" from article title
mempolicy: migration attempt to match interleave nodes
mempolicy: mmap_lock is not needed while migrating folios
mempolicy: alloc_pages_mpol() for NUMA policy without vma
mm: add page_rmappable_folio() wrapper
mempolicy: remove confusing MPOL_MF_LAZY dead code
mempolicy: mpol_shared_policy_init() without pseudo-vma
mempolicy trivia: use pgoff_t in shared mempolicy tree
mempolicy trivia: slightly more consistent naming
mempolicy trivia: delete those ancient pr_debug()s
mempolicy: fix migrate_pages(2) syscall return nr_failed
kernfs: drop shared NUMA mempolicy hooks
hugetlbfs: drop shared NUMA mempolicy pretence
mm/damon/sysfs-test: add a unit test for damon_sysfs_set_targets()
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic
Pull ia64 removal and asm-generic updates from Arnd Bergmann:
- The ia64 architecture gets its well-earned retirement as planned,
now that there is one last (mostly) working release that will be
maintained as an LTS kernel.
- The architecture specific system call tables are updated for the
added map_shadow_stack() syscall and to remove references to the
long-gone sys_lookup_dcookie() syscall.
* tag 'asm-generic-6.7' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic:
hexagon: Remove unusable symbols from the ptrace.h uapi
asm-generic: Fix spelling of architecture
arch: Reserve map_shadow_stack() syscall number for all architectures
syscalls: Cleanup references to sys_lookup_dcookie()
Documentation: Drop or replace remaining mentions of IA64
lib/raid6: Drop IA64 support
Documentation: Drop IA64 from feature descriptions
kernel: Drop IA64 support from sig_fault handlers
arch: Remove Itanium (IA-64) architecture
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
Pull execve updates from Kees Cook:
- Support non-BSS ELF segments with zero filesz
Eric Biederman and I refactored ELF segment loading to handle the
case where a segment has a smaller filesz than memsz. Traditionally
linkers only did this for .bss and it was always the last segment. As
a result, the kernel only handled this case when it was the last
segment. We've had two recent cases where linkers were trying to use
these kinds of segments for other reasons, and the were in the middle
of the segment list. There was no good reason for the kernel not to
support this, and the refactor actually ends up making things more
readable too.
- Enable namespaced binfmt_misc
Christian Brauner has made it possible to use binfmt_misc with mount
namespaces. This means some traditionally root-only interfaces (for
adding/removing formats) are now more exposed (but believed to be
safe).
- Remove struct tag 'dynamic' from ELF UAPI
Alejandro Colomar noticed that the ELF UAPI has been polluting the
struct namespace with an unused and overly generic tag named
"dynamic" for no discernible reason for many many years. After
double-checking various distro source repositories, it has been
removed.
- Clean up binfmt_elf_fdpic debug output (Greg Ungerer)
* tag 'execve-v6.7-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux:
binfmt_misc: enable sandboxed mounts
binfmt_misc: cleanup on filesystem umount
binfmt_elf_fdpic: clean up debug warnings
mm: Remove unused vm_brk()
binfmt_elf: Only report padzero() errors when PROT_WRITE
binfmt_elf: Use elf_load() for library
binfmt_elf: Use elf_load() for interpreter
binfmt_elf: elf_bss no longer used by load_elf_binary()
binfmt_elf: Support segments with 0 filesz and misaligned starts
elf, uapi: Remove struct tag 'dynamic'
|
|
Link: https://lkml.kernel.org/r/20231023124405.36981-1-m.muzzammilashraf@gmail.com
Signed-off-by: Muhammad Muzammil <m.muzzammilashraf@gmail.com>
Reviewed-by: Randy Dunlap <rdunlap@infradead.org>
Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Muhammad Muzammil <m.muzzammilashraf@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
In order for a F_SEAL_WRITE sealed memfd mapping to have an opportunity to
clear VM_MAYWRITE, we must be able to invoke the appropriate
vm_ops->mmap() handler to do so. We would otherwise fail the
mapping_map_writable() check before we had the opportunity to avoid it.
This patch moves this check after the call_mmap() invocation. Only memfd
actively denies write access causing a potential failure here (in
memfd_add_seals()), so there should be no impact on non-memfd cases.
This patch makes the userland-visible change that MAP_SHARED, PROT_READ
mappings of an F_SEAL_WRITE sealed memfd mapping will now succeed.
There is a delicate situation with cleanup paths assuming that a writable
mapping must have occurred in circumstances where it may now not have. In
order to ensure we do not accidentally mark a writable file unwritable by
mistake, we explicitly track whether we have a writable mapping and unmap
only if we do.
[lstoakes@gmail.com: do not set writable_file_mapping in inappropriate case]
Link: https://lkml.kernel.org/r/c9eb4cc6-7db4-4c2b-838d-43a0b319a4f0@lucifer.local
Link: https://bugzilla.kernel.org/show_bug.cgi?id=217238
Link: https://lkml.kernel.org/r/55e413d20678a1bb4c7cce889062bbb07b0df892.1697116581.git.lstoakes@gmail.com
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "permit write-sealed memfd read-only shared mappings", v4.
The man page for fcntl() describing memfd file seals states the following
about F_SEAL_WRITE:-
Furthermore, trying to create new shared, writable memory-mappings via
mmap(2) will also fail with EPERM.
With emphasis on 'writable'. In turns out in fact that currently the
kernel simply disallows all new shared memory mappings for a memfd with
F_SEAL_WRITE applied, rendering this documentation inaccurate.
This matters because users are therefore unable to obtain a shared mapping
to a memfd after write sealing altogether, which limits their usefulness.
This was reported in the discussion thread [1] originating from a bug
report [2].
This is a product of both using the struct address_space->i_mmap_writable
atomic counter to determine whether writing may be permitted, and the
kernel adjusting this counter when any VM_SHARED mapping is performed and
more generally implicitly assuming VM_SHARED implies writable.
It seems sensible that we should only update this mapping if VM_MAYWRITE
is specified, i.e. whether it is possible that this mapping could at any
point be written to.
If we do so then all we need to do to permit write seals to function as
documented is to clear VM_MAYWRITE when mapping read-only. It turns out
this functionality already exists for F_SEAL_FUTURE_WRITE - we can
therefore simply adapt this logic to do the same for F_SEAL_WRITE.
We then hit a chicken and egg situation in mmap_region() where the check
for VM_MAYWRITE occurs before we are able to clear this flag. To work
around this, perform this check after we invoke call_mmap(), with careful
consideration of error paths.
Thanks to Andy Lutomirski for the suggestion!
[1]:https://lore.kernel.org/all/20230324133646.16101dfa666f253c4715d965@linux-foundation.org/
[2]:https://bugzilla.kernel.org/show_bug.cgi?id=217238
This patch (of 3):
There is a general assumption that VMAs with the VM_SHARED flag set are
writable. If the VM_MAYWRITE flag is not set, then this is simply not the
case.
Update those checks which affect the struct address_space->i_mmap_writable
field to explicitly test for this by introducing
[vma_]is_shared_maywrite() helper functions.
This remains entirely conservative, as the lack of VM_MAYWRITE guarantees
that the VMA cannot be written to.
Link: https://lkml.kernel.org/r/cover.1697116581.git.lstoakes@gmail.com
Link: https://lkml.kernel.org/r/d978aefefa83ec42d18dfa964ad180dbcde34795.1697116581.git.lstoakes@gmail.com
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Suggested-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
mremap uses vma_merge() in the case where a VMA needs to be extended. This
can be significantly simplified and abstracted.
This makes it far easier to understand what the actual function is doing,
avoids future mistakes in use of the confusing vma_merge() function and
importantly allows us to make future changes to how vma_merge() is
implemented by knowing explicitly which merge cases each invocation uses.
Note that in the mremap() extend case, we perform this merge only when
old_len == vma->vm_end - addr. The extension_start, i.e. the start of the
extended portion of the VMA is equal to addr + old_len, i.e. vma->vm_end.
With this refactoring, vma_merge() is no longer required anywhere except
mm/mmap.c, so mark it static.
Link: https://lkml.kernel.org/r/f16cbdc2e72d37a1a097c39dc7d1fee8919a1c93.1697043508.git.lstoakes@gmail.com
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Liam R. Howlett <Liam.Howlett@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Only in mmap_region() and copy_vma() do we attempt to merge VMAs which
occupy entirely new regions of virtual memory.
We can abstract this logic and make the intent of this invocations of it
completely explicit, rather than invoking vma_merge() with an inscrutable
wall of parameters.
This also paves the way for a simplification of the core vma_merge()
implementation, as we seek to make it entirely an implementation detail.
The VMA merge call in mmap_region() occurs only for file-backed mappings,
where each of the parameters previously specified as NULL are defaulted to
NULL in vma_init() (called by vm_area_alloc()).
This matches the previous behaviour of specifying NULL for a number of
fields, however note that prior to this call we pass the VMA to the file
system driver via call_mmap(), which may in theory adjust fields that we
pass in to vma_merge_new_vma().
Therefore we actually resolve an oversight here by allowing for the fact
that the driver may have done this.
Link: https://lkml.kernel.org/r/3dc71d17e307756a54781d4a4ce7315cf8b18bea.1697043508.git.lstoakes@gmail.com
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Liam R. Howlett <Liam.Howlett@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Now the common pattern of - attempting a merge via vma_merge() and should
this fail splitting VMAs via split_vma() - has been abstracted, the former
can be placed into mm/internal.h and the latter made static.
In addition, the split_vma() nommu variant also need not be exported.
Link: https://lkml.kernel.org/r/405f2be10e20c4e9fbcc9fe6b2dfea105f6642e0.1697043508.git.lstoakes@gmail.com
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Liam R. Howlett <Liam.Howlett@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
mprotect() and other functions which change VMA parameters over a range
each employ a pattern of:-
1. Attempt to merge the range with adjacent VMAs.
2. If this fails, and the range spans a subset of the VMA, split it
accordingly.
This is open-coded and duplicated in each case. Also in each case most of
the parameters passed to vma_merge() remain the same.
Create a new function, vma_modify(), which abstracts this operation,
accepting only those parameters which can be changed.
To avoid the mess of invoking each function call with unnecessary
parameters, create inline wrapper functions for each of the modify
operations, parameterised only by what is required to perform the action.
We can also significantly simplify the logic - by returning the VMA if we
split (or merged VMA if we do not) we no longer need specific handling for
merge/split cases in any of the call sites.
Note that the userfaultfd_release() case works even though it does not
split VMAs - since start is set to vma->vm_start and end is set to
vma->vm_end, the split logic does not trigger.
In addition, since we calculate pgoff to be equal to vma->vm_pgoff + (start
- vma->vm_start) >> PAGE_SHIFT, and start - vma->vm_start will be 0 in this
instance, this invocation will remain unchanged.
We eliminate a VM_WARN_ON() in mprotect_fixup() as this simply asserts that
vma_merge() correctly ensures that flags remain the same, something that is
already checked in is_mergeable_vma() and elsewhere, and in any case is not
specific to mprotect().
Link: https://lkml.kernel.org/r/0dfa9368f37199a423674bf0ee312e8ea0619044.1697043508.git.lstoakes@gmail.com
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Liam R. Howlett <Liam.Howlett@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
When tracing through the code in vma_merge(), it was not completely
clear why the error return to a dup_anon_vma() call would not overwrite
a previous attempt to the same function. This commit adds a comment
specifying why it is safe.
Link: https://lkml.kernel.org/r/20230929183041.2835469-4-Liam.Howlett@oracle.com
Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Suggested-by: Jann Horn <jannh@google.com>
Link: https://lore.kernel.org/linux-mm/CAG48ez3iDwFPR=Ed1BfrNuyUJPMK_=StjxhUsCkL6po1s7bONg@mail.gmail.com/
Reviewed-by: Lorenzo Stoakes <lstoakes@gmail.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
|
|
When the calling function fails after the dup_anon_vma(), the
duplication of the anon_vma is not being undone. Add the necessary
unlink_anon_vma() call to the error paths that are missing them.
This issue showed up during inspection of the error path in vma_merge()
for an unrelated vma iterator issue.
Users may experience increased memory usage, which may be problematic as
the failure would likely be caused by a low memory situation.
Link: https://lkml.kernel.org/r/20230929183041.2835469-3-Liam.Howlett@oracle.com
Fixes: d4af56c5c7c6 ("mm: start tracking VMAs with maple tree")
Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Reviewed-by: Lorenzo Stoakes <lstoakes@gmail.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jann Horn <jannh@google.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
During the error path, the vma iterator may not be correctly positioned or
set to the correct range. Undo the vma_prev() call by resetting to the
passed in address. Re-walking to the same range will fix the range to the
area previously passed in.
Users would notice increased cycles as vma_merge() would be called an
extra time with vma == prev, and thus would fail to merge and return.
Link: https://lore.kernel.org/linux-mm/CAG48ez12VN1JAOtTNMY+Y2YnsU45yL5giS-Qn=ejtiHpgJAbdQ@mail.gmail.com/
Link: https://lkml.kernel.org/r/20230929183041.2835469-2-Liam.Howlett@oracle.com
Fixes: 18b098af2890 ("vma_merge: set vma iterator to correct position.")
Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Reported-by: Jann Horn <jannh@google.com>
Closes: https://lore.kernel.org/linux-mm/CAG48ez12VN1JAOtTNMY+Y2YnsU45yL5giS-Qn=ejtiHpgJAbdQ@mail.gmail.com/
Reviewed-by: Lorenzo Stoakes <lstoakes@gmail.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Calling vm_brk_flags() with flags set other than VM_EXEC will exit the
function without releasing the mmap_write_lock.
Just do the sanity check before the lock is acquired. This doesn't fix an
actual issue since no caller sets a flag other than VM_EXEC.
Link: https://lkml.kernel.org/r/20230929171937.work.697-kees@kernel.org
Fixes: 2e7ce7d354f2 ("mm/mmap: change do_brk_flags() to expand existing VMA and add do_brk_munmap()")
Signed-off-by: Sebastian Ott <sebott@redhat.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
expand_upwards() and expand_downwards() will return -EFAULT if VM_GROWSUP
or VM_GROWSDOWN is not correctly set in vma->vm_flags, however in
!CONFIG_STACK_GROWSUP case, expand_stack_locked() returns -EINVAL first if
!(vma->vm_flags & VM_GROWSDOWN) before calling expand_downwards(), to keep
the consistency with CONFIG_STACK_GROWSUP case, remove this check.
The usages of this function are as below:
A:fs/exec.c
ret = expand_stack_locked(vma, stack_base);
if (ret)
ret = -EFAULT;
or
B:mm/memory.c mm/mmap.c
if (expand_stack_locked(vma, addr))
return NULL;
which means the return value will not propagate to other places, so I
believe there is no user-visible effects of this change, and it's
unnecessary to backport to earlier versions.
Link: https://lkml.kernel.org/r/20230906103312.645712-1-xiujianfeng@huaweicloud.com
Fixes: f440fa1ac955 ("mm: make find_extend_vma() fail if write lock not held")
Signed-off-by: Xiu Jianfeng <xiujianfeng@huawei.com>
Cc: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Fix insert_vm_struct() so that only accounted memory is unaccounted if
vma_link() fails.
Link: https://lkml.kernel.org/r/20230830004324.16101-1-anthony.yznaga@oracle.com
Fixes: d4af56c5c7c6 ("mm: start tracking VMAs with maple tree")
Signed-off-by: Anthony Yznaga <anthony.yznaga@oracle.com>
Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
With fs/binfmt_elf.c fully refactored to use the new elf_load() helper,
there are no more users of vm_brk(), so remove it.
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: linux-mm@kvack.org
Suggested-by: Eric Biederman <ebiederm@xmission.com>
Tested-by: Pedro Falcato <pedro.falcato@gmail.com>
Signed-off-by: Sebastian Ott <sebott@redhat.com>
Link: https://lore.kernel.org/r/20230929032435.2391507-6-keescook@chromium.org
Signed-off-by: Kees Cook <keescook@chromium.org>
|
|
The Itanium architecture is obsolete, and an informal survey [0] reveals
that any residual use of Itanium hardware in production is mostly HP-UX
or OpenVMS based. The use of Linux on Itanium appears to be limited to
enthusiasts that occasionally boot a fresh Linux kernel to see whether
things are still working as intended, and perhaps to churn out some
distro packages that are rarely used in practice.
None of the original companies behind Itanium still produce or support
any hardware or software for the architecture, and it is listed as
'Orphaned' in the MAINTAINERS file, as apparently, none of the engineers
that contributed on behalf of those companies (nor anyone else, for that
matter) have been willing to support or maintain the architecture
upstream or even be responsible for applying the odd fix. The Intel
firmware team removed all IA-64 support from the Tianocore/EDK2
reference implementation of EFI in 2018. (Itanium is the original
architecture for which EFI was developed, and the way Linux supports it
deviates significantly from other architectures.) Some distros, such as
Debian and Gentoo, still maintain [unofficial] ia64 ports, but many have
dropped support years ago.
While the argument is being made [1] that there is a 'for the common
good' angle to being able to build and run existing projects such as the
Grid Community Toolkit [2] on Itanium for interoperability testing, the
fact remains that none of those projects are known to be deployed on
Linux/ia64, and very few people actually have access to such a system in
the first place. Even if there were ways imaginable in which Linux/ia64
could be put to good use today, what matters is whether anyone is
actually doing that, and this does not appear to be the case.
There are no emulators widely available, and so boot testing Itanium is
generally infeasible for ordinary contributors. GCC still supports IA-64
but its compile farm [3] no longer has any IA-64 machines. GLIBC would
like to get rid of IA-64 [4] too because it would permit some overdue
code cleanups. In summary, the benefits to the ecosystem of having IA-64
be part of it are mostly theoretical, whereas the maintenance overhead
of keeping it supported is real.
So let's rip off the band aid, and remove the IA-64 arch code entirely.
This follows the timeline proposed by the Debian/ia64 maintainer [5],
which removes support in a controlled manner, leaving IA-64 in a known
good state in the most recent LTS release. Other projects will follow
once the kernel support is removed.
[0] https://lore.kernel.org/all/CAMj1kXFCMh_578jniKpUtx_j8ByHnt=s7S+yQ+vGbKt9ud7+kQ@mail.gmail.com/
[1] https://lore.kernel.org/all/0075883c-7c51-00f5-2c2d-5119c1820410@web.de/
[2] https://gridcf.org/gct-docs/latest/index.html
[3] https://cfarm.tetaneutral.net/machines/list/
[4] https://lore.kernel.org/all/87bkiilpc4.fsf@mid.deneb.enyo.de/
[5] https://lore.kernel.org/all/ff58a3e76e5102c94bb5946d99187b358def688a.camel@physik.fu-berlin.de/
Acked-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 shadow stack support from Dave Hansen:
"This is the long awaited x86 shadow stack support, part of Intel's
Control-flow Enforcement Technology (CET).
CET consists of two related security features: shadow stacks and
indirect branch tracking. This series implements just the shadow stack
part of this feature, and just for userspace.
The main use case for shadow stack is providing protection against
return oriented programming attacks. It works by maintaining a
secondary (shadow) stack using a special memory type that has
protections against modification. When executing a CALL instruction,
the processor pushes the return address to both the normal stack and
to the special permission shadow stack. Upon RET, the processor pops
the shadow stack copy and compares it to the normal stack copy.
For more information, refer to the links below for the earlier
versions of this patch set"
Link: https://lore.kernel.org/lkml/20220130211838.8382-1-rick.p.edgecombe@intel.com/
Link: https://lore.kernel.org/lkml/20230613001108.3040476-1-rick.p.edgecombe@intel.com/
* tag 'x86_shstk_for_6.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (47 commits)
x86/shstk: Change order of __user in type
x86/ibt: Convert IBT selftest to asm
x86/shstk: Don't retry vm_munmap() on -EINTR
x86/kbuild: Fix Documentation/ reference
x86/shstk: Move arch detail comment out of core mm
x86/shstk: Add ARCH_SHSTK_STATUS
x86/shstk: Add ARCH_SHSTK_UNLOCK
x86: Add PTRACE interface for shadow stack
selftests/x86: Add shadow stack test
x86/cpufeatures: Enable CET CR4 bit for shadow stack
x86/shstk: Wire in shadow stack interface
x86: Expose thread features in /proc/$PID/status
x86/shstk: Support WRSS for userspace
x86/shstk: Introduce map_shadow_stack syscall
x86/shstk: Check that signal frame is shadow stack mem
x86/shstk: Check that SSP is aligned on sigreturn
x86/shstk: Handle signals for shadow stack
x86/shstk: Introduce routines modifying shstk
x86/shstk: Handle thread shadow stack
x86/shstk: Add user-mode shadow stack support
...
|
|
vma_prepare() is currently the central place where vmas are being locked
before vma_complete() applies changes to them. While this is convenient,
it also obscures vma locking and makes it harder to follow the locking
rules. Move vma locking out of vma_prepare() and take vma locks
explicitly at the locations where vmas are being modified. Move vma
locking and replace it with an assertion inside dup_anon_vma() to further
clarify the locking pattern inside vma_merge().
Link: https://lkml.kernel.org/r/20230804152724.3090321-7-surenb@google.com
Suggested-by: Linus Torvalds <torvalds@linuxfoundation.org>
Suggested-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Cc: Jann Horn <jannh@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
While it's not strictly necessary to lock a newly created vma before
adding it into the vma tree (as long as no further changes are performed
to it), it seems like a good policy to lock it and prevent accidental
changes after it becomes visible to the page faults. Lock the vma before
adding it into the vma tree.
[akpm@linux-foundation.org: fix reject fixing in vma_link(), per Jann]
Link: https://lkml.kernel.org/r/20230804152724.3090321-6-surenb@google.com
Suggested-by: Jann Horn <jannh@google.com>
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Linus Torvalds <torvalds@linuxfoundation.org>
Cc: Jann Horn <jannh@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Use helper macro K() to improve code readability. No functional
modification involved.
Link: https://lkml.kernel.org/r/20230804012559.2617515-7-zhangpeng362@huawei.com
Signed-off-by: ZhangPeng <zhangpeng362@huawei.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Nanyong Sun <sunnanyong@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|