summaryrefslogtreecommitdiff
path: root/mm/huge_memory.c
AgeCommit message (Collapse)AuthorFilesLines
2014-08-08mm: memcontrol: rewrite charge APIJohannes Weiner1-20/+37
These patches rework memcg charge lifetime to integrate more naturally with the lifetime of user pages. This drastically simplifies the code and reduces charging and uncharging overhead. The most expensive part of charging and uncharging is the page_cgroup bit spinlock, which is removed entirely after this series. Here are the top-10 profile entries of a stress test that reads a 128G sparse file on a freshly booted box, without even a dedicated cgroup (i.e. executing in the root memcg). Before: 15.36% cat [kernel.kallsyms] [k] copy_user_generic_string 13.31% cat [kernel.kallsyms] [k] memset 11.48% cat [kernel.kallsyms] [k] do_mpage_readpage 4.23% cat [kernel.kallsyms] [k] get_page_from_freelist 2.38% cat [kernel.kallsyms] [k] put_page 2.32% cat [kernel.kallsyms] [k] __mem_cgroup_commit_charge 2.18% kswapd0 [kernel.kallsyms] [k] __mem_cgroup_uncharge_common 1.92% kswapd0 [kernel.kallsyms] [k] shrink_page_list 1.86% cat [kernel.kallsyms] [k] __radix_tree_lookup 1.62% cat [kernel.kallsyms] [k] __pagevec_lru_add_fn After: 15.67% cat [kernel.kallsyms] [k] copy_user_generic_string 13.48% cat [kernel.kallsyms] [k] memset 11.42% cat [kernel.kallsyms] [k] do_mpage_readpage 3.98% cat [kernel.kallsyms] [k] get_page_from_freelist 2.46% cat [kernel.kallsyms] [k] put_page 2.13% kswapd0 [kernel.kallsyms] [k] shrink_page_list 1.88% cat [kernel.kallsyms] [k] __radix_tree_lookup 1.67% cat [kernel.kallsyms] [k] __pagevec_lru_add_fn 1.39% kswapd0 [kernel.kallsyms] [k] free_pcppages_bulk 1.30% cat [kernel.kallsyms] [k] kfree As you can see, the memcg footprint has shrunk quite a bit. text data bss dec hex filename 37970 9892 400 48262 bc86 mm/memcontrol.o.old 35239 9892 400 45531 b1db mm/memcontrol.o This patch (of 4): The memcg charge API charges pages before they are rmapped - i.e. have an actual "type" - and so every callsite needs its own set of charge and uncharge functions to know what type is being operated on. Worse, uncharge has to happen from a context that is still type-specific, rather than at the end of the page's lifetime with exclusive access, and so requires a lot of synchronization. Rewrite the charge API to provide a generic set of try_charge(), commit_charge() and cancel_charge() transaction operations, much like what's currently done for swap-in: mem_cgroup_try_charge() attempts to reserve a charge, reclaiming pages from the memcg if necessary. mem_cgroup_commit_charge() commits the page to the charge once it has a valid page->mapping and PageAnon() reliably tells the type. mem_cgroup_cancel_charge() aborts the transaction. This reduces the charge API and enables subsequent patches to drastically simplify uncharging. As pages need to be committed after rmap is established but before they are added to the LRU, page_add_new_anon_rmap() must stop doing LRU additions again. Revive lru_cache_add_active_or_unevictable(). [hughd@google.com: fix shmem_unuse] [hughd@google.com: Add comments on the private use of -EAGAIN] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Tejun Heo <tj@kernel.org> Cc: Vladimir Davydov <vdavydov@parallels.com> Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06mm, thp: only collapse hugepages to nodes with affinity for zone_reclaim_modeDavid Rientjes1-0/+26
Commit 9f1b868a13ac ("mm: thp: khugepaged: add policy for finding target node") improved the previous khugepaged logic which allocated a transparent hugepages from the node of the first page being collapsed. However, it is still possible to collapse pages to remote memory which may suffer from additional access latency. With the current policy, it is possible that 255 pages (with PAGE_SHIFT == 12) will be collapsed remotely if the majority are allocated from that node. When zone_reclaim_mode is enabled, it means the VM should make every attempt to allocate locally to prevent NUMA performance degradation. In this case, we do not want to collapse hugepages to remote nodes that would suffer from increased access latency. Thus, when zone_reclaim_mode is enabled, only allow collapsing to nodes with RECLAIM_DISTANCE or less. There is no functional change for systems that disable zone_reclaim_mode. Signed-off-by: David Rientjes <rientjes@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Bob Liu <bob.liu@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06mm: huge_memory: use GFP_TRANSHUGE when charging huge pagesJohannes Weiner1-3/+3
Transparent huge page charges prefer falling back to regular pages rather than spending a lot of time in direct reclaim. Desired reclaim behavior is usually declared in the gfp mask, but THP charges use GFP_KERNEL and then rely on the fact that OOM is disabled for THP charges, and that OOM-disabled charges don't retry reclaim. Needless to say, this is anything but obvious and quite error prone. Convert THP charges to use GFP_TRANSHUGE instead, which implies __GFP_NORETRY, to indicate the low-latency requirement. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Hugh Dickins <hughd@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vladimir Davydov <vdavydov@parallels.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06mm, thp: replace smp_mb after atomic_add by smp_mb__after_atomicWaiman Long1-1/+1
In some architectures like x86, atomic_add() is a full memory barrier. In that case, an additional smp_mb() is just a waste of time. This patch replaces that smp_mb() by smp_mb__after_atomic() which will avoid the redundant memory barrier in some architectures. With a 3.16-rc1 based kernel, this patch reduced the execution time of breaking 1000 transparent huge pages from 38,245us to 30,964us. A reduction of 19% which is quite sizeable. It also reduces the %cpu time of the __split_huge_page_refcount function in the perf profile from 2.18% to 1.15%. Signed-off-by: Waiman Long <Waiman.Long@hp.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Scott J Norton <scott.norton@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06mm, thp: move invariant bug check out of loop in __split_huge_page_mapWaiman Long1-2/+2
In __split_huge_page_map(), the check for page_mapcount(page) is invariant within the for loop. Because of the fact that the macro is implemented using atomic_read(), the redundant check cannot be optimized away by the compiler leading to unnecessary read to the page structure. This patch moves the invariant bug check out of the loop so that it will be done only once. On a 3.16-rc1 based kernel, the execution time of a microbenchmark that broke up 1000 transparent huge pages using munmap() had an execution time of 38,245us and 38,548us with and without the patch respectively. The performance gain is about 1%. Signed-off-by: Waiman Long <Waiman.Long@hp.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Scott J Norton <scott.norton@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-23mm: let mm_find_pmd fix buggy race with THP faultHugh Dickins1-6/+12
Trinity has reported: BUG: unable to handle kernel NULL pointer dereference at 0000000000000018 IP: __lock_acquire (kernel/locking/lockdep.c:3070 (discriminator 1)) CPU: 6 PID: 16173 Comm: trinity-c364 Tainted: G W 3.15.0-rc1-next-20140415-sasha-00020-gaa90d09 #398 lock_acquire (arch/x86/include/asm/current.h:14 kernel/locking/lockdep.c:3602) _raw_spin_lock (include/linux/spinlock_api_smp.h:143 kernel/locking/spinlock.c:151) remove_migration_pte (mm/migrate.c:137) rmap_walk (mm/rmap.c:1628 mm/rmap.c:1699) remove_migration_ptes (mm/migrate.c:224) migrate_pages (mm/migrate.c:922 mm/migrate.c:960 mm/migrate.c:1126) migrate_misplaced_page (mm/migrate.c:1733) __handle_mm_fault (mm/memory.c:3762 mm/memory.c:3812 mm/memory.c:3925) handle_mm_fault (mm/memory.c:3948) __get_user_pages (mm/memory.c:1851) __mlock_vma_pages_range (mm/mlock.c:255) __mm_populate (mm/mlock.c:711) SyS_mlockall (include/linux/mm.h:1799 mm/mlock.c:817 mm/mlock.c:791) I believe this comes about because, whereas collapsing and splitting THP functions take anon_vma lock in write mode (which excludes concurrent rmap walks), faulting THP functions (write protection and misplaced NUMA) do not - and mostly they do not need to. But they do use a pmdp_clear_flush(), set_pmd_at() sequence which, for an instant (indeed, for a long instant, given the inter-CPU TLB flush in there), leaves *pmd neither present not trans_huge. Which can confuse a concurrent rmap walk, as when removing migration ptes, seen in the dumped trace. Although that rmap walk has a 4k page to insert, anon_vmas containing THPs are in no way segregated from 4k-page anon_vmas, so the 4k-intent mm_find_pmd() does need to cope with that instant when a trans_huge pmd is temporarily absent. I don't think we need strengthen the locking at the THP end: it's easily handled with an ACCESS_ONCE() before testing both conditions. And since mm_find_pmd() had only one caller who wanted a THP rather than a pmd, let's slightly repurpose it to fail when it hits a THP or non-present pmd, and open code split_huge_page_address() again. Signed-off-by: Hugh Dickins <hughd@google.com> Reported-by: Sasha Levin <sasha.levin@oracle.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Bob Liu <bob.liu@oracle.com> Cc: Christoph Lameter <cl@gentwo.org> Cc: Dave Jones <davej@redhat.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-23mm: thp: fix DEBUG_PAGEALLOC oops in copy_page_rep()Hugh Dickins1-4/+35
Trinity has for over a year been reporting a CONFIG_DEBUG_PAGEALLOC oops in copy_page_rep() called from copy_user_huge_page() called from do_huge_pmd_wp_page(). I believe this is a DEBUG_PAGEALLOC false positive, due to the source page being split, and a tail page freed, while copy is in progress; and not a problem without DEBUG_PAGEALLOC, since the pmd_same() check will prevent a miscopy from being made visible. Fix by adding get_user_huge_page() and put_user_huge_page(): reducing to the usual get_page() and put_page() on head page in the usual config; but get and put references to all of the tail pages when DEBUG_PAGEALLOC. [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reported-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Cc: Dave Jones <davej@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04mm/huge_memory.c: complete conversion to pr_foo()Andrew Morton1-11/+11
It was using a mix of pr_foo() and printk(KERN_ERR ...). Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04thp: consolidate assert checks in __split_huge_page()Kirill A. Shutemov1-4/+6
It doesn't make sense to have two assert checks for each invariant: one for printing and one for BUG(). Let's trigger BUG() if we print error message. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-05-07Merge branch 'sched/urgent' into sched/core, to avoid conflictsIngo Molnar1-88/+25
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-04-18thp: close race between split and zap huge pagesKirill A. Shutemov1-3/+10
Sasha Levin has reported two THP BUGs[1][2]. I believe both of them have the same root cause. Let's look to them one by one. The first bug[1] is "kernel BUG at mm/huge_memory.c:1829!". It's BUG_ON(mapcount != page_mapcount(page)) in __split_huge_page(). From my testing I see that page_mapcount() is higher than mapcount here. I think it happens due to race between zap_huge_pmd() and page_check_address_pmd(). page_check_address_pmd() misses PMD which is under zap: CPU0 CPU1 zap_huge_pmd() pmdp_get_and_clear() __split_huge_page() anon_vma_interval_tree_foreach() __split_huge_page_splitting() page_check_address_pmd() mm_find_pmd() /* * We check if PMD present without taking ptl: no * serialization against zap_huge_pmd(). We miss this PMD, * it's not accounted to 'mapcount' in __split_huge_page(). */ pmd_present(pmd) == 0 BUG_ON(mapcount != page_mapcount(page)) // CRASH!!! page_remove_rmap(page) atomic_add_negative(-1, &page->_mapcount) The second bug[2] is "kernel BUG at mm/huge_memory.c:1371!". It's VM_BUG_ON_PAGE(!PageHead(page), page) in zap_huge_pmd(). This happens in similar way: CPU0 CPU1 zap_huge_pmd() pmdp_get_and_clear() page_remove_rmap(page) atomic_add_negative(-1, &page->_mapcount) __split_huge_page() anon_vma_interval_tree_foreach() __split_huge_page_splitting() page_check_address_pmd() mm_find_pmd() pmd_present(pmd) == 0 /* The same comment as above */ /* * No crash this time since we already decremented page->_mapcount in * zap_huge_pmd(). */ BUG_ON(mapcount != page_mapcount(page)) /* * We split the compound page here into small pages without * serialization against zap_huge_pmd() */ __split_huge_page_refcount() VM_BUG_ON_PAGE(!PageHead(page), page); // CRASH!!! So my understanding the problem is pmd_present() check in mm_find_pmd() without taking page table lock. The bug was introduced by me commit with commit 117b0791ac42. Sorry for that. :( Let's open code mm_find_pmd() in page_check_address_pmd() and do the check under page table lock. Note that __page_check_address() does the same for PTE entires if sync != 0. I've stress tested split and zap code paths for 36+ hours by now and don't see crashes with the patch applied. Before it took <20 min to trigger the first bug and few hours for second one (if we ignore first). [1] https://lkml.kernel.org/g/<53440991.9090001@oracle.com> [2] https://lkml.kernel.org/g/<5310C56C.60709@oracle.com> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reported-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Cc: Bob Liu <lliubbo@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michel Lespinasse <walken@google.com> Cc: Dave Jones <davej@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: <stable@vger.kernel.org> [3.13+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-18sched, treewide: Replace hardcoded nice values with MIN_NICE/MAX_NICEDongsheng Yang1-1/+1
Replace various -20/+19 hardcoded nice values with MIN_NICE/MAX_NICE. Signed-off-by: Dongsheng Yang <yangds.fnst@cn.fujitsu.com> Acked-by: Tejun Heo <tj@kernel.org> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/ff13819fd09b7a5dba5ab5ae797f2e7019bdfa17.1394532288.git.yangds.fnst@cn.fujitsu.com Cc: devel@driverdev.osuosl.org Cc: devicetree@vger.kernel.org Cc: fcoe-devel@open-fcoe.org Cc: linux390@de.ibm.com Cc: linux-kernel@vger.kernel.org Cc: linux-mm@kvack.org Cc: linux-s390@vger.kernel.org Cc: linux-scsi@vger.kernel.org Cc: nbd-general@lists.sourceforge.net Cc: ocfs2-devel@oss.oracle.com Cc: openipmi-developer@lists.sourceforge.net Cc: qla2xxx-upstream@qlogic.com Cc: linux-arch@vger.kernel.org [ Consolidated the patches, twiddled the changelog. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-04-07memcg: rename high level charging functionsMichal Hocko1-4/+4
mem_cgroup_newpage_charge is used only for charging anonymous memory so it is better to rename it to mem_cgroup_charge_anon. mem_cgroup_cache_charge is used for file backed memory so rename it to mem_cgroup_charge_file. Signed-off-by: Michal Hocko <mhocko@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07mm: revert "thp: make MADV_HUGEPAGE check for mm->def_flags"Alex Thorlton1-4/+9
The main motivation behind this patch is to provide a way to disable THP for jobs where the code cannot be modified, and using a malloc hook with madvise is not an option (i.e. statically allocated data). This patch allows us to do just that, without affecting other jobs running on the system. We need to do this sort of thing for jobs where THP hurts performance, due to the possibility of increased remote memory accesses that can be created by situations such as the following: When you touch 1 byte of an untouched, contiguous 2MB chunk, a THP will be handed out, and the THP will be stuck on whatever node the chunk was originally referenced from. If many remote nodes need to do work on that same chunk, they'll be making remote accesses. With THP disabled, 4K pages can be handed out to separate nodes as they're needed, greatly reducing the amount of remote accesses to memory. This patch is based on some of my work combined with some suggestions/patches given by Oleg Nesterov. The main goal here is to add a prctl switch to allow us to disable to THP on a per mm_struct basis. Here's a bit of test data with the new patch in place... First with the flag unset: # perf stat -a ./prctl_wrapper_mmv3 0 ./thp_pthread -C 0 -m 0 -c 512 -b 256g Setting thp_disabled for this task... thp_disable: 0 Set thp_disabled state to 0 Process pid = 18027 PF/ MAX MIN TOTCPU/ TOT_PF/ TOT_PF/ WSEC/ TYPE: CPUS WALL WALL SYS USER TOTCPU CPU WALL_SEC SYS_SEC CPU NODES 512 1.120 0.060 0.000 0.110 0.110 0.000 28571428864 -9223372036854775808 55803572 23 Performance counter stats for './prctl_wrapper_mmv3_hack 0 ./thp_pthread -C 0 -m 0 -c 512 -b 256g': 273719072.841402 task-clock # 641.026 CPUs utilized [100.00%] 1,008,986 context-switches # 0.000 M/sec [100.00%] 7,717 CPU-migrations # 0.000 M/sec [100.00%] 1,698,932 page-faults # 0.000 M/sec 355,222,544,890,379 cycles # 1.298 GHz [100.00%] 536,445,412,234,588 stalled-cycles-frontend # 151.02% frontend cycles idle [100.00%] 409,110,531,310,223 stalled-cycles-backend # 115.17% backend cycles idle [100.00%] 148,286,797,266,411 instructions # 0.42 insns per cycle # 3.62 stalled cycles per insn [100.00%] 27,061,793,159,503 branches # 98.867 M/sec [100.00%] 1,188,655,196 branch-misses # 0.00% of all branches 427.001706337 seconds time elapsed Now with the flag set: # perf stat -a ./prctl_wrapper_mmv3 1 ./thp_pthread -C 0 -m 0 -c 512 -b 256g Setting thp_disabled for this task... thp_disable: 1 Set thp_disabled state to 1 Process pid = 144957 PF/ MAX MIN TOTCPU/ TOT_PF/ TOT_PF/ WSEC/ TYPE: CPUS WALL WALL SYS USER TOTCPU CPU WALL_SEC SYS_SEC CPU NODES 512 0.620 0.260 0.250 0.320 0.570 0.001 51612901376 128000000000 100806448 23 Performance counter stats for './prctl_wrapper_mmv3_hack 1 ./thp_pthread -C 0 -m 0 -c 512 -b 256g': 138789390.540183 task-clock # 641.959 CPUs utilized [100.00%] 534,205 context-switches # 0.000 M/sec [100.00%] 4,595 CPU-migrations # 0.000 M/sec [100.00%] 63,133,119 page-faults # 0.000 M/sec 147,977,747,269,768 cycles # 1.066 GHz [100.00%] 200,524,196,493,108 stalled-cycles-frontend # 135.51% frontend cycles idle [100.00%] 105,175,163,716,388 stalled-cycles-backend # 71.07% backend cycles idle [100.00%] 180,916,213,503,160 instructions # 1.22 insns per cycle # 1.11 stalled cycles per insn [100.00%] 26,999,511,005,868 branches # 194.536 M/sec [100.00%] 714,066,351 branch-misses # 0.00% of all branches 216.196778807 seconds time elapsed As with previous versions of the patch, We're getting about a 2x performance increase here. Here's a link to the test case I used, along with the little wrapper to activate the flag: http://oss.sgi.com/projects/memtests/thp_pthread_mmprctlv3.tar.gz This patch (of 3): Revert commit 8e72033f2a48 and add in code to fix up any issues caused by the revert. The revert is necessary because hugepage_madvise would return -EINVAL when VM_NOHUGEPAGE is set, which will break subsequent chunks of this patch set. Here's a snip of an e-mail from Gerald detailing the original purpose of this code, and providing justification for the revert: "The intent of commit 8e72033f2a48 was to guard against any future programming errors that may result in an madvice(MADV_HUGEPAGE) on guest mappings, which would crash the kernel. Martin suggested adding the bit to arch/s390/mm/pgtable.c, if 8e72033f2a48 was to be reverted, because that check will also prevent a kernel crash in the case described above, it will now send a SIGSEGV instead. This would now also allow to do the madvise on other parts, if needed, so it is a more flexible approach. One could also say that it would have been better to do it this way right from the beginning..." Signed-off-by: Alex Thorlton <athorlton@sgi.com> Suggested-by: Oleg Nesterov <oleg@redhat.com> Tested-by: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-03mm, thp: drop do_huge_pmd_wp_zero_page_fallback()Kirill A. Shutemov1-77/+2
I've realized that there's no need for do_huge_pmd_wp_zero_page_fallback(). We can just split zero page with split_huge_page_pmd() and return VM_FAULT_FALLBACK. handle_pte_fault() will handle write-protection fault for us. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-03-04mm: include VM_MIXEDMAP flag in the VM_SPECIAL list to avoid m(un)lockingVlastimil Babka1-1/+1
Daniel Borkmann reported a VM_BUG_ON assertion failing: ------------[ cut here ]------------ kernel BUG at mm/mlock.c:528! invalid opcode: 0000 [#1] SMP Modules linked in: ccm arc4 iwldvm [...] video CPU: 3 PID: 2266 Comm: netsniff-ng Not tainted 3.14.0-rc2+ #8 Hardware name: LENOVO 2429BP3/2429BP3, BIOS G4ET37WW (1.12 ) 05/29/2012 task: ffff8801f87f9820 ti: ffff88002cb44000 task.ti: ffff88002cb44000 RIP: 0010:[<ffffffff81171ad0>] [<ffffffff81171ad0>] munlock_vma_pages_range+0x2e0/0x2f0 Call Trace: do_munmap+0x18f/0x3b0 vm_munmap+0x41/0x60 SyS_munmap+0x22/0x30 system_call_fastpath+0x1a/0x1f RIP munlock_vma_pages_range+0x2e0/0x2f0 ---[ end trace a0088dcf07ae10f2 ]--- because munlock_vma_pages_range() thinks it's unexpectedly in the middle of a THP page. This can be reproduced with default config since 3.11 kernels. A reproducer can be found in the kernel's selftest directory for networking by running ./psock_tpacket. The problem is that an order=2 compound page (allocated by alloc_one_pg_vec_page() is part of the munlocked VM_MIXEDMAP vma (mapped by packet_mmap()) and mistaken for a THP page and assumed to be order=9. The checks for THP in munlock came with commit ff6a6da60b89 ("mm: accelerate munlock() treatment of THP pages"), i.e. since 3.9, but did not trigger a bug. It just makes munlock_vma_pages_range() skip such compound pages until the next 512-pages-aligned page, when it encounters a head page. This is however not a problem for vma's where mlocking has no effect anyway, but it can distort the accounting. Since commit 7225522bb429 ("mm: munlock: batch non-THP page isolation and munlock+putback using pagevec") this can trigger a VM_BUG_ON in PageTransHuge() check. This patch fixes the issue by adding VM_MIXEDMAP flag to VM_SPECIAL, a list of flags that make vma's non-mlockable and non-mergeable. The reasoning is that VM_MIXEDMAP vma's are similar to VM_PFNMAP, which is already on the VM_SPECIAL list, and both are intended for non-LRU pages where mlocking makes no sense anyway. Related Lkml discussion can be found in [2]. [1] tools/testing/selftests/net/psock_tpacket [2] https://lkml.org/lkml/2014/1/10/427 Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Reported-by: Daniel Borkmann <dborkman@redhat.com> Tested-by: Daniel Borkmann <dborkman@redhat.com> Cc: Thomas Hellstrom <thellstrom@vmware.com> Cc: John David Anglin <dave.anglin@bell.net> Cc: HATAYAMA Daisuke <d.hatayama@jp.fujitsu.com> Cc: Konstantin Khlebnikov <khlebnikov@openvz.org> Cc: Carsten Otte <cotte@de.ibm.com> Cc: Jared Hulbert <jaredeh@gmail.com> Tested-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Rik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: <stable@vger.kernel.org> [3.11.x+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-02-25mm, thp: fix infinite loop on memcg OOMKirill A. Shutemov1-3/+6
Masayoshi Mizuma reported a bug with the hang of an application under the memcg limit. It happens on write-protection fault to huge zero page If we successfully allocate a huge page to replace zero page but hit the memcg limit we need to split the zero page with split_huge_page_pmd() and fallback to small pages. The other part of the problem is that VM_FAULT_OOM has special meaning in do_huge_pmd_wp_page() context. __handle_mm_fault() expects the page to be split if it sees VM_FAULT_OOM and it will will retry page fault handling. This causes an infinite loop if the page was not split. do_huge_pmd_wp_zero_page_fallback() can return VM_FAULT_OOM if it failed to allocate one small page, so fallback to small pages will not help. The solution for this part is to replace VM_FAULT_OOM with VM_FAULT_FALLBACK is fallback required. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reported-by: Masayoshi Mizuma <m.mizuma@jp.fujitsu.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-02-17mm: Use ptep/pmdp_set_numa() for updating _PAGE_NUMA bitAneesh Kumar K.V1-7/+2
Archs like ppc64 doesn't do tlb flush in set_pte/pmd functions when using a hash table MMU for various reasons (the flush is handled as part of the PTE modification when necessary). ppc64 thus doesn't implement flush_tlb_range for hash based MMUs. Additionally ppc64 require the tlb flushing to be batched within ptl locks. The reason to do that is to ensure that the hash page table is in sync with linux page table. We track the hpte index in linux pte and if we clear them without flushing hash and drop the ptl lock, we can have another cpu update the pte and can end up with duplicate entry in the hash table, which is fatal. We also want to keep set_pte_at simpler by not requiring them to do hash flush for performance reason. We do that by assuming that set_pte_at() is never *ever* called on a PTE that is already valid. This was the case until the NUMA code went in which broke that assumption. Fix that by introducing a new pair of helpers to set _PAGE_NUMA in a way similar to ptep/pmdp_set_wrprotect(), with a generic implementation using set_pte_at() and a powerpc specific one using the appropriate mechanism needed to keep the hash table in sync. Acked-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com> Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2014-01-27Merge branch 'merge' of ↵Linus Torvalds1-9/+5
git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc Pull powerpc mremap fix from Ben Herrenschmidt: "This is the patch that I had sent after -rc8 and which we decided to wait before merging. It's based on a different tree than my -next branch (it needs some pre-reqs that were in -rc4 or so while my -next is based on -rc1) so I left it as a separate branch for your to pull. It's identical to the request I did 2 or 3 weeks back. This fixes crashes in mremap with THP on powerpc. The fix however requires a small change in the generic code. It moves a condition into a helper we can override from the arch which is harmless, but it *also* slightly changes the order of the set_pmd and the withdraw & deposit, which should be fine according to Kirill (who wrote that code) but I agree -rc8 is a bit late... It was acked by Kirill and Andrew told me to just merge it via powerpc" * 'merge' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc: powerpc/thp: Fix crash on mremap
2014-01-23mm: audit/fix non-modular users of module_init in core codePaul Gortmaker1-1/+1
Code that is obj-y (always built-in) or dependent on a bool Kconfig (built-in or absent) can never be modular. So using module_init as an alias for __initcall can be somewhat misleading. Fix these up now, so that we can relocate module_init from init.h into module.h in the future. If we don't do this, we'd have to add module.h to obviously non-modular code, and that would be a worse thing. The audit targets the following module_init users for change: mm/ksm.c bool KSM mm/mmap.c bool MMU mm/huge_memory.c bool TRANSPARENT_HUGEPAGE mm/mmu_notifier.c bool MMU_NOTIFIER Note that direct use of __initcall is discouraged, vs. one of the priority categorized subgroups. As __initcall gets mapped onto device_initcall, our use of subsys_initcall (which makes sense for these files) will thus change this registration from level 6-device to level 4-subsys (i.e. slightly earlier). However no observable impact of that difference has been observed during testing. One might think that core_initcall (l2) or postcore_initcall (l3) would be more appropriate for anything in mm/ but if we look at some actual init functions themselves, we see things like: mm/huge_memory.c --> hugepage_init --> hugepage_init_sysfs mm/mmap.c --> init_user_reserve --> sysctl_user_reserve_kbytes mm/ksm.c --> ksm_init --> sysfs_create_group and hence the choice of subsys_initcall (l4) seems reasonable, and at the same time minimizes the risk of changing the priority too drastically all at once. We can adjust further in the future. Also, several instances of missing ";" at EOL are fixed. Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23mm: show message when updating min_free_kbytes in thpHan Pingtian1-1/+7
min_free_kbytes may be raised during THP's initialization. Sometimes, this will change the value which was set by the user. Showing this message will clarify this confusion. Only show this message when changing a value which was set by the user according to Michal Hocko's suggestion. Show the old value of min_free_kbytes according to Dave Hansen's suggestion. This will give user the chance to restore old value of min_free_kbytes. Signed-off-by: Han Pingtian <hanpt@linux.vnet.ibm.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Dave Hansen <dave.hansen@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23mm: dump page when hitting a VM_BUG_ON using VM_BUG_ON_PAGESasha Levin1-18/+18
Most of the VM_BUG_ON assertions are performed on a page. Usually, when one of these assertions fails we'll get a BUG_ON with a call stack and the registers. I've recently noticed based on the requests to add a small piece of code that dumps the page to various VM_BUG_ON sites that the page dump is quite useful to people debugging issues in mm. This patch adds a VM_BUG_ON_PAGE(cond, page) which beyond doing what VM_BUG_ON() does, also dumps the page before executing the actual BUG_ON. [akpm@linux-foundation.org: fix up includes] Signed-off-by: Sasha Levin <sasha.levin@oracle.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-15powerpc/thp: Fix crash on mremapAneesh Kumar K.V1-9/+5
This patch fix the below crash NIP [c00000000004cee4] .__hash_page_thp+0x2a4/0x440 LR [c0000000000439ac] .hash_page+0x18c/0x5e0 ... Call Trace: [c000000736103c40] [00001ffffb000000] 0x1ffffb000000(unreliable) [437908.479693] [c000000736103d50] [c0000000000439ac] .hash_page+0x18c/0x5e0 [437908.479699] [c000000736103e30] [c00000000000924c] .do_hash_page+0x4c/0x58 On ppc64 we use the pgtable for storing the hpte slot information and store address to the pgtable at a constant offset (PTRS_PER_PMD) from pmd. On mremap, when we switch the pmd, we need to withdraw and deposit the pgtable again, so that we find the pgtable at PTRS_PER_PMD offset from new pmd. We also want to move the withdraw and deposit before the set_pmd so that, when page fault find the pmd as trans huge we can be sure that pgtable can be located at the offset. Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2014-01-12thp: fix copy_page_rep GPF by testing is_huge_zero_pmd once onlyHugh Dickins1-3/+3
We see General Protection Fault on RSI in copy_page_rep: that RSI is what you get from a NULL struct page pointer. RIP: 0010:[<ffffffff81154955>] [<ffffffff81154955>] copy_page_rep+0x5/0x10 RSP: 0000:ffff880136e15c00 EFLAGS: 00010286 RAX: ffff880000000000 RBX: ffff880136e14000 RCX: 0000000000000200 RDX: 6db6db6db6db6db7 RSI: db73880000000000 RDI: ffff880dd0c00000 RBP: ffff880136e15c18 R08: 0000000000000200 R09: 000000000005987c R10: 000000000005987c R11: 0000000000000200 R12: 0000000000000001 R13: ffffea00305aa000 R14: 0000000000000000 R15: 0000000000000000 FS: 00007f195752f700(0000) GS:ffff880c7fc20000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000093010000 CR3: 00000001458e1000 CR4: 00000000000027e0 Call Trace: copy_user_huge_page+0x93/0xab do_huge_pmd_wp_page+0x710/0x815 handle_mm_fault+0x15d8/0x1d70 __do_page_fault+0x14d/0x840 do_page_fault+0x2f/0x90 page_fault+0x22/0x30 do_huge_pmd_wp_page() tests is_huge_zero_pmd(orig_pmd) four times: but since shrink_huge_zero_page() can free the huge_zero_page, and we have no hold of our own on it here (except where the fourth test holds page_table_lock and has checked pmd_same), it's possible for it to answer yes the first time, but no to the second or third test. Change all those last three to tests for NULL page. (Note: this is not the same issue as trinity's DEBUG_PAGEALLOC BUG in copy_page_rep with RSI: ffff88009c422000, reported by Sasha Levin in https://lkml.org/lkml/2013/3/29/103. I believe that one is due to the source page being split, and a tail page freed, while copy is in progress; and not a problem without DEBUG_PAGEALLOC, since the pmd_same check will prevent a miscopy from being made visible.) Fixes: 97ae17497e99 ("thp: implement refcounting for huge zero page") Signed-off-by: Hugh Dickins <hughd@google.com> Cc: stable@vger.kernel.org # v3.10 v3.11 v3.12 Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-02mm: remove bogus warning in copy_huge_pmd()Mel Gorman1-3/+0
Sasha Levin reported the following warning being triggered WARNING: CPU: 28 PID: 35287 at mm/huge_memory.c:887 copy_huge_pmd+0x145/ 0x3a0() Call Trace: copy_huge_pmd+0x145/0x3a0 copy_page_range+0x3f2/0x560 dup_mmap+0x2c9/0x3d0 dup_mm+0xad/0x150 copy_process+0xa68/0x12e0 do_fork+0x96/0x270 SyS_clone+0x16/0x20 stub_clone+0x69/0x90 This warning was introduced by "mm: numa: Avoid unnecessary disruption of NUMA hinting during migration" for paranoia reasons but the warning is bogus. I was thinking of parallel races between NUMA hinting faults and forks but this warning would also be triggered by a parallel reclaim splitting a THP during a fork. Remote the bogus warning. Signed-off-by: Mel Gorman <mgorman@suse.de> Reported-by: Sasha Levin <sasha.levin@oracle.com> Cc: Alex Thorlton <athorlton@sgi.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-12-18mm: numa: defer TLB flush for THP migration as long as possibleMel Gorman1-7/+0
THP migration can fail for a variety of reasons. Avoid flushing the TLB to deal with THP migration races until the copy is ready to start. Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Alex Thorlton <athorlton@sgi.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-12-18mm: fix TLB flush race between migration, and change_protection_rangeRik van Riel1-0/+7
There are a few subtle races, between change_protection_range (used by mprotect and change_prot_numa) on one side, and NUMA page migration and compaction on the other side. The basic race is that there is a time window between when the PTE gets made non-present (PROT_NONE or NUMA), and the TLB is flushed. During that time, a CPU may continue writing to the page. This is fine most of the time, however compaction or the NUMA migration code may come in, and migrate the page away. When that happens, the CPU may continue writing, through the cached translation, to what is no longer the current memory location of the process. This only affects x86, which has a somewhat optimistic pte_accessible. All other architectures appear to be safe, and will either always flush, or flush whenever there is a valid mapping, even with no permissions (SPARC). The basic race looks like this: CPU A CPU B CPU C load TLB entry make entry PTE/PMD_NUMA fault on entry read/write old page start migrating page change PTE/PMD to new page read/write old page [*] flush TLB reload TLB from new entry read/write new page lose data [*] the old page may belong to a new user at this point! The obvious fix is to flush remote TLB entries, by making sure that pte_accessible aware of the fact that PROT_NONE and PROT_NUMA memory may still be accessible if there is a TLB flush pending for the mm. This should fix both NUMA migration and compaction. [mgorman@suse.de: fix build] Signed-off-by: Rik van Riel <riel@redhat.com> Signed-off-by: Mel Gorman <mgorman@suse.de> Cc: Alex Thorlton <athorlton@sgi.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-12-18mm: numa: avoid unnecessary disruption of NUMA hinting during migrationMel Gorman1-6/+16
do_huge_pmd_numa_page() handles the case where there is parallel THP migration. However, by the time it is checked the NUMA hinting information has already been disrupted. This patch adds an earlier check with some helpers. Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Alex Thorlton <athorlton@sgi.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-12-18mm: numa: clear numa hinting information on mprotectMel Gorman1-0/+2
On a protection change it is no longer clear if the page should be still accessible. This patch clears the NUMA hinting fault bits on a protection change. Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Alex Thorlton <athorlton@sgi.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-12-18mm: numa: ensure anon_vma is locked to prevent parallel THP splitsMel Gorman1-0/+7
The anon_vma lock prevents parallel THP splits and any associated complexity that arises when handling splits during THP migration. This patch checks if the lock was successfully acquired and bails from THP migration if it failed for any reason. Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Alex Thorlton <athorlton@sgi.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-12-18mm: numa: do not clear PMD during PTE update scanMel Gorman1-1/+1
If the PMD is flushed then a parallel fault in handle_mm_fault() will enter the pmd_none and do_huge_pmd_anonymous_page() path where it'll attempt to insert a huge zero page. This is wasteful so the patch avoids clearing the PMD when setting pmd_numa. Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Alex Thorlton <athorlton@sgi.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-12-18mm: numa: serialise parallel get_user_page against THP migrationMel Gorman1-8/+16
Base pages are unmapped and flushed from cache and TLB during normal page migration and replaced with a migration entry that causes any parallel NUMA hinting fault or gup to block until migration completes. THP does not unmap pages due to a lack of support for migration entries at a PMD level. This allows races with get_user_pages and get_user_pages_fast which commit 3f926ab945b6 ("mm: Close races between THP migration and PMD numa clearing") made worse by introducing a pmd_clear_flush(). This patch forces get_user_page (fast and normal) on a pmd_numa page to go through the slow get_user_page path where it will serialise against THP migration and properly account for the NUMA hinting fault. On the migration side the page table lock is taken for each PTE update. Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Alex Thorlton <athorlton@sgi.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-12-12thp: move preallocated PTE page table on move_huge_pmd()Kirill A. Shutemov1-1/+11
Andrey Wagin reported crash on VM_BUG_ON() in pgtable_pmd_page_dtor() with fallowing backtrace: free_pgd_range+0x2bf/0x410 free_pgtables+0xce/0x120 unmap_region+0xe0/0x120 do_munmap+0x249/0x360 move_vma+0x144/0x270 SyS_mremap+0x3b9/0x510 system_call_fastpath+0x16/0x1b The crash can be reproduce with this test case: #define _GNU_SOURCE #include <sys/mman.h> #include <stdio.h> #include <unistd.h> #define MB (1024 * 1024UL) #define GB (1024 * MB) int main(int argc, char **argv) { char *p; int i; p = mmap((void *) GB, 10 * MB, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED, -1, 0); for (i = 0; i < 10 * MB; i += 4096) p[i] = 1; mremap(p, 10 * MB, 10 * MB, MREMAP_FIXED | MREMAP_MAYMOVE, 2 * GB); return 0; } Due to split PMD lock, we now store preallocated PTE tables for THP pages per-PMD table. It means we need to move them to other PMD table if huge PMD moved there. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reported-by: Andrey Vagin <avagin@openvz.org> Tested-by: Andrey Vagin <avagin@openvz.org> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-15mm: convert the rest to new page table lock apiKirill A. Shutemov1-48/+60
Only trivial cases left. Let's convert them altogether. Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Alex Thorlton <athorlton@sgi.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: "Eric W . Biederman" <ebiederm@xmission.com> Cc: "Paul E . McKenney" <paulmck@linux.vnet.ibm.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andi Kleen <ak@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Dave Jones <davej@redhat.com> Cc: David Howells <dhowells@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kees Cook <keescook@chromium.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Robin Holt <robinmholt@gmail.com> Cc: Sedat Dilek <sedat.dilek@gmail.com> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-15mm, thp: move ptl taking inside page_check_address_pmd()Kirill A. Shutemov1-16/+27
With split page table lock we can't know which lock we need to take before we find the relevant pmd. Let's move lock taking inside the function. Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Alex Thorlton <athorlton@sgi.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: "Eric W . Biederman" <ebiederm@xmission.com> Cc: "Paul E . McKenney" <paulmck@linux.vnet.ibm.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andi Kleen <ak@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Dave Jones <davej@redhat.com> Cc: David Howells <dhowells@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kees Cook <keescook@chromium.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Robin Holt <robinmholt@gmail.com> Cc: Sedat Dilek <sedat.dilek@gmail.com> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-15mm, thp: change pmd_trans_huge_lock() to return taken lockKirill A. Shutemov1-13/+27
With split ptlock it's important to know which lock pmd_trans_huge_lock() took. This patch adds one more parameter to the function to return the lock. In most places migration to new api is trivial. Exception is move_huge_pmd(): we need to take two locks if pmd tables are different. Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Alex Thorlton <athorlton@sgi.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: "Eric W . Biederman" <ebiederm@xmission.com> Cc: "Paul E . McKenney" <paulmck@linux.vnet.ibm.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andi Kleen <ak@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Dave Jones <davej@redhat.com> Cc: David Howells <dhowells@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kees Cook <keescook@chromium.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Robin Holt <robinmholt@gmail.com> Cc: Sedat Dilek <sedat.dilek@gmail.com> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-15mm: convert mm->nr_ptes to atomic_long_tKirill A. Shutemov1-5/+5
With split page table lock for PMD level we can't hold mm->page_table_lock while updating nr_ptes. Let's convert it to atomic_long_t to avoid races. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Alex Thorlton <athorlton@sgi.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: "Eric W . Biederman" <ebiederm@xmission.com> Cc: "Paul E . McKenney" <paulmck@linux.vnet.ibm.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andi Kleen <ak@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Dave Jones <davej@redhat.com> Cc: David Howells <dhowells@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kees Cook <keescook@chromium.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Robin Holt <robinmholt@gmail.com> Cc: Sedat Dilek <sedat.dilek@gmail.com> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-13mm: thp: khugepaged: add policy for finding target nodeBob Liu1-9/+44
Khugepaged will scan/free HPAGE_PMD_NR normal pages and replace with a hugepage which is allocated from the node of the first scanned normal page, but this policy is too rough and may end with unexpected result to upper users. The problem is the original page-balancing among all nodes will be broken after hugepaged started. Thinking about the case if the first scanned normal page is allocated from node A, most of other scanned normal pages are allocated from node B or C.. But hugepaged will always allocate hugepage from node A which will cause extra memory pressure on node A which is not the situation before khugepaged started. This patch try to fix this problem by making khugepaged allocate hugepage from the node which have max record of scaned normal pages hit, so that the effect to original page-balancing can be minimized. The other problem is if normal scanned pages are equally allocated from Node A,B and C, after khugepaged started Node A will still suffer extra memory pressure. Andrew Davidoff reported a related issue several days ago. He wanted his application interleaving among all nodes and "numactl --interleave=all ./test" was used to run the testcase, but the result wasn't not as expected. cat /proc/2814/numa_maps: 7f50bd440000 interleave:0-3 anon=51403 dirty=51403 N0=435 N1=435 N2=435 N3=50098 The end result showed that most pages are from Node3 instead of interleave among node0-3 which was unreasonable. This patch also fix this issue by allocating hugepage round robin from all nodes have the same record, after this patch the result was as expected: 7f78399c0000 interleave:0-3 anon=51403 dirty=51403 N0=12723 N1=12723 N2=13235 N3=12722 The simple testcase is like this: int main() { char *p; int i; int j; for (i=0; i < 200; i++) { p = (char *)malloc(1048576); printf("malloc done\n"); if (p == 0) { printf("Out of memory\n"); return 1; } for (j=0; j < 1048576; j++) { p[j] = 'A'; } printf("touched memory\n"); sleep(1); } printf("enter sleep\n"); while(1) { sleep(100); } } [akpm@linux-foundation.org: make last_khugepaged_target_node local to khugepaged_find_target_node()] Reported-by: Andrew Davidoff <davidoff@qedmf.net> Tested-by: Andrew Davidoff <davidoff@qedmf.net> Signed-off-by: Bob Liu <bob.liu@oracle.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-13mm: thp: cleanup: mv alloc_hugepage to better placeBob Liu1-8/+6
Move alloc_hugepage() to a better place, no need for a seperate #ifndef CONFIG_NUMA Signed-off-by: Bob Liu <bob.liu@oracle.com> Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andrew Davidoff <davidoff@qedmf.net> Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-13mm/huge_memory.c: fix stale comments of transparent_hugepage_flagsJianguo Wu1-5/+6
Since commit 13ece886d99c ("thp: transparent hugepage config choice"), transparent hugepage support is disabled by default, and TRANSPARENT_HUGEPAGE_ALWAYS is configured when TRANSPARENT_HUGEPAGE=y. And since commit d39d33c332c6 ("thp: enable direct defrag"), defrag is enable for all transparent hugepage page faults by default, not only in MADV_HUGEPAGE regions. Signed-off-by: Jianguo Wu <wujianguo@huawei.com> Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-01Merge branch 'linus' into sched/coreIngo Molnar1-1/+9
Resolve cherry-picking conflicts: Conflicts: mm/huge_memory.c mm/memory.c mm/mprotect.c See this upstream merge commit for more details: 52469b4fcd4f Merge branch 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-10-29mm: Close races between THP migration and PMD numa clearingMel Gorman1-18/+15
THP migration uses the page lock to guard against parallel allocations but there are cases like this still open Task A Task B --------------------- --------------------- do_huge_pmd_numa_page do_huge_pmd_numa_page lock_page mpol_misplaced == -1 unlock_page goto clear_pmdnuma lock_page mpol_misplaced == 2 migrate_misplaced_transhuge pmd = pmd_mknonnuma set_pmd_at During hours of testing, one crashed with weird errors and while I have no direct evidence, I suspect something like the race above happened. This patch extends the page lock to being held until the pmd_numa is cleared to prevent migration starting in parallel while the pmd_numa is being cleared. It also flushes the old pmd entry and orders pagetable insertion before rmap insertion. Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: <stable@kernel.org> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1381141781-10992-9-git-send-email-mgorman@suse.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-10-29mm: numa: Sanitize task_numa_fault() callsitesMel Gorman1-12/+13
There are three callers of task_numa_fault(): - do_huge_pmd_numa_page(): Accounts against the current node, not the node where the page resides, unless we migrated, in which case it accounts against the node we migrated to. - do_numa_page(): Accounts against the current node, not the node where the page resides, unless we migrated, in which case it accounts against the node we migrated to. - do_pmd_numa_page(): Accounts not at all when the page isn't migrated, otherwise accounts against the node we migrated towards. This seems wrong to me; all three sites should have the same sementaics, furthermore we should accounts against where the page really is, we already know where the task is. So modify all three sites to always account; we did after all receive the fault; and always account to where the page is after migration, regardless of success. They all still differ on when they clear the PTE/PMD; ideally that would get sorted too. Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: <stable@kernel.org> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1381141781-10992-8-git-send-email-mgorman@suse.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-10-29mm: Prevent parallel splits during THP migrationMel Gorman1-14/+30
THP migrations are serialised by the page lock but on its own that does not prevent THP splits. If the page is split during THP migration then the pmd_same checks will prevent page table corruption but the unlock page and other fix-ups potentially will cause corruption. This patch takes the anon_vma lock to prevent parallel splits during migration. Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: <stable@kernel.org> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1381141781-10992-7-git-send-email-mgorman@suse.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-10-29mm: Wait for THP migrations to complete during NUMA hinting faultsMel Gorman1-7/+16
The locking for migrating THP is unusual. While normal page migration prevents parallel accesses using a migration PTE, THP migration relies on a combination of the page_table_lock, the page lock and the existance of the NUMA hinting PTE to guarantee safety but there is a bug in the scheme. If a THP page is currently being migrated and another thread traps a fault on the same page it checks if the page is misplaced. If it is not, then pmd_numa is cleared. The problem is that it checks if the page is misplaced without holding the page lock meaning that the racing thread can be migrating the THP when the second thread clears the NUMA bit and faults a stale page. This patch checks if the page is potentially being migrated and stalls using the lock_page if it is potentially being migrated before checking if the page is misplaced or not. Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: <stable@kernel.org> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1381141781-10992-6-git-send-email-mgorman@suse.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-10-29mm: numa: Do not account for a hinting fault if we racedMel Gorman1-1/+4
If another task handled a hinting fault in parallel then do not double account for it. Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: <stable@kernel.org> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1381141781-10992-5-git-send-email-mgorman@suse.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-10-16mm: fix BUG in __split_huge_page_pmdHugh Dickins1-1/+9
Occasionally we hit the BUG_ON(pmd_trans_huge(*pmd)) at the end of __split_huge_page_pmd(): seen when doing madvise(,,MADV_DONTNEED). It's invalid: we don't always have down_write of mmap_sem there: a racing do_huge_pmd_wp_page() might have copied-on-write to another huge page before our split_huge_page() got the anon_vma lock. Forget the BUG_ON, just go back and try again if this happens. Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: David Rientjes <rientjes@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-10-09sched/numa: Adjust scan rate in task_numa_placementRik van Riel1-1/+3
Adjust numa_scan_period in task_numa_placement, depending on how much useful work the numa code can do. The more local faults there are in a given scan window the longer the period (and hence the slower the scan rate) during the next window. If there are excessive shared faults then the scan period will decrease with the amount of scaling depending on whether the ratio of shared/private faults. If the preferred node changes then the scan rate is reset to recheck if the task is properly placed. Signed-off-by: Rik van Riel <riel@redhat.com> Signed-off-by: Mel Gorman <mgorman@suse.de> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1381141781-10992-59-git-send-email-mgorman@suse.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-10-09mm: numa: Do not group on RO pagesPeter Zijlstra1-2/+13
And here's a little something to make sure not the whole world ends up in a single group. As while we don't migrate shared executable pages, we do scan/fault on them. And since everybody links to libc, everybody ends up in the same group. Suggested-by: Rik van Riel <riel@redhat.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Link: http://lkml.kernel.org/r/1381141781-10992-47-git-send-email-mgorman@suse.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-10-09mm: numa: Change page last {nid,pid} into {cpu,pid}Peter Zijlstra1-4/+4
Change the per page last fault tracking to use cpu,pid instead of nid,pid. This will allow us to try and lookup the alternate task more easily. Note that even though it is the cpu that is store in the page flags that the mpol_misplaced decision is still based on the node. Signed-off-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Link: http://lkml.kernel.org/r/1381141781-10992-43-git-send-email-mgorman@suse.de [ Fixed build failure on 32-bit systems. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>