summaryrefslogtreecommitdiff
path: root/fs/nilfs2/segment.c
AgeCommit message (Collapse)AuthorFilesLines
2014-01-15nilfs2: fix segctor bug that causes file system corruptionAndreas Rohner1-4/+6
There is a bug in the function nilfs_segctor_collect, which results in active data being written to a segment, that is marked as clean. It is possible, that this segment is selected for a later segment construction, whereby the old data is overwritten. The problem shows itself with the following kernel log message: nilfs_sufile_do_cancel_free: segment 6533 must be clean Usually a few hours later the file system gets corrupted: NILFS: bad btree node (blocknr=8748107): level = 0, flags = 0x0, nchildren = 0 NILFS error (device sdc1): nilfs_bmap_last_key: broken bmap (inode number=114660) The issue can be reproduced with a file system that is nearly full and with the cleaner running, while some IO intensive task is running. Although it is quite hard to reproduce. This is what happens: 1. The cleaner starts the segment construction 2. nilfs_segctor_collect is called 3. sc_stage is on NILFS_ST_SUFILE and segments are freed 4. sc_stage is on NILFS_ST_DAT current segment is full 5. nilfs_segctor_extend_segments is called, which allocates a new segment 6. The new segment is one of the segments freed in step 3 7. nilfs_sufile_cancel_freev is called and produces an error message 8. Loop around and the collection starts again 9. sc_stage is on NILFS_ST_SUFILE and segments are freed including the newly allocated segment, which will contain active data and can be allocated at a later time 10. A few hours later another segment construction allocates the segment and causes file system corruption This can be prevented by simply reordering the statements. If nilfs_sufile_cancel_freev is called before nilfs_segctor_extend_segments the freed segments are marked as dirty and cannot be allocated any more. Signed-off-by: Andreas Rohner <andreas.rohner@gmx.net> Reviewed-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Tested-by: Andreas Rohner <andreas.rohner@gmx.net> Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-30nilfs2: fix issue with race condition of competition between segments for ↵Vyacheslav Dubeyko1-2/+9
dirty blocks Many NILFS2 users were reported about strange file system corruption (for example): NILFS: bad btree node (blocknr=185027): level = 0, flags = 0x0, nchildren = 768 NILFS error (device sda4): nilfs_bmap_last_key: broken bmap (inode number=11540) But such error messages are consequence of file system's issue that takes place more earlier. Fortunately, Jerome Poulin <jeromepoulin@gmail.com> and Anton Eliasson <devel@antoneliasson.se> were reported about another issue not so recently. These reports describe the issue with segctor thread's crash: BUG: unable to handle kernel paging request at 0000000000004c83 IP: nilfs_end_page_io+0x12/0xd0 [nilfs2] Call Trace: nilfs_segctor_do_construct+0xf25/0x1b20 [nilfs2] nilfs_segctor_construct+0x17b/0x290 [nilfs2] nilfs_segctor_thread+0x122/0x3b0 [nilfs2] kthread+0xc0/0xd0 ret_from_fork+0x7c/0xb0 These two issues have one reason. This reason can raise third issue too. Third issue results in hanging of segctor thread with eating of 100% CPU. REPRODUCING PATH: One of the possible way or the issue reproducing was described by Jermoe me Poulin <jeromepoulin@gmail.com>: 1. init S to get to single user mode. 2. sysrq+E to make sure only my shell is running 3. start network-manager to get my wifi connection up 4. login as root and launch "screen" 5. cd /boot/log/nilfs which is a ext3 mount point and can log when NILFS dies. 6. lscp | xz -9e > lscp.txt.xz 7. mount my snapshot using mount -o cp=3360839,ro /dev/vgUbuntu/root /mnt/nilfs 8. start a screen to dump /proc/kmsg to text file since rsyslog is killed 9. start a screen and launch strace -f -o find-cat.log -t find /mnt/nilfs -type f -exec cat {} > /dev/null \; 10. start a screen and launch strace -f -o apt-get.log -t apt-get update 11. launch the last command again as it did not crash the first time 12. apt-get crashes 13. ps aux > ps-aux-crashed.log 13. sysrq+W 14. sysrq+E wait for everything to terminate 15. sysrq+SUSB Simplified way of the issue reproducing is starting kernel compilation task and "apt-get update" in parallel. REPRODUCIBILITY: The issue is reproduced not stable [60% - 80%]. It is very important to have proper environment for the issue reproducing. The critical conditions for successful reproducing: (1) It should have big modified file by mmap() way. (2) This file should have the count of dirty blocks are greater that several segments in size (for example, two or three) from time to time during processing. (3) It should be intensive background activity of files modification in another thread. INVESTIGATION: First of all, it is possible to see that the reason of crash is not valid page address: NILFS [nilfs_segctor_complete_write]:2100 bh->b_count 0, bh->b_blocknr 13895680, bh->b_size 13897727, bh->b_page 0000000000001a82 NILFS [nilfs_segctor_complete_write]:2101 segbuf->sb_segnum 6783 Moreover, value of b_page (0x1a82) is 6786. This value looks like segment number. And b_blocknr with b_size values look like block numbers. So, buffer_head's pointer points on not proper address value. Detailed investigation of the issue is discovered such picture: [-----------------------------SEGMENT 6783-------------------------------] NILFS [nilfs_segctor_do_construct]:2310 nilfs_segctor_begin_construction NILFS [nilfs_segctor_do_construct]:2321 nilfs_segctor_collect NILFS [nilfs_segctor_do_construct]:2336 nilfs_segctor_assign NILFS [nilfs_segctor_do_construct]:2367 nilfs_segctor_update_segusage NILFS [nilfs_segctor_do_construct]:2371 nilfs_segctor_prepare_write NILFS [nilfs_segctor_do_construct]:2376 nilfs_add_checksums_on_logs NILFS [nilfs_segctor_do_construct]:2381 nilfs_segctor_write NILFS [nilfs_segbuf_submit_bio]:464 bio->bi_sector 111149024, segbuf->sb_segnum 6783 [-----------------------------SEGMENT 6784-------------------------------] NILFS [nilfs_segctor_do_construct]:2310 nilfs_segctor_begin_construction NILFS [nilfs_segctor_do_construct]:2321 nilfs_segctor_collect NILFS [nilfs_lookup_dirty_data_buffers]:782 bh->b_count 1, bh->b_page ffffea000709b000, page->index 0, i_ino 1033103, i_size 25165824 NILFS [nilfs_lookup_dirty_data_buffers]:783 bh->b_assoc_buffers.next ffff8802174a6798, bh->b_assoc_buffers.prev ffff880221cffee8 NILFS [nilfs_segctor_do_construct]:2336 nilfs_segctor_assign NILFS [nilfs_segctor_do_construct]:2367 nilfs_segctor_update_segusage NILFS [nilfs_segctor_do_construct]:2371 nilfs_segctor_prepare_write NILFS [nilfs_segctor_do_construct]:2376 nilfs_add_checksums_on_logs NILFS [nilfs_segctor_do_construct]:2381 nilfs_segctor_write NILFS [nilfs_segbuf_submit_bh]:575 bh->b_count 1, bh->b_page ffffea000709b000, page->index 0, i_ino 1033103, i_size 25165824 NILFS [nilfs_segbuf_submit_bh]:576 segbuf->sb_segnum 6784 NILFS [nilfs_segbuf_submit_bh]:577 bh->b_assoc_buffers.next ffff880218a0d5f8, bh->b_assoc_buffers.prev ffff880218bcdf50 NILFS [nilfs_segbuf_submit_bio]:464 bio->bi_sector 111150080, segbuf->sb_segnum 6784, segbuf->sb_nbio 0 [----------] ditto NILFS [nilfs_segbuf_submit_bio]:464 bio->bi_sector 111164416, segbuf->sb_segnum 6784, segbuf->sb_nbio 15 [-----------------------------SEGMENT 6785-------------------------------] NILFS [nilfs_segctor_do_construct]:2310 nilfs_segctor_begin_construction NILFS [nilfs_segctor_do_construct]:2321 nilfs_segctor_collect NILFS [nilfs_lookup_dirty_data_buffers]:782 bh->b_count 2, bh->b_page ffffea000709b000, page->index 0, i_ino 1033103, i_size 25165824 NILFS [nilfs_lookup_dirty_data_buffers]:783 bh->b_assoc_buffers.next ffff880219277e80, bh->b_assoc_buffers.prev ffff880221cffc88 NILFS [nilfs_segctor_do_construct]:2367 nilfs_segctor_update_segusage NILFS [nilfs_segctor_do_construct]:2371 nilfs_segctor_prepare_write NILFS [nilfs_segctor_do_construct]:2376 nilfs_add_checksums_on_logs NILFS [nilfs_segctor_do_construct]:2381 nilfs_segctor_write NILFS [nilfs_segbuf_submit_bh]:575 bh->b_count 2, bh->b_page ffffea000709b000, page->index 0, i_ino 1033103, i_size 25165824 NILFS [nilfs_segbuf_submit_bh]:576 segbuf->sb_segnum 6785 NILFS [nilfs_segbuf_submit_bh]:577 bh->b_assoc_buffers.next ffff880218a0d5f8, bh->b_assoc_buffers.prev ffff880222cc7ee8 NILFS [nilfs_segbuf_submit_bio]:464 bio->bi_sector 111165440, segbuf->sb_segnum 6785, segbuf->sb_nbio 0 [----------] ditto NILFS [nilfs_segbuf_submit_bio]:464 bio->bi_sector 111177728, segbuf->sb_segnum 6785, segbuf->sb_nbio 12 NILFS [nilfs_segctor_do_construct]:2399 nilfs_segctor_wait NILFS [nilfs_segbuf_wait]:676 segbuf->sb_segnum 6783 NILFS [nilfs_segbuf_wait]:676 segbuf->sb_segnum 6784 NILFS [nilfs_segbuf_wait]:676 segbuf->sb_segnum 6785 NILFS [nilfs_segctor_complete_write]:2100 bh->b_count 0, bh->b_blocknr 13895680, bh->b_size 13897727, bh->b_page 0000000000001a82 BUG: unable to handle kernel paging request at 0000000000001a82 IP: [<ffffffffa024d0f2>] nilfs_end_page_io+0x12/0xd0 [nilfs2] Usually, for every segment we collect dirty files in list. Then, dirty blocks are gathered for every dirty file, prepared for write and submitted by means of nilfs_segbuf_submit_bh() call. Finally, it takes place complete write phase after calling nilfs_end_bio_write() on the block layer. Buffers/pages are marked as not dirty on final phase and processed files removed from the list of dirty files. It is possible to see that we had three prepare_write and submit_bio phases before segbuf_wait and complete_write phase. Moreover, segments compete between each other for dirty blocks because on every iteration of segments processing dirty buffer_heads are added in several lists of payload_buffers: [SEGMENT 6784]: bh->b_assoc_buffers.next ffff880218a0d5f8, bh->b_assoc_buffers.prev ffff880218bcdf50 [SEGMENT 6785]: bh->b_assoc_buffers.next ffff880218a0d5f8, bh->b_assoc_buffers.prev ffff880222cc7ee8 The next pointer is the same but prev pointer has changed. It means that buffer_head has next pointer from one list but prev pointer from another. Such modification can be made several times. And, finally, it can be resulted in various issues: (1) segctor hanging, (2) segctor crashing, (3) file system metadata corruption. FIX: This patch adds: (1) setting of BH_Async_Write flag in nilfs_segctor_prepare_write() for every proccessed dirty block; (2) checking of BH_Async_Write flag in nilfs_lookup_dirty_data_buffers() and nilfs_lookup_dirty_node_buffers(); (3) clearing of BH_Async_Write flag in nilfs_segctor_complete_write(), nilfs_abort_logs(), nilfs_forget_buffer(), nilfs_clear_dirty_page(). Reported-by: Jerome Poulin <jeromepoulin@gmail.com> Reported-by: Anton Eliasson <devel@antoneliasson.se> Cc: Paul Fertser <fercerpav@gmail.com> Cc: ARAI Shun-ichi <hermes@ceres.dti.ne.jp> Cc: Piotr Szymaniak <szarpaj@grubelek.pl> Cc: Juan Barry Manuel Canham <Linux@riotingpacifist.net> Cc: Zahid Chowdhury <zahid.chowdhury@starsolutions.com> Cc: Elmer Zhang <freeboy6716@gmail.com> Cc: Kenneth Langga <klangga@gmail.com> Signed-off-by: Vyacheslav Dubeyko <slava@dubeyko.com> Acked-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-03] nilfs2: use atomic64_t type for inodes_count and blocks_count fields in ↵Vyacheslav Dubeyko1-2/+2
nilfs_root struct The cp_inodes_count and cp_blocks_count are represented as __le64 type in on-disk structure (struct nilfs_checkpoint). But analogous fields in in-core structure (struct nilfs_root) are represented by atomic_t type. This patch replaces atomic_t on atomic64_t type in representation of inodes_count and blocks_count fields in struct nilfs_root. Signed-off-by: Vyacheslav Dubeyko <slava@dubeyko.com> Acked-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Acked-by: Joern Engel <joern@logfs.org> Cc: Clemens Eisserer <linuxhippy@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-07-31nilfs2: Convert to new freezing mechanismJan Kara1-1/+4
We change nilfs_page_mkwrite() to provide proper freeze protection for writeable page faults (we must wait for frozen filesystem even if the page is fully mapped). We remove all vfs_check_frozen() checks since they are now handled by the generic code. CC: linux-nilfs@vger.kernel.org CC: KONISHI Ryusuke <konishi.ryusuke@lab.ntt.co.jp> Signed-off-by: Jan Kara <jack@suse.cz> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2012-06-20nilfs2: ensure proper cache clearing for gc-inodesRyusuke Konishi1-0/+2
A gc-inode is a pseudo inode used to buffer the blocks to be moved by garbage collection. Block caches of gc-inodes must be cleared every time a garbage collection function (nilfs_clean_segments) completes. Otherwise, stale blocks buffered in the caches may be wrongly reused in successive calls of the GC function. For user files, this is not a problem because their gc-inodes are distinguished by a checkpoint number as well as an inode number. They never buffer different blocks if either an inode number, a checkpoint number, or a block offset differs. However, gc-inodes of sufile, cpfile and DAT file can store different data for the same block offset. Thus, the nilfs_clean_segments function can move incorrect block for these meta-data files if an old block is cached. I found this is really causing meta-data corruption in nilfs. This fixes the issue by ensuring cache clear of gc-inodes and resolves reported GC problems including checkpoint file corruption, b-tree corruption, and the following warning during GC. nilfs_palloc_freev: entry number 307234 already freed. ... Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Tested-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: <stable@vger.kernel.org> [2.6.37+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-11-21freezer: unexport refrigerator() and update try_to_freeze() slightlyTejun Heo1-1/+1
There is no reason to export two functions for entering the refrigerator. Calling refrigerator() instead of try_to_freeze() doesn't save anything noticeable or removes any race condition. * Rename refrigerator() to __refrigerator() and make it return bool indicating whether it scheduled out for freezing. * Update try_to_freeze() to return bool and relay the return value of __refrigerator() if freezing(). * Convert all refrigerator() users to try_to_freeze(). * Update documentation accordingly. * While at it, add might_sleep() to try_to_freeze(). Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Samuel Ortiz <samuel@sortiz.org> Cc: Chris Mason <chris.mason@oracle.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Jan Kara <jack@suse.cz> Cc: KONISHI Ryusuke <konishi.ryusuke@lab.ntt.co.jp> Cc: Christoph Hellwig <hch@infradead.org>
2011-06-11nilfs2: fix problem in setting checkpoint intervalRyusuke Konishi1-1/+1
Checkpoint generation interval of nilfs goes wrong after user has changed the interval parameter with nilfs-tune tool. segctord starting. Construction interval = 5 seconds, CP frequency < 30 seconds segctord starting. Construction interval = 0 seconds, CP frequency < 30 seconds This turned out to be caused by a trivial bug in initialization code of log writer. This will fix it. Reported-by: Andrea Gelmini <andrea.gelmini@gmail.com> Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2011-05-10nilfs2: use mark_buffer_dirty to mark btnode or meta data dirtyRyusuke Konishi1-2/+2
This replaces nilfs_mdt_mark_buffer_dirty and nilfs_btnode_mark_dirty macros with mark_buffer_dirty and gets rid of nilfs_mark_buffer_dirty, an own mark buffer dirty function. Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2011-05-10nilfs2: always set back pointer to host inode in mapping->hostRyusuke Konishi1-11/+5
In the current nilfs, page cache for btree nodes and meta data files do not set a valid back pointer to the host inode in mapping->host. This will change it so that every address space in nilfs uses mapping->host to hold its host inode. Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2011-05-10nilfs2: use list_first_entryRyusuke Konishi1-2/+2
This uses list_first_entry macro instead of list_entry if it's used to get the first entry. Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2011-05-10nilfs2: zero fill unused portion of super root blockRyusuke Konishi1-2/+5
The super root block is newly-allocated each time it is written back to disk, so unused portion of the block should be cleared. Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2011-05-10nilfs2: super root size should change depending on inode sizeRyusuke Konishi1-1/+1
The size of super root structure depends on inode size, so NILFS_SR_BYTES macro should be a function of the inode size. This fixes the issue. Even though a different size value will be written for a possible future filesystem with extended inode, but fortunately this does not break disk format compatibility. Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2011-05-10nilfs2: get rid of private page allocatorRyusuke Konishi1-136/+17
Previously, nilfs was cloning pages for mmapped region to freeze their data and ensure consistency of checksum during writeback cycles. A private page allocator was used for this page cloning. But, we no longer need to do that since clear_page_dirty_for_io function sets up pte so that vm_ops->page_mkwrite function is called right before the mmapped pages are modified and nilfs_page_mkwrite function can safely wait for the pages to be written back to disk. So, this stops making a copy of mmapped pages during writeback, and eliminates the private page allocation and deallocation functions from nilfs. Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2011-05-10nilfs2: merge list_del()/list_add_tail() to list_move_tail()Nicolas Kaiser1-4/+2
Merge list_del() + list_add_tail() to list_move_tail(). Signed-off-by: Nicolas Kaiser <nikai@nikai.net> Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2011-03-09nilfs2: get rid of nilfs_sb_info structureRyusuke Konishi1-23/+24
This directly uses sb->s_fs_info to keep a nilfs filesystem object and fully removes the intermediate nilfs_sb_info structure. With this change, the hierarchy of on-memory structures of nilfs will be simplified as follows: Before: super_block -> nilfs_sb_info -> the_nilfs -> cptree --+-> nilfs_root (current file system) +-> nilfs_root (snapshot A) +-> nilfs_root (snapshot B) : -> nilfs_sc_info (log writer structure) After: super_block -> the_nilfs -> cptree --+-> nilfs_root (current file system) +-> nilfs_root (snapshot A) +-> nilfs_root (snapshot B) : -> nilfs_sc_info (log writer structure) The reason why we didn't design so from the beginning is because the initial shape also differed from the above. The early hierachy was composed of "per-mount-point" super_block -> nilfs_sb_info pairs and a shared nilfs object. On the kernel 2.6.37, it was changed to the current shape in order to unify super block instances into one per device, and this cleanup became applicable as the result. Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2011-03-09nilfs2: use sb instance instead of nilfs_sb_info structRyusuke Konishi1-49/+41
This replaces sbi uses with direct reference to sb instance. Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2011-03-09nilfs2: get rid of sc_sbi back pointerRyusuke Konishi1-17/+12
Removes sci->sc_sbi which is a back pointer to nilfs_sb_info struct from log writer object (nilfs_sc_info). Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2011-03-09nilfs2: move log writer onto nilfs objectRyusuke Konishi1-29/+29
Log writer is held by the nilfs_sb_info structure. This moves it into nilfs object and replaces all uses of NILFS_SC() accessor. Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2011-03-09nilfs2: move s_inode_lock and s_dirty_files into nilfs objectRyusuke Konishi1-40/+40
Moves s_inode_lock spinlock and s_dirty_files list to nilfs object from nilfs_sb_info structure. Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2011-03-09nilfs2: move parameters on nilfs_sb_info into nilfs objectRyusuke Konishi1-4/+5
This moves four parameter variables on nilfs_sb_info s_resuid, s_resgid, s_interval and s_watermark to the nilfs object. Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2011-03-09nilfs2: move mount options to nilfs objectRyusuke Konishi1-4/+5
This moves mount_opt local variable to nilfs object from nilfs_sb_info struct. Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2011-03-02nilfs2: fix regression that i-flag is not set on changeless checkpointsRyusuke Konishi1-1/+2
According to the report from Jiro SEKIBA titled "regression in 2.6.37?" (Message-Id: <8739n8vs1f.wl%jir@sekiba.com>), on 2.6.37 and later kernels, lscp command no longer displays "i" flag on checkpoints that snapshot operations or garbage collection created. This is a regression of nilfs2 checkpointing function, and it's critical since it broke behavior of a part of nilfs2 applications. For instance, snapshot manager of TimeBrowse gets to create meaningless snapshots continuously; snapshot creation triggers another checkpoint, but applications cannot distinguish whether the new checkpoint contains meaningful changes or not without the i-flag. This patch fixes the regression and brings that application behavior back to normal. Reported-by: Jiro SEKIBA <jir@unicus.jp> Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Tested-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Tested-by: Jiro SEKIBA <jir@unicus.jp> Cc: stable <stable@kernel.org> [2.6.37]
2011-01-10nilfs2: unfold nilfs_dat_inode functionRyusuke Konishi1-6/+5
nilfs_dat_inode function was a wrapper to switch between normal dat inode and gcdat, a clone of the dat inode for garbage collection. This function got obsolete when the gcdat inode was removed, and now we can access the dat inode directly from a nilfs object. So, we will unfold the wrapper and remove it. Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2011-01-10nilfs2: mark buffer heads as delayed until the data is written to diskRyusuke Konishi1-0/+2
Nilfs does not allocate new blocks on disk until they are actually written to. To implement fiemap, we need to deal with such blocks. To allow successive fiemap patch to distinguish mapped but unallocated regions, this marks buffer heads of those new blocks as delayed and clears the flag after the blocks are written to disk. Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2011-01-10nilfs2: call nilfs_error inside bmap routinesRyusuke Konishi1-25/+5
Some functions using nilfs bmap routines can wrongly return invalid argument error (i.e. -EINVAL) that bmap returns as an internal code for btree corruption. This fixes the issue by catching and converting the internal EINVAL to EIO and calling nilfs_error function inside bmap routines. Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2010-10-26mm: add account_page_writeback()Michael Rubin1-1/+1
To help developers and applications gain visibility into writeback behaviour this patch adds two counters to /proc/vmstat. # grep nr_dirtied /proc/vmstat nr_dirtied 3747 # grep nr_written /proc/vmstat nr_written 3618 These entries allow user apps to understand writeback behaviour over time and learn how it is impacting their performance. Currently there is no way to inspect dirty and writeback speed over time. It's not possible for nr_dirty/nr_writeback. These entries are necessary to give visibility into writeback behaviour. We have /proc/diskstats which lets us understand the io in the block layer. We have blktrace for more in depth understanding. We have e2fsprogs and debugsfs to give insight into the file systems behaviour, but we don't offer our users the ability understand what writeback is doing. There is no way to know how active it is over the whole system, if it's falling behind or to quantify it's efforts. With these values exported users can easily see how much data applications are sending through writeback and also at what rates writeback is processing this data. Comparing the rates of change between the two allow developers to see when writeback is not able to keep up with incoming traffic and the rate of dirty memory being sent to the IO back end. This allows folks to understand their io workloads and track kernel issues. Non kernel engineers at Google often use these counters to solve puzzling performance problems. Patch #4 adds a pernode vmstat file with nr_dirtied and nr_written Patch #5 add writeback thresholds to /proc/vmstat Currently these values are in debugfs. But they should be promoted to /proc since they are useful for developers who are writing databases and file servers and are not debugging the kernel. The output is as below: # grep threshold /proc/vmstat nr_pages_dirty_threshold 409111 nr_pages_dirty_background_threshold 818223 This patch: This allows code outside of the mm core to safely manipulate page writeback state and not worry about the other accounting. Not using these routines means that some code will lose track of the accounting and we get bugs. Modify nilfs2 to use interface. Signed-off-by: Michael Rubin <mrubin@google.com> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reviewed-by: Wu Fengguang <fengguang.wu@intel.com> Cc: KONISHI Ryusuke <konishi.ryusuke@lab.ntt.co.jp> Cc: Jiro SEKIBA <jir@unicus.jp> Cc: Dave Chinner <david@fromorbit.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-23nilfs2: eliminate sparse warning - "context imbalance"Jiro SEKIBA1-0/+2
insert sparse annotations to fix following sparse warning. fs/nilfs2/segment.c:2681:3: warning: context imbalance in 'nilfs_segctor_kill_thread' - unexpected unlock nilfs_segctor_kill_thread is only called inside sc_state_lock lock. sparse doesn't detect the context and warn "unexpected unlock". __acquires/__releases pretend to lock/unlock the sc_state_lock for sparse. Signed-off-by: Jiro SEKIBA <jir@unicus.jp> Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2010-10-23nilfs2: add bdev freeze/thaw supportRyusuke Konishi1-0/+2
Nilfs hasn't supported the freeze/thaw feature because it didn't work due to the peculiar design that multiple super block instances could be allocated for a device. This limitation was removed by the patch "nilfs2: do not allocate multiple super block instances for a device". So now this adds the freeze/thaw support to nilfs. Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2010-10-23nilfs2: get rid of back pointer to writable sb instanceRyusuke Konishi1-4/+0
Nilfs object holds a back pointer to a writable super block instance in nilfs->ns_writer, and this became eliminable since sb is now made per device and all inodes have a valid pointer to it. This deletes the ns_writer pointer and a reader/writer semaphore protecting it. Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2010-10-23nilfs2: get rid of GCDAT inodeRyusuke Konishi1-7/+7
This applies prepared rollback function and redirect function of metadata file to DAT file, and eliminates GCDAT inode. Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2010-10-23nilfs2: add routines to redirect access to buffers of DAT fileRyusuke Konishi1-0/+1
During garbage collection (GC), DAT file, which converts virtual block number to real block number, may return disk block number that is not yet written to the device. To avoid access to unwritten blocks, the current implementation stores changes to the caches of GCDAT during GC and atomically commit the changes into the DAT file after they are written to the device. This patch, instead, adds a function that makes a copy of specified buffer and stores it in nilfs_shadow_map, and a function to get the backup copy as needed (nilfs_mdt_freeze_buffer and nilfs_mdt_get_frozen_buffer respectively). Before DAT changes block number in an entry block, it makes a copy and redirect access to the buffer so that address conversion function (i.e. nilfs_dat_translate) refers to the old address saved in the copy. This patch gives requisites for such redirection. Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2010-10-23nilfs2: move inode count and block count into root objectRyusuke Konishi1-2/+2
This moves sbi->s_inodes_count and sbi->s_blocks_count into nilfs_root object. Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2010-10-23nilfs2: use root object to get ifileRyusuke Konishi1-17/+26
This rewrites functions using ifile so that they get ifile from nilfs_root object, and will remove sbi->s_ifile. Some functions that don't know the root object are extended to receive it from caller. Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2010-10-23nilfs2: remove own inode hash used for GCRyusuke Konishi1-2/+1
This uses inode hash function that vfs provides instead of the own hash table for caching gc inodes. This finally removes the own inode hash from nilfs. Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2010-10-23nilfs2: keep zero value in i_cno except for gc-inodesRyusuke Konishi1-15/+14
On-memory inode structures of nilfs have a member "i_cno" which stores a checkpoint number related to the inode. For gc-inodes, this field indicates version of data each gc-inode caches for GC. Log writer temporarily uses "i_cno" to transfer the latest checkpoint number. This stops the latter use and lets only gc-inodes use it. The purpose of this patch is to allow the successive change use "i_cno" for inode lookup. Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2010-07-23nilfs2: do not update log cursor for small changeRyusuke Konishi1-1/+0
Super blocks of nilfs are periodically overwritten in order to record the recent log position. This shortens recovery time after unclean unmount, but the current implementation performs the update even for a few blocks of change. If the filesystem gets small changes slowly and continually, super blocks may be updated excessively. This moderates the issue by skipping update of log cursor if it does not cross a segment boundary. Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2010-07-23nilfs2: sync super blocks in turnsJiro SEKIBA1-4/+6
This will sync super blocks in turns instead of syncing duplicate super blocks at the time. This will help searching valid super root when super block is written into disk before log is written, which is happen when barrier-less block devices are unmounted uncleanly. In the situation, old super block likely points to valid log. This patch introduces ns_sbwcount member to the nilfs object and adds nilfs_sb_will_flip() function; ns_sbwcount counts how many times super blocks write back to the disk. And, nilfs_sb_will_flip() decides whether flipping required or not based on the count of ns_sbwcount to sync super blocks asymmetrically. The following functions are also changed: - nilfs_prepare_super(): flips super blocks according to the argument. The argument is calculated by nilfs_sb_will_flip() function. - nilfs_cleanup_super(): sets "clean" flag to both super blocks if they point to the same checkpoint. To update both of super block information, caller of nilfs_commit_super must set the information on both super blocks. Signed-off-by: Jiro SEKIBA <jir@unicus.jp> Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2010-07-23nilfs2: introduce nilfs_prepare_superJiro SEKIBA1-2/+6
This function checks validity of super block pointers. If first super block is invalid, it will swap the super blocks. The function should be called before any super block information updates. Caller must obtain nilfs->ns_sem. Signed-off-by: Jiro SEKIBA <jir@unicus.jp> Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2010-07-23nilfs2: get rid of macros for segment summary informationRyusuke Konishi1-4/+4
This removes macros to test segment summary flags and redefines a few relevant macros with inline functions. Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2010-05-10nilfs2: make nilfs_sc_*_ops staticRyusuke Konishi1-3/+3
This kills the following sparse warnings: fs/nilfs2/segment.c:567:28: warning: symbol 'nilfs_sc_file_ops' was not declared. Should it be static? fs/nilfs2/segment.c:617:28: warning: symbol 'nilfs_sc_dat_ops' was not declared. Should it be static? fs/nilfs2/segment.c:625:28: warning: symbol 'nilfs_sc_dsync_ops' was not declared. Should it be static? Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2010-05-10nilfs2: change sc_timer from a pointer to an embedded one in struct ↵Li Hong1-18/+13
nilfs_sc_info In nilfs_segctor_thread(), timer is a local variable allocated on stack. Its address can't be set to sci->sc_timer and passed in several procedures. It works now by chance, just because other procedures are called by nilfs_segctor_thread() directly or indirectly and the stack hasn't been deallocated yet. Signed-off-by: Li Hong <lihong.hi@gmail.com> Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2010-05-10nilfs2: remove nilfs_segctor_init() in segment.cLi Hong1-8/+1
There are only two lines of code in nilfs_segctor_init(). From a logic design view, the first line 'sci->sc_seq_done = sci->sc_seq_request;' should be put in nilfs_segctor_new(). Even in nilfs_segctor_new(), this initialization is needless because sci is kzalloc-ed. So nilfs_segctor_init() is only a wrap call to nilfs_segctor_start_thread(). Signed-off-by: Li Hong <lihong.hi@gmail.com> Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2010-05-10nilfs2: insert checkpoint number in segment summary headerRyusuke Konishi1-1/+2
This adds a field to record the latest checkpoint number in the nilfs_segment_summary structure. This will help to recover the latest checkpoint number from logs on disk. This field is intended for crucial cases in which super blocks have lost pointer to the latest log. Even though this will change the disk format, both backward and forward compatibility is preserved by a size field prepared in the segment summary header. Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2010-05-10nilfs2: cleanup multi kmem_cache_{create,destroy} codeLi Hong1-36/+0
This cleanup patch gives several improvements: - Moving all kmem_cache_{create_destroy} calls into one place, which removes some small function calls, cleans up error check code and clarify the logic. - Mark all initial code in __init section. - Remove some very obvious comments. - Adjust some declarations. - Fix some space-tab issues. Signed-off-by: Li Hong <lihong.hi@gmail.com> Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2010-05-10nilfs2: move out checksum routines to segment buffer codeRyusuke Konishi1-30/+3
This moves out checksum routines in log writer to segbuf.c for cleanup. Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2010-05-10nilfs2: move pointer to super root block into logsRyusuke Konishi1-24/+21
This moves a pointer to buffer storing super root block to each log buffer from nilfs_sc_info struct for simplicity. Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2010-03-30include cleanup: Update gfp.h and slab.h includes to prepare for breaking ↵Tejun Heo1-0/+1
implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24nilfs2: fix hang-up of cleaner after log writer returned with errorRyusuke Konishi1-2/+1
According to the report from Andreas Beckmann (Message-ID: <4BA54677.3090902@abeckmann.de>), nilfs in 2.6.33 kernel got stuck after a disk full error. This turned out to be a regression by log writer updates merged at kernel 2.6.33. nilfs_segctor_abort_construction, which is a cleanup function for erroneous cases, was skipping writeback completion for some logs. This fixes the bug and would resolve the hang issue. Reported-by: Andreas Beckmann <debian@abeckmann.de> Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Tested-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: stable <stable@kernel.org> [2.6.33.x]
2010-03-22nilfs2: fix duplicate call to nilfs_segctor_cancel_freevRyusuke Konishi1-6/+6
Andreas Beckmann gave me a report that nilfs logged the following warnings when it got a disk full: nilfs_sufile_do_cancel_free: segment 0 must be clean nilfs_sufile_do_cancel_free: segment 1 must be clean These arise from a duplicate call to nilfs_segctor_cancel_freev in an error path of log writer. This will fix the issue. Reported-by: Andreas Beckmann <debian@abeckmann.de> Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2010-03-14nilfs2: fix various typos in commentsRyusuke Konishi1-2/+2
This fixes various typos I found in comments of nilfs2. Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>