Age | Commit message (Collapse) | Author | Files | Lines |
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull irq updates from Thomas Gleixner:
"The irq departement proudly presents:
- A rework of the core infrastructure to optimally spread interrupt
for multiqueue devices. The first version was a bit naive and
failed to take thread siblings and other details into account.
Developed in cooperation with Christoph and Keith.
- Proper delegation of softirqs to ksoftirqd, so if ksoftirqd is
active then no further softirq processsing on interrupt return
happens. Otherwise we try to delegate and still run another batch
of network packets in the irq return path, which then tries to
delegate to ksoftirqd .....
- A proper machine parseable sysfs based alternative for
/proc/interrupts.
- ACPI support for the GICV3-ITS and ARM interrupt remapping
- Two new irq chips from the ARM SoC zoo: STM32-EXTI and MVEBU-PIC
- A new irq chip for the JCore (SuperH)
- The usual pile of small fixlets in core and irqchip drivers"
* 'irq-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (42 commits)
softirq: Let ksoftirqd do its job
genirq: Make function __irq_do_set_handler() static
ARM/dts: Add EXTI controller node to stm32f429
ARM/STM32: Select external interrupts controller
drivers/irqchip: Add STM32 external interrupts support
Documentation/dt-bindings: Document STM32 EXTI controller bindings
irqchip/mips-gic: Use for_each_set_bit to iterate over local IRQs
pci/msi: Retrieve affinity for a vector
genirq/affinity: Remove old irq spread infrastructure
genirq/msi: Switch to new irq spreading infrastructure
genirq/affinity: Provide smarter irq spreading infrastructure
genirq/msi: Add cpumask allocation to alloc_msi_entry
genirq: Expose interrupt information through sysfs
irqchip/gicv3-its: Use MADT ITS subtable to do PCI/MSI domain initialization
irqchip/gicv3-its: Factor out PCI-MSI part that might be reused for ACPI
irqchip/gicv3-its: Probe ITS in the ACPI way
irqchip/gicv3-its: Refactor ITS DT init code to prepare for ACPI
irqchip/gicv3-its: Cleanup for ITS domain initialization
PCI/MSI: Setup MSI domain on a per-device basis using IORT ACPI table
ACPI: Add new IORT functions to support MSI domain handling
...
|
|
* acpi-wdat:
watchdog: wdat_wdt: Fix warning for using 0 as NULL
watchdog: wdat_wdt: fix return value check in wdat_wdt_probe()
platform/x86: intel_pmc_ipc: Do not create iTCO watchdog when WDAT table exists
i2c: i801: Do not create iTCO watchdog when WDAT table exists
mfd: lpc_ich: Do not create iTCO watchdog when WDAT table exists
ACPI / watchdog: Add support for WDAT hardware watchdog
* acpi-ec:
ACPI / EC: Fix issues related to boot_ec
ACPI / EC: Fix a gap that ECDT EC cannot handle EC events
ACPI / EC: Fix a memory leakage issue in acpi_ec_add()
ACPI / EC: Cleanup first_ec/boot_ec code
ACPI / EC: Enable event freeze mode to improve event handling for suspend process
ACPI / EC: Add PM operations to improve event handling for suspend process
ACPI / EC: Add PM operations to improve event handling for resume process
ACPI / EC: Fix an issue that SCI_EVT cannot be detected after event is enabled
ACPI / EC: Add EC_FLAGS_QUERY_ENABLED to reveal a hidden logic
ACPI / EC: Add PM operations for suspend/resume noirq stage
|
|
'ARM Server Base Boot Requiremets' [1] mentions SPCR (Serial Port
Console Redirection Table) [2] as a mandatory ACPI table that
specifies the configuration of serial console.
Defer initialization of DT earlycon until ACPI/DT decision is made.
Parse the ACPI SPCR table, setup earlycon if required,
enable specified console.
Thanks to Peter Hurley for explaining how this should work.
[1] http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.den0044a/index.html
[2] https://msdn.microsoft.com/en-us/library/windows/hardware/dn639132(v=vs.85).aspx
Signed-off-by: Aleksey Makarov <aleksey.makarov@linaro.org>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Peter Hurley <peter@hurleysoftware.com>
Tested-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Tested-by: Christopher Covington <cov@codeaurora.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Starting from Intel Skylake the iTCO watchdog timer registers were moved to
reside in the same register space with SMBus host controller. Not all
needed registers are available though and we need to unhide P2SB (Primary
to Sideband) device briefly to be able to read status of required NO_REBOOT
bit. The i2c-i801.c SMBus driver used to handle this and creation of the
iTCO watchdog platform device.
Windows, on the other hand, does not use the iTCO watchdog hardware
directly even if it is available. Instead it relies on ACPI Watchdog Action
Table (WDAT) table to describe the watchdog hardware to the OS. This table
contains necessary information about the the hardware and also set of
actions which are executed by a driver as needed.
This patch implements a new watchdog driver that takes advantage of the
ACPI WDAT table. We split the functionality into two parts: first part
enumerates the WDAT table and if found, populates resources and creates
platform device for the actual driver. The second part is the driver
itself.
The reason for the split is that this way we can make the driver itself to
be a module and loaded automatically if the WDAT table is found. Otherwise
the module is not loaded.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Reviewed-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
IORT shows representation of IO topology for ARM based systems.
It describes how various components are connected together on
parent-child basis e.g. PCI RC -> SMMU -> ITS. Also see IORT spec.
http://infocenter.arm.com/help/topic/com.arm.doc.den0049b/DEN0049B_IO_Remapping_Table.pdf
Initial support allows to detect IORT table presence and save its
root pointer obtained through acpi_get_table(). The pointer validity
depends on acpi_gbl_permanent_mmap because if acpi_gbl_permanent_mmap
is not set while using IORT nodes we would dereference unmapped pointers.
For the aforementioned reason call acpi_iort_init() from acpi_init()
which guarantees acpi_gbl_permanent_mmap to be set at that point.
Add generic helpers which are helpful for scanning and retrieving
information from IORT table content. List of the most important helpers:
- iort_find_dev_node() finds IORT node for a given device
- iort_node_map_rid() maps device RID and returns IORT node which provides
final translation
IORT support is placed under drivers/acpi/arm64/ new directory due to its
ARM64 specific nature. The code there is considered only for ARM64.
The long term plan is to keep all ARM64 specific tables support
in this place e.g. GTDT table.
Signed-off-by: Tomasz Nowicki <tn@semihalf.com>
Acked-by: Rafael J. Wysocki <rjw@rjwysocki.net>
Reviewed-by: Hanjun Guo <hanjun.guo@linaro.org>
Reviewed-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
Some newer x86 platforms have support for both _CPC and _PSS object. So
kernel config can have both ACPI_CPU_FREQ_PSS and ACPI_CPPC_LIB. So remove
restriction for ACPI_CPPC_LIB to build only when ACPI_CPU_FREQ_PSS is not
defined.
Also for legacy systems with only _PSS, we shouldn't bail out if
acpi_cppc_processor_probe() fails, if ACPI_CPU_FREQ_PSS is also defined.
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci
Pull PCI updates from Bjorn Helgaas:
"Highlights:
- ARM64 support for ACPI host bridges
- new drivers for Axis ARTPEC-6 and Marvell Aardvark
- new pci_alloc_irq_vectors() interface for MSI-X, MSI, legacy INTx
- pci_resource_to_user() cleanup (more to come)
Detailed summary:
Enumeration:
- Move ecam.h to linux/include/pci-ecam.h (Jayachandran C)
- Add parent device field to ECAM struct pci_config_window (Jayachandran C)
- Add generic MCFG table handling (Tomasz Nowicki)
- Refactor pci_bus_assign_domain_nr() for CONFIG_PCI_DOMAINS_GENERIC (Tomasz Nowicki)
- Factor DT-specific pci_bus_find_domain_nr() code out (Tomasz Nowicki)
Resource management:
- Add devm_request_pci_bus_resources() (Bjorn Helgaas)
- Unify pci_resource_to_user() declarations (Bjorn Helgaas)
- Implement pci_resource_to_user() with pcibios_resource_to_bus() (microblaze, powerpc, sparc) (Bjorn Helgaas)
- Request host bridge window resources (designware, iproc, rcar, xgene, xilinx, xilinx-nwl) (Bjorn Helgaas)
- Make PCI I/O space optional on ARM32 (Bjorn Helgaas)
- Ignore write combining when mapping I/O port space (Bjorn Helgaas)
- Claim bus resources on MIPS PCI_PROBE_ONLY set-ups (Bjorn Helgaas)
- Remove unicore32 pci=firmware command line parameter handling (Bjorn Helgaas)
- Support I/O resources when parsing host bridge resources (Jayachandran C)
- Add helpers to request/release memory and I/O regions (Johannes Thumshirn)
- Use pci_(request|release)_mem_regions (NVMe, lpfc, GenWQE, ethernet/intel, alx) (Johannes Thumshirn)
- Extend pci=resource_alignment to specify device/vendor IDs (Koehrer Mathias (ETAS/ESW5))
- Add generic pci_bus_claim_resources() (Lorenzo Pieralisi)
- Claim bus resources on ARM32 PCI_PROBE_ONLY set-ups (Lorenzo Pieralisi)
- Remove ARM32 and ARM64 arch-specific pcibios_enable_device() (Lorenzo Pieralisi)
- Add pci_unmap_iospace() to unmap I/O resources (Sinan Kaya)
- Remove powerpc __pci_mmap_set_pgprot() (Yinghai Lu)
PCI device hotplug:
- Allow additional bus numbers for hotplug bridges (Keith Busch)
- Ignore interrupts during D3cold (Lukas Wunner)
Power management:
- Enforce type casting for pci_power_t (Andy Shevchenko)
- Don't clear d3cold_allowed for PCIe ports (Mika Westerberg)
- Put PCIe ports into D3 during suspend (Mika Westerberg)
- Power on bridges before scanning new devices (Mika Westerberg)
- Runtime resume bridge before rescan (Mika Westerberg)
- Add runtime PM support for PCIe ports (Mika Westerberg)
- Remove redundant check of pcie_set_clkpm (Shawn Lin)
Virtualization:
- Add function 1 DMA alias quirk for Marvell 88SE9182 (Aaron Sierra)
- Add DMA alias quirk for Adaptec 3805 (Alex Williamson)
- Mark Atheros AR9485 and QCA9882 to avoid bus reset (Chris Blake)
- Add ACS quirk for Solarflare SFC9220 (Edward Cree)
MSI:
- Fix PCI_MSI dependencies (Arnd Bergmann)
- Add pci_msix_desc_addr() helper (Christoph Hellwig)
- Switch msix_program_entries() to use pci_msix_desc_addr() (Christoph Hellwig)
- Make the "entries" argument to pci_enable_msix() optional (Christoph Hellwig)
- Provide sensible IRQ vector alloc/free routines (Christoph Hellwig)
- Spread interrupt vectors in pci_alloc_irq_vectors() (Christoph Hellwig)
Error Handling:
- Bind DPC to Root Ports as well as Downstream Ports (Keith Busch)
- Remove DPC tristate module option (Keith Busch)
- Convert Downstream Port Containment driver to use devm_* functions (Mika Westerberg)
Generic host bridge driver:
- Select IRQ_DOMAIN (Arnd Bergmann)
- Claim bus resources on PCI_PROBE_ONLY set-ups (Lorenzo Pieralisi)
ACPI host bridge driver:
- Add ARM64 acpi_pci_bus_find_domain_nr() (Tomasz Nowicki)
- Add ARM64 ACPI support for legacy IRQs parsing and consolidation with DT code (Tomasz Nowicki)
- Implement ARM64 AML accessors for PCI_Config region (Tomasz Nowicki)
- Support ARM64 ACPI-based PCI host controller (Tomasz Nowicki)
Altera host bridge driver:
- Check link status before retrain link (Ley Foon Tan)
- Poll for link up status after retraining the link (Ley Foon Tan)
Axis ARTPEC-6 host bridge driver:
- Add PCI_MSI_IRQ_DOMAIN dependency (Arnd Bergmann)
- Add DT binding for Axis ARTPEC-6 PCIe controller (Niklas Cassel)
- Add Axis ARTPEC-6 PCIe controller driver (Niklas Cassel)
Intel VMD host bridge driver:
- Use lock save/restore in interrupt enable path (Jon Derrick)
- Select device dma ops to override (Keith Busch)
- Initialize list item in IRQ disable (Keith Busch)
- Use x86_vector_domain as parent domain (Keith Busch)
- Separate MSI and MSI-X vector sharing (Keith Busch)
Marvell Aardvark host bridge driver:
- Add DT binding for the Aardvark PCIe controller (Thomas Petazzoni)
- Add Aardvark PCI host controller driver (Thomas Petazzoni)
- Add Aardvark PCIe support for Armada 3700 (Thomas Petazzoni)
Microsoft Hyper-V host bridge driver:
- Fix interrupt cleanup path (Cathy Avery)
- Don't leak buffer in hv_pci_onchannelcallback() (Vitaly Kuznetsov)
- Handle all pending messages in hv_pci_onchannelcallback() (Vitaly Kuznetsov)
NVIDIA Tegra host bridge driver:
- Program PADS_REFCLK_CFG* always, not just on legacy SoCs (Stephen Warren)
- Program PADS_REFCLK_CFG* registers with per-SoC values (Stephen Warren)
- Use lower-case hex consistently for register definitions (Thierry Reding)
- Use generic pci_remap_iospace() rather than ARM32-specific one (Thierry Reding)
- Stop setting pcibios_min_mem (Thierry Reding)
Renesas R-Car host bridge driver:
- Drop gen2 dummy I/O port region (Bjorn Helgaas)
TI DRA7xx host bridge driver:
- Fix return value in case of error (Christophe JAILLET)
Xilinx AXI host bridge driver:
- Fix return value in case of error (Christophe JAILLET)
Miscellaneous:
- Make bus_attr_resource_alignment static (Ben Dooks)
- Include <asm/dma.h> for isa_dma_bridge_buggy (Ben Dooks)
- MAINTAINERS: Add file patterns for PCI device tree bindings (Geert Uytterhoeven)
- Make host bridge drivers explicitly non-modular (Paul Gortmaker)"
* tag 'pci-v4.8-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci: (125 commits)
PCI: xgene: Make explicitly non-modular
PCI: thunder-pem: Make explicitly non-modular
PCI: thunder-ecam: Make explicitly non-modular
PCI: tegra: Make explicitly non-modular
PCI: rcar-gen2: Make explicitly non-modular
PCI: rcar: Make explicitly non-modular
PCI: mvebu: Make explicitly non-modular
PCI: layerscape: Make explicitly non-modular
PCI: keystone: Make explicitly non-modular
PCI: hisi: Make explicitly non-modular
PCI: generic: Make explicitly non-modular
PCI: designware-plat: Make it explicitly non-modular
PCI: artpec6: Make explicitly non-modular
PCI: armada8k: Make explicitly non-modular
PCI: artpec: Add PCI_MSI_IRQ_DOMAIN dependency
PCI: Add ACS quirk for Solarflare SFC9220
arm64: dts: marvell: Add Aardvark PCIe support for Armada 3700
PCI: aardvark: Add Aardvark PCI host controller driver
dt-bindings: add DT binding for the Aardvark PCIe controller
PCI: tegra: Program PADS_REFCLK_CFG* registers with per-SoC values
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm
Pull libnvdimm updates from Dan Williams:
- Replace pcommit with ADR / directed-flushing.
The pcommit instruction, which has not shipped on any product, is
deprecated. Instead, the requirement is that platforms implement
either ADR, or provide one or more flush addresses per nvdimm.
ADR (Asynchronous DRAM Refresh) flushes data in posted write buffers
to the memory controller on a power-fail event.
Flush addresses are defined in ACPI 6.x as an NVDIMM Firmware
Interface Table (NFIT) sub-structure: "Flush Hint Address Structure".
A flush hint is an mmio address that when written and fenced assures
that all previous posted writes targeting a given dimm have been
flushed to media.
- On-demand ARS (address range scrub).
Linux uses the results of the ACPI ARS commands to track bad blocks
in pmem devices. When latent errors are detected we re-scrub the
media to refresh the bad block list, userspace can also request a
re-scrub at any time.
- Support for the Microsoft DSM (device specific method) command
format.
- Support for EDK2/OVMF virtual disk device memory ranges.
- Various fixes and cleanups across the subsystem.
* tag 'libnvdimm-for-4.8' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm: (41 commits)
libnvdimm-btt: Delete an unnecessary check before the function call "__nd_device_register"
nfit: do an ARS scrub on hitting a latent media error
nfit: move to nfit/ sub-directory
nfit, libnvdimm: allow an ARS scrub to be triggered on demand
libnvdimm: register nvdimm_bus devices with an nd_bus driver
pmem: clarify a debug print in pmem_clear_poison
x86/insn: remove pcommit
Revert "KVM: x86: add pcommit support"
nfit, tools/testing/nvdimm/: unify shutdown paths
libnvdimm: move ->module to struct nvdimm_bus_descriptor
nfit: cleanup acpi_nfit_init calling convention
nfit: fix _FIT evaluation memory leak + use after free
tools/testing/nvdimm: add manufacturing_{date|location} dimm properties
tools/testing/nvdimm: add virtual ramdisk range
acpi, nfit: treat virtual ramdisk SPA as pmem region
pmem: kill __pmem address space
pmem: kill wmb_pmem()
libnvdimm, pmem: use nvdimm_flush() for namespace I/O writes
fs/dax: remove wmb_pmem()
libnvdimm, pmem: flush posted-write queues on shutdown
...
|
|
* acpi-drivers:
ACPI / DPTF: move int340x_thermal.c to the DPTF folder
ACPI / DPTF: Add DPTF power participant driver
* acpi-misc:
ACPI / lpat: make it explicitly non-modular
ACPI / dock: make dock explicitly non-modular
* acpi-tools:
tools/acpi: use CROSS_COMPILE to define prefix
|
|
* acpi-pmic:
ACPI / PMIC: remove modular references from non-modular code
ACPI / PMIC: intel: initialize result to 0
ACPI / PMIC: intel: add REGS operation region support
ACPI / PMIC: Add opregion driver for Intel BXT WhiskeyCove PMIC
ACPI / PMIC: modify the pen function signature to take bit field
Conflicts:
drivers/acpi/Makefile
|
|
* acpi-processor:
ACPI: enable ACPI_PROCESSOR_IDLE on ARM64
arm64: add support for ACPI Low Power Idle(LPI)
drivers: firmware: psci: initialise idle states using ACPI LPI
cpuidle: introduce CPU_PM_CPU_IDLE_ENTER macro for ARM{32, 64}
arm64: cpuidle: drop __init section marker to arm_cpuidle_init
ACPI / processor_idle: Add support for Low Power Idle(LPI) states
ACPI / processor_idle: introduce ACPI_PROCESSOR_CSTATE
* acpi-cppc:
mailbox: pcc: Add PCC request and free channel declarations
ACPI / CPPC: Prevent cpc_desc_ptr points to the invalid data
ACPI: CPPC: Return error if _CPC is invalid on a CPU
* acpi-apei:
ACPI / APEI: Add Boot Error Record Table (BERT) support
ACPI / einj: Make error paths more talkative
ACPI / einj: Convert EINJ_PFX to proper pr_fmt
* acpi-sleep:
ACPI: Execute _PTS before system reboot
|
|
* acpi-tables:
ACPI: Rename configfs.c to acpi_configfs.c to prevent link error
ACPI: add support for loading SSDTs via configfs
ACPI: add support for configfs
efi / ACPI: load SSTDs from EFI variables
spi / ACPI: add support for ACPI reconfigure notifications
i2c / ACPI: add support for ACPI reconfigure notifications
ACPI: add support for ACPI reconfiguration notifiers
ACPI / scan: fix enumeration (visited) flags for bus rescans
ACPI / documentation: add SSDT overlays documentation
ACPI: ARM64: support for ACPI_TABLE_UPGRADE
ACPI / tables: introduce ARCH_HAS_ACPI_TABLE_UPGRADE
ACPI / tables: move arch-specific symbol to asm/acpi.h
ACPI / tables: table upgrade: refactor function definitions
ACPI / tables: table upgrade: use cacheable map for tables
Conflicts:
arch/arm64/include/asm/acpi.h
|
|
With the arrival of x86-machine-check support the nfit driver will add a
(conditionally-compiled) source file. Prepare for this by moving all
nfit source to drivers/acpi/nfit/. This is pure code movement, no
functional changes.
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
Now that ACPI processor idle driver supports LPI(Low Power Idle), lets
enable ACPI_PROCESSOR_IDLE for ARM64 too.
This patch just removes the IA64 and X86 dependency on ACPI_PROCESSOR_IDLE
Signed-off-by: Sudeep Holla <sudeep.holla@arm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
ACPI 6.0 adds a new method to specify the CPU idle states(C-states)
called Low Power Idle(LPI) states. Since new architectures like ARM64
use only LPIs, introduce ACPI_PROCESSOR_CSTATE to encapsulate all the
code supporting the old style C-states(_CST).
This patch will help to extend the processor_idle module to support
LPI.
Signed-off-by: Sudeep Holla <sudeep.holla@arm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
This driver adds support for Dynamic Platform and Thermal Framework
(DPTF) Platform Power Participant device (INT3407) support.
This participant is responsible for exposing platform telemetry such as:
max_platform_power
platform_power_source
adapter_rating
battery_steady_power
charger_type
These attributes are presented via sysfs interface under the INT3407
platform device:
$ls /sys/bus/platform/devices/INT3407\:00/dptf_power/
adapter_rating_mw
battery_steady_power_mw
charger_type
max_platform_power_mw
platform_power_source
`
ACPI methods description used in this driver:
PMAX: Maximum platform power that can be supported by the battery in
mW.
PSRC: System charge source,
0x00 = DC
0x01 = AC
0x02 = USB
0x03 = Wireless Charger
ARTG: Adapter rating in mW (Maximum Adapter power) Must be 0 if no
AC adapter is plugged in.
CTYP: Charger Type,
Traditional : 0x01
Hybrid: 0x02
NVDC: 0x03
PBSS: Returns max sustained power for battery in milliWatts.
The INT3407 also contains _BTS and _BIX objects, which are compliant to
ACPI 5.0, specification. Those objects are already used by ACPI battery
(PNP0C0A) driver and information about them is exported via Linux power
supply class registration.
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
Register the ACPI subsystem with configfs.
Signed-off-by: Octavian Purdila <octavian.purdila@intel.com>
Reviewed-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
This patch adds operation region driver for Intel BXT WhiskeyCove
PMIC. The register mapping is done as per the BXT WC data sheet.
Signed-off-by: Ajay Thomas <ajay.thomas.david.rajamanickam@intel.com>
Signed-off-by: Bin Gao <bin.gao@intel.com>
Reviewed-by: Aaron Lu <aaron.lu@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
Add function needed for cpu to node mapping, and enable ACPI based
NUMA for ARM64 in Kconfig
Signed-off-by: Hanjun Guo <hanjun.guo@linaro.org>
Signed-off-by: Robert Richter <rrichter@cavium.com>
[david.daney@cavium.com added ACPI_NUMA default to y for ARM64]
Signed-off-by: David Daney <david.daney@cavium.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
We want to use the table upgrade feature in ARM64.
Introduce a new configuration option that allows that.
Signed-off-by: Aleksey Makarov <aleksey.makarov@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
On ACPI systems that support memory-mapped config space access, i.e., ECAM,
the PCI Firmware Specification says the OS can learn where the ECAM space
is from either:
- the static MCFG table (for non-hotpluggable bridges), or
- the _CBA method (for hotpluggable bridges)
The current MCFG table handling code cannot be easily generalized owing to
x86-specific quirks, which makes it hard to reuse on other architectures.
Implement generic MCFG handling from scratch, including:
- Simple MCFG table parsing (via pci_mmcfg_late_init() as in current x86)
- MCFG region lookup for a (domain, bus_start, bus_end) tuple
[bhelgaas: changelog]
Signed-off-by: Tomasz Nowicki <tn@semihalf.com>
Signed-off-by: Jayachandran C <jchandra@broadcom.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Reviewed-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
|
|
* acpi-pci:
ACPI,PCI,IRQ: remove SCI penalize function
ACPI,PCI,IRQ: remove redundant code in acpi_irq_penalty_init()
ACPI,PCI,IRQ: reduce static IRQ array size to 16
ACPI,PCI,IRQ: reduce resource requirements
* acpi-misc:
ACPI / sysfs: fix error code in get_status()
ACPI / device_sysfs: Clean up checkpatch errors
ACPI / device_sysfs: Change _SUN and _STA show functions error return to EIO
ACPI / device_sysfs: Add sysfs support for _HRV hardware revision
arm64: defconfig: Enable ACPI
ACPI / ARM64: Remove EXPERT dependency for ACPI on ARM64
ACPI / ARM64: Don't enable ACPI by default on ARM64
acer-wmi: Use acpi_dev_found()
eeepc-wmi: Use acpi_dev_found()
ACPI / utils: Rename acpi_dev_present()
* acpi-tools:
tools/power/acpi: close file only if it is open
|
|
When ACPI was originally merged for arm64 it had only been tested on
emulators and not on real physical platforms and no platforms were
relying on it. This meant that there were concerns that there might be
serious issues attempting to use it on practical systems so it had a
dependency on EXPERT added to warn people that it was in an early stage
of development with very little practical testing. Since then things
have moved on a bit. We have seen people testing on real hardware and
now have people starting to produce some platforms (the most prominent
being the 96boards Cello) which only have ACPI support and which build
and run to some useful extent with mainline.
This is not to say that ACPI support or support for these systems is
completely done, there are still areas being worked on such as PCI, but
at this point it seems that we can be reasonably sure that ACPI will be
viable for use on ARM64 and that the already merged support works for
the cases it handles. For the AMD Seattle based platforms support
outside of PCI has been fairly complete in mainline a few releases now.
This is also not to say that we don't have vendors working with ACPI who
are trying do things that we would not consider optimal but it does not
appear that the EXPERT dependency is having a substantial impact on
these vendors.
Given all this it seems that at this point the EXPERT dependency mainly
creates inconvenience for users with systems that are doing the right
thing and gets in the way of including the ACPI code in the testing that
people are doing on mainline. Removing it should help our ongoing
testing cover those platforms with only ACPI support and help ensure
that when ACPI code is merged any problems it causes for other users are
more easily discovered.
Signed-off-by: Mark Brown <broonie@kernel.org>
Acked-by: Graeme Gregory <graeme.gregory@linaro.org>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Al Stone <ahs3@redhat.com>
Acked-by: Hanjun Guo <hanjun.guo@linaro.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Roy Franz <roy.franz@hpe.com>
Acked-by: Olof Johansson <olof@lixom.net>
Acked-by: Timur Tabi <timur@codeaurora.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
If ACPI is selectable it is enabled by default. This is a good choice
for architectures where the overwhelming majority of systems use ACPI
like x86 and IA-64 but is less clear for architectures where it's less
common like ARM64. Change the default selection so that it's only done
explicitly on those architectures where ACPI is universally used.
Signed-off-by: Mark Brown <broonie@kernel.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Hanjun Guo <hanjun.guo@linaro.org>
Acked-by: Olof Johansson <olof@lixom.net>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
This patch converts the initrd table override mechanism to the table
upgrade mechanism by restricting its usage to the tables released with
compatibility and more recent revision.
This use case has been encouraged by the ACPI specification:
1. OEMID:
An OEM-supplied string that identifies the OEM.
2. OEM Table ID:
An OEM-supplied string that the OEM uses to identify the particular data
table. This field is particularly useful when defining a definition
block to distinguish definition block functions. OEM assigns each
dissimilar table a new OEM Table Id.
3. OEM Revision:
An OEM-supplied revision number. Larger numbers are assumed to be newer
revisions.
For OEMs, good practices will ensure consistency when assigning OEMID and
OEM Table ID fields in any table. The intent of these fields is to allow
for a binary control system that support services can use. Because many
support function can be automated, it is useful when a tool can
programatically determine which table release is a compatible and more
recent revision of a prior table on the same OEMID and OEM Table ID.
The facility can now be used by the vendors to upgrade wrong tables for bug
fixing purpose, thus lockdep disabling taint is not suitable for it and it
should be a default 'y' option to implement the spec encouraged use case.
Note that, by implementing table upgrade inside of ACPICA itself, it is
possible to remove acpi_table_initrd_override() and tables can be upgraded
by acpi_install_table() automatically. Though current ACPICA impelentation
hasn't implemented this, this patched changes the table flag setting timing
to allow this to be implemented in ACPICA without changing the code here.
Documentation of initrd override mechanism is upgraded accordingly.
Original-by: Octavian Purdila <octavian.purdila@intel.com>
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
This patch converts AML debugger into a loadable module.
Note that, it implements driver unloading at the level dependent on the
module reference count. Which means if ACPI debugger is being used by a
userspace program, "rmmod acpi_dbg" should result in failure.
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
This patch adds /sys/kernel/debug/acpi/acpidbg, which can be used by
userspace programs to access ACPICA debugger functionalities.
Known issue:
1. IO flush support
acpi_os_notify_command_complete() and acpi_os_wait_command_ready() can
be used by acpi_dbg module to implement .flush() filesystem operation.
While this patch doesn't go that far. It then becomes userspace tool's
duty now to flush old commands before executing new batch mode commands.
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
* acpica:
ACPI: Better describe ACPI_DEBUGGER
* acpi-video:
MAINTAINERS: ACPI / video: update a file name in drivers/acpi/
* device-properties:
ACPI / property: fix compile error for acpi_node_get_property_reference() when CONFIG_ACPI=n
|
|
Hi,
For a brief moment I was tricked into thinking that:
In-kernel debugger (EXPERIMENTAL) (ACPI_DEBUGGER) [N/y/?] (NEW)
might be something useful. Better describe the feature to reduce
such confusion.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
* acpi-processor:
ACPI / CPPC: Fix potential memory leak
ACPI / CPPC: signedness bug in register_pcc_channel()
ACPI: Allow selection of the ACPI processor driver for ARM64
CPPC: Probe for CPPC tables for each ACPI Processor object
ACPI: Add weak routines for ACPI CPU Hotplug
ACPI / CPPC: Add a CPUFreq driver for use with CPPC
ACPI: Introduce CPU performance controls using CPPC
|
|
This patch enables ACPICA debugger files using a configurable
CONFIG_ACPI_DEBUGGER configuration item. Those debugger related code that
was originally masked as ACPI_FUTURE_USAGE now gets unmasked.
Necessary OSL stubs are also added in this patch:
1. acpi_os_readable(): This should be arch specific in Linux, while this
patch doesn't introduce real implementation and a complex mechanism to
allow architecture specific acpi_os_readable() to be implemented to
validate the address. It may be done by future commits.
2. acpi_os_get_line(): This is used to obtain debugger command input. This
patch only introduces a simple KDB concept example in it and the
example should be co-working with the code implemented in
acpi_os_printf(). Since this KDB example won't be compiled unless
ENABLE_DEBUGGER is defined and it seems Linux has already stopped to
use ENABLE_DEBUGGER, thus do not expect it can work properly.
This patch also cleans up all other ACPI_FUTURE_USAGE surroundings
accordingly.
1. Since linkage error can be automatically detected, declaration in the
headers needn't be surrounded by ACPI_FUTURE_USAGE.
So only the following separate exported fuction bodies are masked by
this macro (other exported fucntions may have already been masked at
entire module level via drivers/acpi/acpica/Makefile):
acpi_install_exception_handler()
acpi_subsystem_status()
acpi_get_system_info()
acpi_get_statistics()
acpi_install_initialization_handler()
2. Since strip can automatically zap the no-user functions, functions that
are not marked with ACPI_EXPORT_SYMBOL() needn't get surrounded by
ACPI_FUTURE_USAGE.
So the following function which is not used by Linux kernel now won't
get surrounded by this macro:
acpi_ps_get_name()
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
Now that the ACPI processor driver has been decoupled from
the C states and P states functionality, make it selectable on
ARM64 so that it can be used by others e.g. CPPC.
The C states and P states code is selected only on X86 or
IA64 until the relevant support is added on ARM64.
Signed-off-by: Ashwin Chaugule <ashwin.chaugule@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
CPPC stands for Collaborative Processor Performance Controls
and is defined in the ACPI v5.0+ spec. It describes CPU
performance controls on an abstract and continuous scale
allowing the platform (e.g. remote power processor) to flexibly
optimize CPU performance with its knowledge of power budgets
and other architecture specific knowledge.
This patch adds a shim which exports commonly used functions
to get and set CPPC specific controls for each CPU. This enables
CPUFreq drivers to gather per CPU performance data and use
with exisiting governors or even allows for customized governors
which are implemented inside CPUFreq drivers.
Signed-off-by: Ashwin Chaugule <ashwin.chaugule@linaro.org>
Reviewed-by: Al Stone <al.stone@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm
Pull libnvdimm updates from Dan Williams:
"This update has successfully completed a 0day-kbuild run and has
appeared in a linux-next release. The changes outside of the typical
drivers/nvdimm/ and drivers/acpi/nfit.[ch] paths are related to the
removal of IORESOURCE_CACHEABLE, the introduction of memremap(), and
the introduction of ZONE_DEVICE + devm_memremap_pages().
Summary:
- Introduce ZONE_DEVICE and devm_memremap_pages() as a generic
mechanism for adding device-driver-discovered memory regions to the
kernel's direct map.
This facility is used by the pmem driver to enable pfn_to_page()
operations on the page frames returned by DAX ('direct_access' in
'struct block_device_operations').
For now, the 'memmap' allocation for these "device" pages comes
from "System RAM". Support for allocating the memmap from device
memory will arrive in a later kernel.
- Introduce memremap() to replace usages of ioremap_cache() and
ioremap_wt(). memremap() drops the __iomem annotation for these
mappings to memory that do not have i/o side effects. The
replacement of ioremap_cache() with memremap() is limited to the
pmem driver to ease merging the api change in v4.3.
Completion of the conversion is targeted for v4.4.
- Similar to the usage of memcpy_to_pmem() + wmb_pmem() in the pmem
driver, update the VFS DAX implementation and PMEM api to provide
persistence guarantees for kernel operations on a DAX mapping.
- Convert the ACPI NFIT 'BLK' driver to map the block apertures as
cacheable to improve performance.
- Miscellaneous updates and fixes to libnvdimm including support for
issuing "address range scrub" commands, clarifying the optimal
'sector size' of pmem devices, a clarification of the usage of the
ACPI '_STA' (status) property for DIMM devices, and other minor
fixes"
* tag 'libnvdimm-for-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm: (34 commits)
libnvdimm, pmem: direct map legacy pmem by default
libnvdimm, pmem: 'struct page' for pmem
libnvdimm, pfn: 'struct page' provider infrastructure
x86, pmem: clarify that ARCH_HAS_PMEM_API implies PMEM mapped WB
add devm_memremap_pages
mm: ZONE_DEVICE for "device memory"
mm: move __phys_to_pfn and __pfn_to_phys to asm/generic/memory_model.h
dax: drop size parameter to ->direct_access()
nd_blk: change aperture mapping from WC to WB
nvdimm: change to use generic kvfree()
pmem, dax: have direct_access use __pmem annotation
dax: update I/O path to do proper PMEM flushing
pmem: add copy_from_iter_pmem() and clear_pmem()
pmem, x86: clean up conditional pmem includes
pmem: remove layer when calling arch_has_wmb_pmem()
pmem, x86: move x86 PMEM API to new pmem.h header
libnvdimm, e820: make CONFIG_X86_PMEM_LEGACY a tristate option
pmem: switch to devm_ allocations
devres: add devm_memremap
libnvdimm, btt: write and validate parent_uuid
...
|
|
This should result in a pretty sizeable performance gain for reads. For
rough comparison I did some simple read testing using PMEM to compare
reads of write combining (WC) mappings vs write-back (WB). This was
done on a random lab machine.
PMEM reads from a write combining mapping:
# dd of=/dev/null if=/dev/pmem0 bs=4096 count=100000
100000+0 records in
100000+0 records out
409600000 bytes (410 MB) copied, 9.2855 s, 44.1 MB/s
PMEM reads from a write-back mapping:
# dd of=/dev/null if=/dev/pmem0 bs=4096 count=1000000
1000000+0 records in
1000000+0 records out
4096000000 bytes (4.1 GB) copied, 3.44034 s, 1.2 GB/s
To be able to safely support a write-back aperture I needed to add
support for the "read flush" _DSM flag, as outlined in the DSM spec:
http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf
This flag tells the ND BLK driver that it needs to flush the cache lines
associated with the aperture after the aperture is moved but before any
new data is read. This ensures that any stale cache lines from the
previous contents of the aperture will be discarded from the processor
cache, and the new data will be read properly from the DIMM. We know
that the cache lines are clean and will be discarded without any
writeback because either a) the previous aperture operation was a read,
and we never modified the contents of the aperture, or b) the previous
aperture operation was a write and we must have written back the dirtied
contents of the aperture to the DIMM before the I/O was completed.
In order to add support for the "read flush" flag I needed to add a
generic routine to invalidate cache lines, mmio_flush_range(). This is
protected by the ARCH_HAS_MMIO_FLUSH Kconfig variable, and is currently
only supported on x86.
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
This patch introduces a new Kconfig symbol, ACPI_PROCESSOR_IDLE,
which is auto selected by architectures which support the ACPI
based C states for CPU Idle management.
The processor_idle driver in its present form contains declarations
specific to X86 and IA64. Since there are no reasonable defaults
for other architectures e.g. ARM64, the driver is selected only for
X86 or IA64.
This helps in decoupling the ACPI processor_driver from the ACPI
processor_idle driver which is useful for the upcoming alternative
patchwork for controlling CPU Performance (CPPC) and CPU Idle (LPI).
Signed-off-by: Ashwin Chaugule <ashwin.chaugule@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
The ACPI processor driver is currently tied too closely
to the ACPI P-states (PSS) and other related constructs
for controlling CPU performance.
The newer ACPI specification (v5.1 onwards) introduces
alternative methods to PSS. These new mechanisms are
described within each ACPI Processor object and so they
need to be scanned whenever a new Processor object is detected.
This patch introduces a new Kconfig symbol to allow for
finer configurability among the two options for controlling
performance states. There is no change in functionality and
the option is auto-selected by the architectures which support it.
A future commit will introduce support for CPPC: A newer method of
controlling CPU performance. The OS is not expected to support
CPPC and PSS at the same time, so the Kconfig option lets us make
the two mutually exclusive at compile time.
Signed-off-by: Ashwin Chaugule <ashwin.chaugule@linaro.org>
[ rjw: Changelog ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull ACPICA updates from Rafael Wysocki:
"Additional ACPICA material for v4.2-rc1
This will update the ACPICA code in the kernel to upstream revision
20150619 (a bug-fix release mostly including stable-candidate fixes)
and restore an earlier ACPICA commit that had to be reverted due to a
regression introduced by it (the regression is addressed by
blacklisting the only known system affected by it to date).
The only new feature added by this update is the support for
overriding objects in the ACPI namespace and a new ACPI table that can
be used for that called the Override System Definition Table (OSDT).
That should allow us to "patch" the ACPI namespace built from
incomplete or incorrect ACPI System Definition tables (DSDT, SSDT)
during system startup without the need to provide replacements for all
of those tables in the future.
Specifics:
- Fix system resume problems related to 32-bit and 64-bit versions of
the Firmware ACPI Control Structure (FACS) in the firmare (Lv
Zheng)
- Fix double initialization of the FACS (Lv Zheng)
- Add _CLS object processing code to ACPICA (Suravee Suthikulpanit)
- Add support for the (currently missing) new GIC version field in
the Multiple APIC Description Table (MADT) (Hanjun Guo)
- Add support for overriding objects in the ACPI namespace to ACPICA
and OSDT support (Lv Zheng, Bob Moore, Zhang Rui)
- Updates related to the TCPA and TPM2 ACPI tables (Bob Moore)
- Restore the commit modifying _REV to always return "2" (as required
by ACPI 6) and add a blacklisting mechanism for systems that may be
affected by that change (Rafael J Wysocki)
- Assorted fixes and cleanups (Bob Moore, Lv Zheng, Sascha Wildner)"
* tag 'acpica-4.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (28 commits)
Revert 'Revert "ACPICA: Permanently set _REV to the value '2'."'
ACPI / init: Make it possible to override _REV
ACPICA: Update version to 20150619
ACPICA: Comment update, no functional change
ACPICA: Update TPM2 ACPI table
ACPICA: Update definitions for the TCPA and TPM2 ACPI tables
ACPICA: Split C library prototypes to new header
ACPICA: De-macroize calls to standard C library functions
ACPI / acpidump: Update acpidump manual
ACPICA: acpidump: Convert the default behavior to dump from /sys/firmware/acpi/tables
ACPICA: acpidump: Allow customized tables to be dumped without accessing /dev/mem
ACPICA: Cleanup output for the ASL Debug object
ACPICA: Update for acpi_install_table memory types
ACPICA: Namespace: Change namespace override to avoid node deletion
ACPICA: Namespace: Add support of OSDT table
ACPICA: Namespace: Add support to allow overriding objects
ACPICA: ACPI 6.0: Add values for MADT GIC version field
ACPICA: Utilities: Add _CLS processing
ACPICA: Add dragon_fly support to unix file mapping file
ACPICA: EFI: Add EFI interface definitions to eliminate dependency of GNU EFI
...
|
|
The platform firmware on some systems expects Linux to return "5" as
the supported ACPI revision which makes it expose system configuration
information in a special way.
For example, based on what ACPI exports as the supported revision,
Dell XPS 13 (2015) configures its audio device to either work in HDA
mode or in I2S mode, where the former is supposed to be used on Linux
until the latter is fully supported (in the kernel as well as in user
space).
Since ACPI 6 mandates that _REV should return "2" if ACPI 2 or later
is supported by the OS, a subsequent change will make that happen, so
make it possible to override that on systems where "5" is expected to
be returned for Linux to work correctly one them (such as the Dell
machine mentioned above).
Original-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/djbw/nvdimm
Pull libnvdimm subsystem from Dan Williams:
"The libnvdimm sub-system introduces, in addition to the
libnvdimm-core, 4 drivers / enabling modules:
NFIT:
Instantiates an "nvdimm bus" with the core and registers memory
devices (NVDIMMs) enumerated by the ACPI 6.0 NFIT (NVDIMM Firmware
Interface table).
After registering NVDIMMs the NFIT driver then registers "region"
devices. A libnvdimm-region defines an access mode and the
boundaries of persistent memory media. A region may span multiple
NVDIMMs that are interleaved by the hardware memory controller. In
turn, a libnvdimm-region can be carved into a "namespace" device and
bound to the PMEM or BLK driver which will attach a Linux block
device (disk) interface to the memory.
PMEM:
Initially merged in v4.1 this driver for contiguous spans of
persistent memory address ranges is re-worked to drive
PMEM-namespaces emitted by the libnvdimm-core.
In this update the PMEM driver, on x86, gains the ability to assert
that writes to persistent memory have been flushed all the way
through the caches and buffers in the platform to persistent media.
See memcpy_to_pmem() and wmb_pmem().
BLK:
This new driver enables access to persistent memory media through
"Block Data Windows" as defined by the NFIT. The primary difference
of this driver to PMEM is that only a small window of persistent
memory is mapped into system address space at any given point in
time.
Per-NVDIMM windows are reprogrammed at run time, per-I/O, to access
different portions of the media. BLK-mode, by definition, does not
support DAX.
BTT:
This is a library, optionally consumed by either PMEM or BLK, that
converts a byte-accessible namespace into a disk with atomic sector
update semantics (prevents sector tearing on crash or power loss).
The sinister aspect of sector tearing is that most applications do
not know they have a atomic sector dependency. At least today's
disk's rarely ever tear sectors and if they do one almost certainly
gets a CRC error on access. NVDIMMs will always tear and always
silently. Until an application is audited to be robust in the
presence of sector-tearing the usage of BTT is recommended.
Thanks to: Ross Zwisler, Jeff Moyer, Vishal Verma, Christoph Hellwig,
Ingo Molnar, Neil Brown, Boaz Harrosh, Robert Elliott, Matthew Wilcox,
Andy Rudoff, Linda Knippers, Toshi Kani, Nicholas Moulin, Rafael
Wysocki, and Bob Moore"
* tag 'libnvdimm-for-4.2' of git://git.kernel.org/pub/scm/linux/kernel/git/djbw/nvdimm: (33 commits)
arch, x86: pmem api for ensuring durability of persistent memory updates
libnvdimm: Add sysfs numa_node to NVDIMM devices
libnvdimm: Set numa_node to NVDIMM devices
acpi: Add acpi_map_pxm_to_online_node()
libnvdimm, nfit: handle unarmed dimms, mark namespaces read-only
pmem: flag pmem block devices as non-rotational
libnvdimm: enable iostat
pmem: make_request cleanups
libnvdimm, pmem: fix up max_hw_sectors
libnvdimm, blk: add support for blk integrity
libnvdimm, btt: add support for blk integrity
fs/block_dev.c: skip rw_page if bdev has integrity
libnvdimm: Non-Volatile Devices
tools/testing/nvdimm: libnvdimm unit test infrastructure
libnvdimm, nfit, nd_blk: driver for BLK-mode access persistent memory
nd_btt: atomic sector updates
libnvdimm: infrastructure for btt devices
libnvdimm: write blk label set
libnvdimm: write pmem label set
libnvdimm: blk labels and namespace instantiation
...
|
|
Most discovery/configuration of the nvdimm-subsystem is done via sysfs
attributes. However, some nvdimm_bus instances, particularly the
ACPI.NFIT bus, define a small set of messages that can be passed to the
platform. For convenience we derive the initial libnvdimm-ioctl command
formats directly from the NFIT DSM Interface Example formats.
ND_CMD_SMART: media health and diagnostics
ND_CMD_GET_CONFIG_SIZE: size of the label space
ND_CMD_GET_CONFIG_DATA: read label space
ND_CMD_SET_CONFIG_DATA: write label space
ND_CMD_VENDOR: vendor-specific command passthrough
ND_CMD_ARS_CAP: report address-range-scrubbing capabilities
ND_CMD_ARS_START: initiate scrubbing
ND_CMD_ARS_STATUS: report on scrubbing state
ND_CMD_SMART_THRESHOLD: configure alarm thresholds for smart events
If a platform later defines different commands than this set it is
straightforward to extend support to those formats.
Most of the commands target a specific dimm. However, the
address-range-scrubbing commands target the bus. The 'commands'
attribute in sysfs of an nvdimm_bus, or nvdimm, enumerate the supported
commands for that object.
Cc: <linux-acpi@vger.kernel.org>
Cc: Robert Moore <robert.moore@intel.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reported-by: Nicholas Moulin <nicholas.w.moulin@linux.intel.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
A struct nvdimm_bus is the anchor device for registering nvdimm
resources and interfaces, for example, a character control device,
nvdimm devices, and I/O region devices. The ACPI NFIT (NVDIMM Firmware
Interface Table) is one possible platform description for such
non-volatile memory resources in a system. The nfit.ko driver attaches
to the "ACPI0012" device that indicates the presence of the NFIT and
parses the table to register a struct nvdimm_bus instance.
Cc: <linux-acpi@vger.kernel.org>
Cc: Lv Zheng <lv.zheng@intel.com>
Cc: Robert Moore <robert.moore@intel.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Tested-by: Toshi Kani <toshi.kani@hp.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
* acpi-cca:
ufs: fix TRUE and FALSE re-define build error
megaraid_sas: fix TRUE and FALSE re-define build error
amd-xgbe: Unify coherency checking logic with device_dma_is_coherent()
crypto: ccp - Unify coherency checking logic with device_dma_is_coherent()
device property: Introduces device_dma_is_coherent()
arm64 : Introduce support for ACPI _CCA object
ACPI / scan: Parse _CCA and setup device coherency
|
|
This patch implements support for ACPI _CCA object, which is introduced in
ACPIv5.1, can be used for specifying device DMA coherency attribute.
The parsing logic traverses device namespace to parse coherency
information, and stores it in acpi_device_flags. Then uses it to call
arch_setup_dma_ops() when creating each device enumerated in DSDT
during ACPI scan.
This patch also introduces acpi_dma_is_coherent(), which provides
an interface for device drivers to check the coherency information
similarly to the of_dma_is_coherent().
Signed-off-by: Mark Salter <msalter@redhat.com>
Signed-off-by: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
The ACPI procfs power interface is initialized by compilation units
that are only selectable on X86 platforms. Since its usage is
deprecated and it cannot even be used on platforms other than X86
it should be compiled in only on X86 platforms.
This patch makes CONFIG_ACPI_PROCFS_POWER dependent on X86, so
that other architectures are prevented from compiling it in for
no purpose.
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Acked-by: Hanjun Guo <hanjun.guo@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
The code deployed to implement GSI linux IRQ numbers mapping on arm64 turns
out to be generic enough so that it can be moved to ACPI core code along
with its respective config option ACPI_GENERIC_GSI selectable on
architectures that can reuse the same code.
Current ACPI IRQ mapping code is not integrated in the kernel IRQ domain
infrastructure, in particular there is no way to look-up the
IRQ domain associated with a particular interrupt controller, so this
first version of GSI generic code carries out the GSI<->IRQ mapping relying
on the IRQ default domain which is supposed to be always set on a
specific architecture in case the domain structure passed to
irq_create/find_mapping() functions is missing.
This patch moves the arm64 acpi functions that implement the gsi mappings:
acpi_gsi_to_irq()
acpi_register_gsi()
acpi_unregister_gsi()
to ACPI core code. Since the generic GSI<->domain mapping is based on IRQ
domains, it can be extended as soon as a way to map an interrupt
controller to an IRQ domain is implemented for ACPI in the IRQ domain
layer.
x86 and ia64 code for GSI mappings cannot rely on the generic GSI
layer at present for legacy reasons, so they do not select the
ACPI_GENERIC_GSI config options and keep relying on their arch
specific GSI mapping layer.
Cc: Jiang Liu <jiang.liu@linux.intel.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Rafael J. Wysocki <rjw@rjwysocki.net>
Acked-by: Hanjun Guo <hanjun.guo@linaro.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
Add Kconfigs to build ACPI on ARM64, and make ACPI available on ARM64.
acpi_idle driver is x86/IA64 dependent now, so make CONFIG_ACPI_PROCESSOR
depend on X86 || IA64, and implement it on ARM64 in the future.
CC: Rafael J. Wysocki <rjw@rjwysocki.net>
CC: Catalin Marinas <catalin.marinas@arm.com>
CC: Will Deacon <will.deacon@arm.com>
Reviewed-by: Grant Likely <grant.likely@linaro.org>
Tested-by: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com>
Tested-by: Yijing Wang <wangyijing@huawei.com>
Tested-by: Mark Langsdorf <mlangsdo@redhat.com>
Tested-by: Jon Masters <jcm@redhat.com>
Tested-by: Timur Tabi <timur@codeaurora.org>
Tested-by: Robert Richter <rrichter@cavium.com>
Acked-by: Robert Richter <rrichter@cavium.com>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Graeme Gregory <graeme.gregory@linaro.org>
Signed-off-by: Al Stone <al.stone@linaro.org>
Signed-off-by: Hanjun Guo <hanjun.guo@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
ACPI 5.1 does not currently support S states for ARM64 hardware but
ACPI code will call acpi_target_system_state() and acpi_sleep_init()
for device power management, so introduce
CONFIG_ACPI_SYSTEM_POWER_STATES_SUPPORT and select it for x86 and
ia64 only to make sleep functions available, and also introduce stub
function to allow other drivers to function until S states are defined
for ARM64.
It will be no functional change for x86 and IA64.
Suggested-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Graeme Gregory <graeme.gregory@linaro.org>
Signed-off-by: Tomasz Nowicki <tomasz.nowicki@linaro.org>
Signed-off-by: Hanjun Guo <hanjun.guo@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
Enable support of IOAPIC hotplug by:
1) reintroducing ACPI based IOAPIC driver
2) enhance pci_root driver to hook hotplug events
The ACPI IOAPIC driver is always enabled if all of ACPI, PCI and IOAPIC
are enabled.
Signed-off-by: Jiang Liu <jiang.liu@linux.intel.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Rafael J. Wysocki <rjw@rjwysocki.net>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Len Brown <lenb@kernel.org>
Link: http://lkml.kernel.org/r/1414387308-27148-19-git-send-email-jiang.liu@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
* acpi-video:
ACPI / video: Run _BCL before deciding registering backlight
* acpi-pmic:
ACPI / PMIC: AXP288: support virtual GPIO in ACPI table
ACPI / PMIC: support PMIC operation region for XPower AXP288
ACPI / PMIC: support PMIC operation region for CrystalCove
iio/axp288_adc: remove THIS_MODULE owner
mfd/axp20x: avoid irq numbering collision
iio: adc: Add module device table for autoloading
iio: adc: Add support for axp288 adc
mfd: axp20x: Extend axp20x to support axp288 pmic
|