diff options
Diffstat (limited to 'Documentation')
-rw-r--r-- | Documentation/spi/spidev | 307 |
1 files changed, 307 insertions, 0 deletions
diff --git a/Documentation/spi/spidev b/Documentation/spi/spidev new file mode 100644 index 000000000000..5c8e1b988a08 --- /dev/null +++ b/Documentation/spi/spidev @@ -0,0 +1,307 @@ +SPI devices have a limited userspace API, supporting basic half-duplex +read() and write() access to SPI slave devices. Using ioctl() requests, +full duplex transfers and device I/O configuration are also available. + + #include <fcntl.h> + #include <unistd.h> + #include <sys/ioctl.h> + #include <linux/types.h> + #include <linux/spi/spidev.h> + +Some reasons you might want to use this programming interface include: + + * Prototyping in an environment that's not crash-prone; stray pointers + in userspace won't normally bring down any Linux system. + + * Developing simple protocols used to talk to microcontrollers acting + as SPI slaves, which you may need to change quite often. + +Of course there are drivers that can never be written in userspace, because +they need to access kernel interfaces (such as IRQ handlers or other layers +of the driver stack) that are not accessible to userspace. + + +DEVICE CREATION, DRIVER BINDING +=============================== +The simplest way to arrange to use this driver is to just list it in the +spi_board_info for a device as the driver it should use: the "modalias" +entry is "spidev", matching the name of the driver exposing this API. +Set up the other device characteristics (bits per word, SPI clocking, +chipselect polarity, etc) as usual, so you won't always need to override +them later. + +(Sysfs also supports userspace driven binding/unbinding of drivers to +devices. That mechanism might be supported here in the future.) + +When you do that, the sysfs node for the SPI device will include a child +device node with a "dev" attribute that will be understood by udev or mdev. +(Larger systems will have "udev". Smaller ones may configure "mdev" into +busybox; it's less featureful, but often enough.) For a SPI device with +chipselect C on bus B, you should see: + + /dev/spidevB.C ... character special device, major number 153 with + a dynamically chosen minor device number. This is the node + that userspace programs will open, created by "udev" or "mdev". + + /sys/devices/.../spiB.C ... as usual, the SPI device node will + be a child of its SPI master controller. + + /sys/class/spidev/spidevB.C ... created when the "spidev" driver + binds to that device. (Directory or symlink, based on whether + or not you enabled the "deprecated sysfs files" Kconfig option.) + +Do not try to manage the /dev character device special file nodes by hand. +That's error prone, and you'd need to pay careful attention to system +security issues; udev/mdev should already be configured securely. + +If you unbind the "spidev" driver from that device, those two "spidev" nodes +(in sysfs and in /dev) should automatically be removed (respectively by the +kernel and by udev/mdev). You can unbind by removing the "spidev" driver +module, which will affect all devices using this driver. You can also unbind +by having kernel code remove the SPI device, probably by removing the driver +for its SPI controller (so its spi_master vanishes). + +Since this is a standard Linux device driver -- even though it just happens +to expose a low level API to userspace -- it can be associated with any number +of devices at a time. Just provide one spi_board_info record for each such +SPI device, and you'll get a /dev device node for each device. + + +BASIC CHARACTER DEVICE API +========================== +Normal open() and close() operations on /dev/spidevB.D files work as you +would expect. + +Standard read() and write() operations are obviously only half-duplex, and +the chipselect is deactivated between those operations. Full-duplex access, +and composite operation without chipselect de-activation, is available using +the SPI_IOC_MESSAGE(N) request. + +Several ioctl() requests let your driver read or override the device's current +settings for data transfer parameters: + + SPI_IOC_RD_MODE, SPI_IOC_WR_MODE ... pass a pointer to a byte which will + return (RD) or assign (WR) the SPI transfer mode. Use the constants + SPI_MODE_0..SPI_MODE_3; or if you prefer you can combine SPI_CPOL + (clock polarity, idle high iff this is set) or SPI_CPHA (clock phase, + sample on trailing edge iff this is set) flags. + + SPI_IOC_RD_LSB_FIRST, SPI_IOC_WR_LSB_FIRST ... pass a pointer to a byte + which will return (RD) or assign (WR) the bit justification used to + transfer SPI words. Zero indicates MSB-first; other values indicate + the less common LSB-first encoding. In both cases the specified value + is right-justified in each word, so that unused (TX) or undefined (RX) + bits are in the MSBs. + + SPI_IOC_RD_BITS_PER_WORD, SPI_IOC_WR_BITS_PER_WORD ... pass a pointer to + a byte which will return (RD) or assign (WR) the number of bits in + each SPI transfer word. The value zero signifies eight bits. + + SPI_IOC_RD_MAX_SPEED_HZ, SPI_IOC_WR_MAX_SPEED_HZ ... pass a pointer to a + u32 which will return (RD) or assign (WR) the maximum SPI transfer + speed, in Hz. The controller can't necessarily assign that specific + clock speed. + +NOTES: + + - At this time there is no async I/O support; everything is purely + synchronous. + + - There's currently no way to report the actual bit rate used to + shift data to/from a given device. + + - From userspace, you can't currently change the chip select polarity; + that could corrupt transfers to other devices sharing the SPI bus. + Each SPI device is deselected when it's not in active use, allowing + other drivers to talk to other devices. + + - There's a limit on the number of bytes each I/O request can transfer + to the SPI device. It defaults to one page, but that can be changed + using a module parameter. + + - Because SPI has no low-level transfer acknowledgement, you usually + won't see any I/O errors when talking to a non-existent device. + + +FULL DUPLEX CHARACTER DEVICE API +================================ + +See the sample program below for one example showing the use of the full +duplex programming interface. (Although it doesn't perform a full duplex +transfer.) The model is the same as that used in the kernel spi_sync() +request; the individual transfers offer the same capabilities as are +available to kernel drivers (except that it's not asynchronous). + +The example shows one half-duplex RPC-style request and response message. +These requests commonly require that the chip not be deselected between +the request and response. Several such requests could be chained into +a single kernel request, even allowing the chip to be deselected after +each response. (Other protocol options include changing the word size +and bitrate for each transfer segment.) + +To make a full duplex request, provide both rx_buf and tx_buf for the +same transfer. It's even OK if those are the same buffer. + + +SAMPLE PROGRAM +============== + +-------------------------------- CUT HERE +#include <stdio.h> +#include <unistd.h> +#include <stdlib.h> +#include <fcntl.h> +#include <string.h> + +#include <sys/ioctl.h> +#include <sys/types.h> +#include <sys/stat.h> + +#include <linux/types.h> +#include <linux/spi/spidev.h> + + +static int verbose; + +static void do_read(int fd, int len) +{ + unsigned char buf[32], *bp; + int status; + + /* read at least 2 bytes, no more than 32 */ + if (len < 2) + len = 2; + else if (len > sizeof(buf)) + len = sizeof(buf); + memset(buf, 0, sizeof buf); + + status = read(fd, buf, len); + if (status < 0) { + perror("read"); + return; + } + if (status != len) { + fprintf(stderr, "short read\n"); + return; + } + + printf("read(%2d, %2d): %02x %02x,", len, status, + buf[0], buf[1]); + status -= 2; + bp = buf + 2; + while (status-- > 0) + printf(" %02x", *bp++); + printf("\n"); +} + +static void do_msg(int fd, int len) +{ + struct spi_ioc_transfer xfer[2]; + unsigned char buf[32], *bp; + int status; + + memset(xfer, 0, sizeof xfer); + memset(buf, 0, sizeof buf); + + if (len > sizeof buf) + len = sizeof buf; + + buf[0] = 0xaa; + xfer[0].tx_buf = (__u64) buf; + xfer[0].len = 1; + + xfer[1].rx_buf = (__u64) buf; + xfer[1].len = len; + + status = ioctl(fd, SPI_IOC_MESSAGE(2), xfer); + if (status < 0) { + perror("SPI_IOC_MESSAGE"); + return; + } + + printf("response(%2d, %2d): ", len, status); + for (bp = buf; len; len--) + printf(" %02x", *bp++); + printf("\n"); +} + +static void dumpstat(const char *name, int fd) +{ + __u8 mode, lsb, bits; + __u32 speed; + + if (ioctl(fd, SPI_IOC_RD_MODE, &mode) < 0) { + perror("SPI rd_mode"); + return; + } + if (ioctl(fd, SPI_IOC_RD_LSB_FIRST, &lsb) < 0) { + perror("SPI rd_lsb_fist"); + return; + } + if (ioctl(fd, SPI_IOC_RD_BITS_PER_WORD, &bits) < 0) { + perror("SPI bits_per_word"); + return; + } + if (ioctl(fd, SPI_IOC_RD_MAX_SPEED_HZ, &speed) < 0) { + perror("SPI max_speed_hz"); + return; + } + + printf("%s: spi mode %d, %d bits %sper word, %d Hz max\n", + name, mode, bits, lsb ? "(lsb first) " : "", speed); +} + +int main(int argc, char **argv) +{ + int c; + int readcount = 0; + int msglen = 0; + int fd; + const char *name; + + while ((c = getopt(argc, argv, "hm:r:v")) != EOF) { + switch (c) { + case 'm': + msglen = atoi(optarg); + if (msglen < 0) + goto usage; + continue; + case 'r': + readcount = atoi(optarg); + if (readcount < 0) + goto usage; + continue; + case 'v': + verbose++; + continue; + case 'h': + case '?': +usage: + fprintf(stderr, + "usage: %s [-h] [-m N] [-r N] /dev/spidevB.D\n", + argv[0]); + return 1; + } + } + + if ((optind + 1) != argc) + goto usage; + name = argv[optind]; + + fd = open(name, O_RDWR); + if (fd < 0) { + perror("open"); + return 1; + } + + dumpstat(name, fd); + + if (msglen) + do_msg(fd, msglen); + + if (readcount) + do_read(fd, readcount); + + close(fd); + return 0; +} |