1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
|
/* cairo - a vector graphics library with display and print output
*
* Copyright © 2002 University of Southern California
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*
* The Original Code is the cairo graphics library.
*
* The Initial Developer of the Original Code is University of Southern
* California.
*
* Contributor(s):
* Carl D. Worth <cworth@cworth.org>
*/
#include "cairoint.h"
#include "cairo-gstate-private.h"
static int
_cairo_pen_vertices_needed (double tolerance, double radius, cairo_matrix_t *matrix);
static void
_cairo_pen_compute_slopes (cairo_pen_t *pen);
static cairo_status_t
_cairo_pen_stroke_spline_half (cairo_pen_t *pen, cairo_spline_t *spline, cairo_direction_t dir, cairo_polygon_t *polygon);
cairo_status_t
_cairo_pen_init_empty (cairo_pen_t *pen)
{
pen->radius = 0;
pen->tolerance = 0;
pen->vertices = NULL;
pen->num_vertices = 0;
return CAIRO_STATUS_SUCCESS;
}
cairo_status_t
_cairo_pen_init (cairo_pen_t *pen, double radius, cairo_gstate_t *gstate)
{
int i;
int reflect;
double det;
if (pen->num_vertices) {
/* XXX: It would be nice to notice that the pen is already properly constructed.
However, this test would also have to account for possible changes in the transformation
matrix.
if (pen->radius == radius && pen->tolerance == tolerance)
return CAIRO_STATUS_SUCCESS;
*/
_cairo_pen_fini (pen);
}
pen->radius = radius;
pen->tolerance = gstate->tolerance;
_cairo_matrix_compute_determinant (&gstate->ctm, &det);
if (det >= 0) {
reflect = 0;
} else {
reflect = 1;
}
pen->num_vertices = _cairo_pen_vertices_needed (gstate->tolerance,
radius,
&gstate->ctm);
pen->vertices = malloc (pen->num_vertices * sizeof (cairo_pen_vertex_t));
if (pen->vertices == NULL) {
return CAIRO_STATUS_NO_MEMORY;
}
/*
* Compute pen coordinates. To generate the right ellipse, compute points around
* a circle in user space and transform them to device space. To get a consistent
* orientation in device space, flip the pen if the transformation matrix
* is reflecting
*/
for (i=0; i < pen->num_vertices; i++) {
double theta = 2 * M_PI * i / (double) pen->num_vertices;
double dx = radius * cos (reflect ? -theta : theta);
double dy = radius * sin (reflect ? -theta : theta);
cairo_pen_vertex_t *v = &pen->vertices[i];
cairo_matrix_transform_distance (&gstate->ctm, &dx, &dy);
v->point.x = _cairo_fixed_from_double (dx);
v->point.y = _cairo_fixed_from_double (dy);
}
_cairo_pen_compute_slopes (pen);
return CAIRO_STATUS_SUCCESS;
}
void
_cairo_pen_fini (cairo_pen_t *pen)
{
free (pen->vertices);
pen->vertices = NULL;
_cairo_pen_init_empty (pen);
}
cairo_status_t
_cairo_pen_init_copy (cairo_pen_t *pen, cairo_pen_t *other)
{
*pen = *other;
if (pen->num_vertices) {
pen->vertices = malloc (pen->num_vertices * sizeof (cairo_pen_vertex_t));
if (pen->vertices == NULL) {
return CAIRO_STATUS_NO_MEMORY;
}
memcpy (pen->vertices, other->vertices, pen->num_vertices * sizeof (cairo_pen_vertex_t));
}
return CAIRO_STATUS_SUCCESS;
}
cairo_status_t
_cairo_pen_add_points (cairo_pen_t *pen, cairo_point_t *point, int num_points)
{
cairo_pen_vertex_t *vertices;
int num_vertices;
int i;
num_vertices = pen->num_vertices + num_points;
vertices = realloc (pen->vertices, num_vertices * sizeof (cairo_pen_vertex_t));
if (vertices == NULL)
return CAIRO_STATUS_NO_MEMORY;
pen->vertices = vertices;
pen->num_vertices = num_vertices;
/* initialize new vertices */
for (i=0; i < num_points; i++)
pen->vertices[pen->num_vertices-num_points+i].point = point[i];
_cairo_hull_compute (pen->vertices, &pen->num_vertices);
_cairo_pen_compute_slopes (pen);
return CAIRO_STATUS_SUCCESS;
}
/*
The circular pen in user space is transformed into an ellipse in
device space.
We construct the pen by computing points along the circumference
using equally spaced angles.
We show below that this approximation to the ellipse has
maximum error at the major axis of the ellipse.
So, we need to compute the length of the major axis and then
use that to compute the number of sides needed in our pen.
Thanks to Walter Brisken <wbrisken@aoc.nrao.edu> for this
derivation:
1. First some notation:
All capital letters represent vectors in two dimensions. A prime '
represents a transformed coordinate. Matrices are written in underlined
form, ie _R_. Lowercase letters represent scalar real values.
The letter t is used to represent the greek letter theta.
2. The question has been posed: What is the maximum expansion factor
achieved by the linear transformation
X' = _R_ X
where _R_ is a real-valued 2x2 matrix with entries:
_R_ = [a b]
[c d] .
In other words, what is the maximum radius, MAX[ |X'| ], reached for any
X on the unit circle ( |X| = 1 ) ?
3. Some useful formulae
(A) through (C) below are standard double-angle formulae. (D) is a lesser
known result and is derived below:
(A) sin^2(t) = (1 - cos(2*t))/2
(B) cos^2(t) = (1 + cos(2*t))/2
(C) sin(t)*cos(t) = sin(2*t)/2
(D) MAX[a*cos(t) + b*sin(t)] = sqrt(a^2 + b^2)
Proof of (D):
find the maximum of the function by setting the derivative to zero:
-a*sin(t)+b*cos(t) = 0
From this it follows that
tan(t) = b/a
and hence
sin(t) = b/sqrt(a^2 + b^2)
and
cos(t) = a/sqrt(a^2 + b^2)
Thus the maximum value is
MAX[a*cos(t) + b*sin(t)] = (a^2 + b^2)/sqrt(a^2 + b^2)
= sqrt(a^2 + b^2)
4. Derivation of maximum expansion
To find MAX[ |X'| ] we search brute force method using calculus. The unit
circle on which X is constrained is to be parameterized by t:
X(t) = (cos(t), sin(t))
Thus
X'(t) = (a*cos(t) + b*sin(t), c*cos(t) + d*sin(t)) .
Define
r(t) = |X'(t)|
Thus
r^2(t) = (a*cos(t) + b*sin(t))^2 + (c*cos(t) + d*sin(t))^2
= (a^2 + c^2)*cos^2(t) + (b^2 + d^2)*sin^2(t)
+ 2*(a*b + c*d)*cos(t)*sin(t)
Now apply the double angle formulae (A) to (C) from above:
r^2(t) = (a^2 + b^2 + c^2 + d^2)/2
+ (a^2 - b^2 + c^2 - d^2)*cos(2*t)/2
+ (a*b + c*d)*sin(2*t)
= f + g*cos(u) + h*sin(u)
Where
f = (a^2 + b^2 + c^2 + d^2)/2
g = (a^2 - b^2 + c^2 - d^2)/2
h = (a*b + c*d)
u = 2*t
It is clear that MAX[ |X'| ] = sqrt(MAX[ r^2 ]). Here we determine MAX[ r^2 ]
using (D) from above:
MAX[ r^2 ] = f + sqrt(g^2 + h^2)
And finally
MAX[ |X'| ] = sqrt( f + sqrt(g^2 + h^2) )
Which is the solution to this problem.
Walter Brisken
2004/10/08
(Note that the minor axis length is at the minimum of the above solution,
which is just sqrt (f - sqrt (g^2 + h^2)) given the symmetry of (D)).
Now to compute how many sides to use for the pen formed by
a regular polygon.
Set
M = major axis length (computed by above formula)
m = minor axis length (computed by above formula)
Align 'M' along the X axis and 'm' along the Y axis and draw
an ellipse parameterized by angle 't':
x = M cos t y = m sin t
Perturb t by ± d and compute two new points (x+,y+), (x-,y-).
The distance from the average of these two points to (x,y) represents
the maximum error in approximating the ellipse with a polygon formed
from vertices 2∆ radians apart.
x+ = M cos (t+∆) y+ = m sin (t+∆)
x- = M cos (t-∆) y- = m sin (t-∆)
Now compute the approximation error, E:
Ex = (x - (x+ + x-) / 2)
Ex = (M cos(t) - (Mcos(t+∆) + Mcos(t-∆))/2)
= M (cos(t) - (cos(t)cos(∆) + sin(t)sin(∆) +
cos(t)cos(∆) - sin(t)sin(∆))/2)
= M(cos(t) - cos(t)cos(∆))
= M cos(t) (1 - cos(∆))
Ey = y - (y+ - y-) / 2
= m sin (t) - (m sin(t+∆) + m sin(t-∆)) / 2
= m (sin(t) - (sin(t)cos(∆) + cos(t)sin(∆) +
sin(t)cos(∆) - cos(t)sin(∆))/2)
= m (sin(t) - sin(t)cos(∆))
= m sin(t) (1 - cos(∆))
E² = Ex² + Ey²
= (M cos(t) (1 - cos (∆)))² + (m sin(t) (1-cos(∆)))²
= (1 - cos(∆))² (M² cos²(t) + m² sin²(t))
= (1 - cos(∆))² ((m² + M² - m²) cos² (t) + m² sin²(t))
= (1 - cos(∆))² (M² - m²) cos² (t) + (1 - cos(∆))² m²
Find the extremum by differentiation wrt t and setting that to zero
∂(E²)/∂(t) = (1-cos(∆))² (M² - m²) (-2 cos(t) sin(t))
0 = 2 cos (t) sin (t)
0 = sin (2t)
t = nπ
Which is to say that the maximum and minimum errors occur on the
axes of the ellipse at 0 and π radians:
E²(0) = (1-cos(∆))² (M² - m²) + (1-cos(∆))² m²
= (1-cos(∆))² M²
E²(π) = (1-cos(∆))² m²
maximum error = M (1-cos(∆))
minimum error = m (1-cos(∆))
We must make maximum error ≤ tolerance, so compute the ∆ needed:
tolerance = M (1-cos(∆))
tolerance / M = 1 - cos (∆)
cos(∆) = 1 - tolerance/M
∆ = acos (1 - tolerance / M);
Remembering that ∆ is half of our angle between vertices,
the number of vertices is then
vertices = ceil(2π/2∆).
= ceil(π/∆).
Note that this also equation works for M == m (a circle) as it
doesn't matter where on the circle the error is computed.
*/
static int
_cairo_pen_vertices_needed (double tolerance,
double radius,
cairo_matrix_t *matrix)
{
double a = matrix->xx, b = matrix->yx;
double c = matrix->xy, d = matrix->yy;
double i = a*a + c*c;
double j = b*b + d*d;
double f = 0.5 * (i + j);
double g = 0.5 * (i - j);
double h = a*b + c*d;
/*
* compute major and minor axes lengths for
* a pen with the specified radius
*/
double major_axis = radius * sqrt (f + sqrt (g*g+h*h));
/*
* we don't need the minor axis length, which is
* double min = radius * sqrt (f - sqrt (g*g+h*h));
*/
/*
* compute number of vertices needed
*/
int num_vertices;
/* Where tolerance / M is > 1, we use 4 points */
if (tolerance >= major_axis) {
num_vertices = 4;
} else {
double delta = acos (1 - tolerance / major_axis);
num_vertices = ceil (M_PI / delta);
/* number of vertices must be even */
if (num_vertices % 2)
num_vertices++;
}
return num_vertices;
}
static void
_cairo_pen_compute_slopes (cairo_pen_t *pen)
{
int i, i_prev;
cairo_pen_vertex_t *prev, *v, *next;
for (i=0, i_prev = pen->num_vertices - 1;
i < pen->num_vertices;
i_prev = i++) {
prev = &pen->vertices[i_prev];
v = &pen->vertices[i];
next = &pen->vertices[(i + 1) % pen->num_vertices];
_cairo_slope_init (&v->slope_cw, &prev->point, &v->point);
_cairo_slope_init (&v->slope_ccw, &v->point, &next->point);
}
}
/*
* Find active pen vertex for clockwise edge of stroke at the given slope.
*
* NOTE: The behavior of this function is sensitive to the sense of
* the inequality within _cairo_slope_clockwise/_cairo_slope_counter_clockwise.
*
* The issue is that the slope_ccw member of one pen vertex will be
* equivalent to the slope_cw member of the next pen vertex in a
* counterclockwise order. However, for this function, we care
* strongly about which vertex is returned.
*/
cairo_status_t
_cairo_pen_find_active_cw_vertex_index (cairo_pen_t *pen,
cairo_slope_t *slope,
int *active)
{
int i;
for (i=0; i < pen->num_vertices; i++) {
if (_cairo_slope_clockwise (slope, &pen->vertices[i].slope_ccw)
&& _cairo_slope_counter_clockwise (slope, &pen->vertices[i].slope_cw))
break;
}
*active = i;
return CAIRO_STATUS_SUCCESS;
}
/* Find active pen vertex for counterclockwise edge of stroke at the given slope.
*
* NOTE: The behavior of this function is sensitive to the sense of
* the inequality within _cairo_slope_clockwise/_cairo_slope_counter_clockwise.
*/
cairo_status_t
_cairo_pen_find_active_ccw_vertex_index (cairo_pen_t *pen,
cairo_slope_t *slope,
int *active)
{
int i;
cairo_slope_t slope_reverse;
slope_reverse = *slope;
slope_reverse.dx = -slope_reverse.dx;
slope_reverse.dy = -slope_reverse.dy;
for (i=pen->num_vertices-1; i >= 0; i--) {
if (_cairo_slope_counter_clockwise (&pen->vertices[i].slope_ccw, &slope_reverse)
&& _cairo_slope_clockwise (&pen->vertices[i].slope_cw, &slope_reverse))
break;
}
*active = i;
return CAIRO_STATUS_SUCCESS;
}
static cairo_status_t
_cairo_pen_stroke_spline_half (cairo_pen_t *pen,
cairo_spline_t *spline,
cairo_direction_t dir,
cairo_polygon_t *polygon)
{
int i;
cairo_status_t status;
int start, stop, step;
int active = 0;
cairo_point_t hull_point;
cairo_slope_t slope, initial_slope, final_slope;
cairo_point_t *point = spline->points;
int num_points = spline->num_points;
if (dir == CAIRO_DIRECTION_FORWARD) {
start = 0;
stop = num_points;
step = 1;
initial_slope = spline->initial_slope;
final_slope = spline->final_slope;
} else {
start = num_points - 1;
stop = -1;
step = -1;
initial_slope = spline->final_slope;
initial_slope.dx = -initial_slope.dx;
initial_slope.dy = -initial_slope.dy;
final_slope = spline->initial_slope;
final_slope.dx = -final_slope.dx;
final_slope.dy = -final_slope.dy;
}
_cairo_pen_find_active_cw_vertex_index (pen, &initial_slope, &active);
i = start;
while (i != stop) {
hull_point.x = point[i].x + pen->vertices[active].point.x;
hull_point.y = point[i].y + pen->vertices[active].point.y;
status = _cairo_polygon_line_to (polygon, &hull_point);
if (status)
return status;
if (i + step == stop)
slope = final_slope;
else
_cairo_slope_init (&slope, &point[i], &point[i+step]);
if (_cairo_slope_counter_clockwise (&slope, &pen->vertices[active].slope_ccw)) {
if (++active == pen->num_vertices)
active = 0;
} else if (_cairo_slope_clockwise (&slope, &pen->vertices[active].slope_cw)) {
if (--active == -1)
active = pen->num_vertices - 1;
} else {
i += step;
}
}
return CAIRO_STATUS_SUCCESS;
}
/* Compute outline of a given spline using the pen.
The trapezoids needed to fill that outline will be added to traps
*/
cairo_status_t
_cairo_pen_stroke_spline (cairo_pen_t *pen,
cairo_spline_t *spline,
double tolerance,
cairo_traps_t *traps)
{
cairo_status_t status;
cairo_polygon_t polygon;
/* If the line width is so small that the pen is reduced to a
single point, then we have nothing to do. */
if (pen->num_vertices <= 1)
return CAIRO_STATUS_SUCCESS;
_cairo_polygon_init (&polygon);
status = _cairo_spline_decompose (spline, tolerance);
if (status)
return status;
status = _cairo_pen_stroke_spline_half (pen, spline, CAIRO_DIRECTION_FORWARD, &polygon);
if (status)
return status;
status = _cairo_pen_stroke_spline_half (pen, spline, CAIRO_DIRECTION_REVERSE, &polygon);
if (status)
return status;
_cairo_polygon_close (&polygon);
_cairo_traps_tessellate_polygon (traps, &polygon, CAIRO_FILL_RULE_WINDING);
_cairo_polygon_fini (&polygon);
return CAIRO_STATUS_SUCCESS;
}
|