summaryrefslogtreecommitdiff
path: root/src/cairo-matrix.c
blob: de89c0fd5c30dbe0f87e872a0dc2cc89e0d2a94d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
/*
 * Copyright © 2002 University of Southern California
 *
 * Permission to use, copy, modify, distribute, and sell this software
 * and its documentation for any purpose is hereby granted without
 * fee, provided that the above copyright notice appear in all copies
 * and that both that copyright notice and this permission notice
 * appear in supporting documentation, and that the name of the
 * University of Southern California not be used in advertising or
 * publicity pertaining to distribution of the software without
 * specific, written prior permission. The University of Southern
 * California makes no representations about the suitability of this
 * software for any purpose.  It is provided "as is" without express
 * or implied warranty.
 *
 * THE UNIVERSITY OF SOUTHERN CALIFORNIA DISCLAIMS ALL WARRANTIES WITH
 * REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL THE UNIVERSITY OF
 * SOUTHERN CALIFORNIA BE LIABLE FOR ANY SPECIAL, INDIRECT OR
 * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
 * OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
 * NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
 * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 * Author: Carl D. Worth <cworth@isi.edu>
 */

#include <stdlib.h>
#include <math.h>

#include "cairoint.h"

static cairo_matrix_t const CAIRO_MATRIX_IDENTITY = {
    {
	{1, 0},
	{0, 1},
	{0, 0}
    }
};

static void
_cairo_matrix_scalar_multiply (cairo_matrix_t *matrix, double scalar);

static void
_cairo_matrix_compute_adjoint (cairo_matrix_t *matrix);

cairo_matrix_t *
cairo_matrix_create (void)
{
    cairo_matrix_t *matrix;

    matrix = malloc (sizeof (cairo_matrix_t));
    if (matrix == NULL)
	return NULL;

    _cairo_matrix_init (matrix);

    return matrix;
}

void
_cairo_matrix_init (cairo_matrix_t *matrix)
{
    cairo_matrix_set_identity (matrix);
}

void
_cairo_matrix_fini (cairo_matrix_t *matrix)
{
    /* nothing to do here */
}

void
cairo_matrix_destroy (cairo_matrix_t *matrix)
{
    _cairo_matrix_fini (matrix);
    free (matrix);
}

cairo_status_t
cairo_matrix_copy (cairo_matrix_t *matrix, const cairo_matrix_t *other)
{
    *matrix = *other;

    return CAIRO_STATUS_SUCCESS;
}
slim_hidden_def(cairo_matrix_copy);

cairo_status_t
cairo_matrix_set_identity (cairo_matrix_t *matrix)
{
    *matrix = CAIRO_MATRIX_IDENTITY;

    return CAIRO_STATUS_SUCCESS;
}
slim_hidden_def(cairo_matrix_set_identity);

cairo_status_t
cairo_matrix_set_affine (cairo_matrix_t *matrix,
			 double a, double b,
			 double c, double d,
			 double tx, double ty)
{
    matrix->m[0][0] =  a; matrix->m[0][1] =  b;
    matrix->m[1][0] =  c; matrix->m[1][1] =  d;
    matrix->m[2][0] = tx; matrix->m[2][1] = ty;

    return CAIRO_STATUS_SUCCESS;
}
slim_hidden_def(cairo_matrix_set_affine);

cairo_status_t
cairo_matrix_get_affine (cairo_matrix_t *matrix,
			 double *a, double *b,
			 double *c, double *d,
			 double *tx, double *ty)
{
    *a  = matrix->m[0][0]; *b  = matrix->m[0][1];
    *c  = matrix->m[1][0]; *d  = matrix->m[1][1];
    *tx = matrix->m[2][0]; *ty = matrix->m[2][1];

    return CAIRO_STATUS_SUCCESS;
}

cairo_status_t
_cairo_matrix_set_translate (cairo_matrix_t *matrix,
			     double tx, double ty)
{
    return cairo_matrix_set_affine (matrix,
				    1, 0,
				    0, 1,
				    tx, ty);
}

cairo_status_t
cairo_matrix_translate (cairo_matrix_t *matrix, double tx, double ty)
{
    cairo_matrix_t tmp;

    _cairo_matrix_set_translate (&tmp, tx, ty);

    return cairo_matrix_multiply (matrix, &tmp, matrix);
}

cairo_status_t
_cairo_matrix_set_scale (cairo_matrix_t *matrix,
			 double sx, double sy)
{
    return cairo_matrix_set_affine (matrix,
				    sx,  0,
				    0, sy,
				    0, 0);
}

cairo_status_t
cairo_matrix_scale (cairo_matrix_t *matrix, double sx, double sy)
{
    cairo_matrix_t tmp;

    _cairo_matrix_set_scale (&tmp, sx, sy);

    return cairo_matrix_multiply (matrix, &tmp, matrix);
}
slim_hidden_def(cairo_matrix_scale);

cairo_status_t
_cairo_matrix_set_rotate (cairo_matrix_t *matrix,
		   double radians)
{
    return cairo_matrix_set_affine (matrix,
				    cos (radians), sin (radians),
				    -sin (radians), cos (radians),
				    0, 0);
}

cairo_status_t
cairo_matrix_rotate (cairo_matrix_t *matrix, double radians)
{
    cairo_matrix_t tmp;

    _cairo_matrix_set_rotate (&tmp, radians);

    return cairo_matrix_multiply (matrix, &tmp, matrix);
}

cairo_status_t
cairo_matrix_multiply (cairo_matrix_t *result, const cairo_matrix_t *a, const cairo_matrix_t *b)
{
    cairo_matrix_t r;
    int	    row, col, n;
    double  t;

    for (row = 0; row < 3; row++) {
	for (col = 0; col < 2; col++) {
	    if (row == 2)
		t = b->m[2][col];
	    else
		t = 0;
	    for (n = 0; n < 2; n++) {
		t += a->m[row][n] * b->m[n][col];
	    }
	    r.m[row][col] = t;
	}
    }

    *result = r;

    return CAIRO_STATUS_SUCCESS;
}
slim_hidden_def(cairo_matrix_multiply);

cairo_status_t
cairo_matrix_transform_distance (cairo_matrix_t *matrix, double *dx, double *dy)
{
    double new_x, new_y;

    new_x = (matrix->m[0][0] * *dx
	     + matrix->m[1][0] * *dy);
    new_y = (matrix->m[0][1] * *dx
	     + matrix->m[1][1] * *dy);

    *dx = new_x;
    *dy = new_y;

    return CAIRO_STATUS_SUCCESS;
}
slim_hidden_def(cairo_matrix_transform_distance);

cairo_status_t
cairo_matrix_transform_point (cairo_matrix_t *matrix, double *x, double *y)
{
    cairo_matrix_transform_distance (matrix, x, y);

    *x += matrix->m[2][0];
    *y += matrix->m[2][1];

    return CAIRO_STATUS_SUCCESS;
}
slim_hidden_def(cairo_matrix_transform_point);

cairo_status_t
_cairo_matrix_transform_bounding_box (cairo_matrix_t *matrix,
				      double *x, double *y,
				      double *width, double *height)
{
    int i;
    double quad_x[4], quad_y[4];
    double dx1, dy1;
    double dx2, dy2;
    double min_x, max_x;
    double min_y, max_y;

    quad_x[0] = *x;
    quad_y[0] = *y;
    cairo_matrix_transform_point (matrix, &quad_x[0], &quad_y[0]);

    dx1 = *width;
    dy1 = 0;
    cairo_matrix_transform_distance (matrix, &dx1, &dy1);
    quad_x[1] = quad_x[0] + dx1;
    quad_y[1] = quad_y[0] + dy1;

    dx2 = 0;
    dy2 = *height;
    cairo_matrix_transform_distance (matrix, &dx2, &dy2);
    quad_x[2] = quad_x[0] + dx2;
    quad_y[2] = quad_y[0] + dy2;

    quad_x[3] = quad_x[0] + dx1 + dx2;
    quad_y[3] = quad_y[0] + dy1 + dy2;

    min_x = max_x = quad_x[0];
    min_y = max_y = quad_y[0];

    for (i=1; i < 4; i++) {
	if (quad_x[i] < min_x)
	    min_x = quad_x[i];
	if (quad_x[i] > max_x)
	    max_x = quad_x[i];

	if (quad_y[i] < min_y)
	    min_y = quad_y[i];
	if (quad_y[i] > max_y)
	    max_y = quad_y[i];
    }

    *x = min_x;
    *y = min_y;
    *width = max_x - min_x;
    *height = max_y - min_y;

    return CAIRO_STATUS_SUCCESS;
}

static void
_cairo_matrix_scalar_multiply (cairo_matrix_t *matrix, double scalar)
{
    int row, col;

    for (row = 0; row < 3; row++)
	for (col = 0; col < 2; col++)
	    matrix->m[row][col] *= scalar;
}

/* This function isn't a correct adjoint in that the implicit 1 in the
   homogeneous result should actually be ad-bc instead. But, since this
   adjoint is only used in the computation of the inverse, which
   divides by det (A)=ad-bc anyway, everything works out in the end. */
static void
_cairo_matrix_compute_adjoint (cairo_matrix_t *matrix)
{
    /* adj (A) = transpose (C:cofactor (A,i,j)) */
    double a, b, c, d, tx, ty;

    a  = matrix->m[0][0]; b  = matrix->m[0][1];
    c  = matrix->m[1][0]; d  = matrix->m[1][1];
    tx = matrix->m[2][0]; ty = matrix->m[2][1];

    cairo_matrix_set_affine (matrix,
			     d, -b,
			     -c, a,
			     c*ty - d*tx, b*tx - a*ty);
}

cairo_status_t
cairo_matrix_invert (cairo_matrix_t *matrix)
{
    /* inv (A) = 1/det (A) * adj (A) */
    double det;

    _cairo_matrix_compute_determinant (matrix, &det);
    
    if (det == 0)
	return CAIRO_STATUS_INVALID_MATRIX;

    _cairo_matrix_compute_adjoint (matrix);
    _cairo_matrix_scalar_multiply (matrix, 1 / det);

    return CAIRO_STATUS_SUCCESS;
}
slim_hidden_def(cairo_matrix_invert);

cairo_status_t
_cairo_matrix_compute_determinant (cairo_matrix_t *matrix, double *det)
{
    double a, b, c, d;

    a = matrix->m[0][0]; b = matrix->m[0][1];
    c = matrix->m[1][0]; d = matrix->m[1][1];

    *det = a*d - b*c;

    return CAIRO_STATUS_SUCCESS;
}

cairo_status_t
_cairo_matrix_compute_eigen_values (cairo_matrix_t *matrix, double *lambda1, double *lambda2)
{
    /* The eigenvalues of an NxN matrix M are found by solving the polynomial:

       det (M - lI) = 0

       The zeros in our homogeneous 3x3 matrix make this equation equal
       to that formed by the sub-matrix:

       M = a b 
           c d

       by which:

       l^2 - (a+d)l + (ad - bc) = 0

       l = (a+d +/- sqrt (a^2 + 2ad + d^2 - 4 (ad-bc))) / 2;
    */

    double a, b, c, d, rad;

    a = matrix->m[0][0];
    b = matrix->m[0][1];
    c = matrix->m[1][0];
    d = matrix->m[1][1];

    rad = sqrt (a*a + 2*a*d + d*d - 4*(a*d - b*c));
    *lambda1 = (a + d + rad) / 2.0;
    *lambda2 = (a + d - rad) / 2.0;

    return CAIRO_STATUS_SUCCESS;
}

/* Compute the amount that each basis vector is scaled by. */
cairo_status_t
_cairo_matrix_compute_scale_factors (cairo_matrix_t *matrix, double *sx, double *sy)
{
    double x, y;

    x = 1.0;
    y = 0.0;
    cairo_matrix_transform_distance (matrix, &x, &y);
    *sx = sqrt(x*x + y*y);

    x = 0.0;
    y = 1.0;
    cairo_matrix_transform_distance (matrix, &x, &y);
    *sy = sqrt(x*x + y*y);

    return CAIRO_STATUS_SUCCESS;
}