summaryrefslogtreecommitdiff
path: root/src/cairo-matrix.c
blob: d0ffc28ce1cf9efcf3e6669528e7ae4cac457f3f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
/* cairo - a vector graphics library with display and print output
 *
 * Copyright © 2002 University of Southern California
 *
 * This library is free software; you can redistribute it and/or
 * modify it either under the terms of the GNU Lesser General Public
 * License version 2.1 as published by the Free Software Foundation
 * (the "LGPL") or, at your option, under the terms of the Mozilla
 * Public License Version 1.1 (the "MPL"). If you do not alter this
 * notice, a recipient may use your version of this file under either
 * the MPL or the LGPL.
 *
 * You should have received a copy of the LGPL along with this library
 * in the file COPYING-LGPL-2.1; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 * You should have received a copy of the MPL along with this library
 * in the file COPYING-MPL-1.1
 *
 * The contents of this file are subject to the Mozilla Public License
 * Version 1.1 (the "License"); you may not use this file except in
 * compliance with the License. You may obtain a copy of the License at
 * http://www.mozilla.org/MPL/
 *
 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
 * OF ANY KIND, either express or implied. See the LGPL or the MPL for
 * the specific language governing rights and limitations.
 *
 * The Original Code is the cairo graphics library.
 *
 * The Initial Developer of the Original Code is University of Southern
 * California.
 *
 * Contributor(s):
 *	Carl D. Worth <cworth@cworth.org>
 */

#define _GNU_SOURCE
#include <stdlib.h>
#include <math.h>

#include "cairoint.h"

static cairo_matrix_t const CAIRO_MATRIX_IDENTITY = {
    {
	{1, 0},
	{0, 1},
	{0, 0}
    }
};

static void
_cairo_matrix_scalar_multiply (cairo_matrix_t *matrix, double scalar);

static void
_cairo_matrix_compute_adjoint (cairo_matrix_t *matrix);

/**
 * cairo_matrix_create:
 * 
 * Creates a new identity matrix.
 * 
 * Return value: a newly created matrix; free with cairo_matrix_destroy(),
 *  or %NULL if memory couldn't be allocated.
 **/
cairo_matrix_t *
cairo_matrix_create (void)
{
    cairo_matrix_t *matrix;

    matrix = malloc (sizeof (cairo_matrix_t));
    if (matrix == NULL)
	return NULL;

    _cairo_matrix_init (matrix);

    return matrix;
}

void
_cairo_matrix_init (cairo_matrix_t *matrix)
{
    cairo_matrix_set_identity (matrix);
}

void
_cairo_matrix_fini (cairo_matrix_t *matrix)
{
    /* nothing to do here */
}

/**
 * cairo_matrix_destroy:
 * @matrix: a #cairo_matrix_t
 * 
 * Frees a matrix created with cairo_matrix_create.
 **/
void
cairo_matrix_destroy (cairo_matrix_t *matrix)
{
    _cairo_matrix_fini (matrix);
    free (matrix);
}

/**
 * cairo_matrix_copy:
 * @matrix: a #cairo_matrix_t
 * @other: another #cairo_
 * 
 * Modifies @matrix to be identical to @other.
 * 
 * Return value: %CAIRO_STATUS_SUCCESS, always.
 **/
cairo_status_t
cairo_matrix_copy (cairo_matrix_t *matrix, const cairo_matrix_t *other)
{
    *matrix = *other;

    return CAIRO_STATUS_SUCCESS;
}
slim_hidden_def(cairo_matrix_copy);

/**
 * cairo_matrix_set_identity:
 * @matrix: a #cairo_matrix_t
 * 
 * Modifies @matrix to be an identity transformation.
 * 
 * Return value: %CAIRO_STATUS_SUCCESS, always.
 **/
cairo_status_t
cairo_matrix_set_identity (cairo_matrix_t *matrix)
{
    *matrix = CAIRO_MATRIX_IDENTITY;

    return CAIRO_STATUS_SUCCESS;
}
slim_hidden_def(cairo_matrix_set_identity);

/**
 * cairo_matrix_set_affine:
 * @matrix: a cairo_matrix_t
 * @a: a component of the affine transformation
 * @b: b component of the affine transformation
 * @c: c component of the affine transformation
 * @d: d component of the affine transformation
 * @tx: X translation component of the affine transformation
 * @ty: Y translation component of the affine transformation
 * 
 * Sets @matrix to be the affine transformation given by
 * @a, b, @c, @d, @tx, @ty. The transformation is given
 * by:
 * <programlisting>
 *  x_new = x * a + y * c + tx;
 *  y_new = x * b + y * d + ty;
 * </programlisting>
 *
 * Return value: %CAIRO_STATUS_SUCCESS, always.
 **/
cairo_status_t
cairo_matrix_set_affine (cairo_matrix_t *matrix,
			 double a, double b,
			 double c, double d,
			 double tx, double ty)
{
    matrix->m[0][0] =  a; matrix->m[0][1] =  b;
    matrix->m[1][0] =  c; matrix->m[1][1] =  d;
    matrix->m[2][0] = tx; matrix->m[2][1] = ty;

    return CAIRO_STATUS_SUCCESS;
}
slim_hidden_def(cairo_matrix_set_affine);

/**
 * cairo_matrix_get_affine:
 * @matrix: a @cairo_matrix_t
 * @a: location to store a component of affine transformation, or %NULL
 * @b: location to store b component of affine transformation, or %NULL
 * @c: location to store c component of affine transformation, or %NULL
 * @d: location to store d component of affine transformation, or %NULL
 * @tx: location to store X-translation component of affine transformation, or %NULL
 * @ty: location to store Y-translation component of affine transformation, or %NULL
 * 
 * Gets the matrix values for the affine tranformation that @matrix represents.
 * See cairo_matrix_set_affine().
 * 
 * Return value: %CAIRO_STATUS_SUCCESS, always.
 **/
cairo_status_t
cairo_matrix_get_affine (cairo_matrix_t *matrix,
			 double *a, double *b,
			 double *c, double *d,
			 double *tx, double *ty)
{
    if (a)
	*a  = matrix->m[0][0];
    if (b)
	*b  = matrix->m[0][1];

    if (c)
	*c  = matrix->m[1][0];
    if (d)
	*d  = matrix->m[1][1];

    if (tx)
	*tx = matrix->m[2][0];
    if (ty)
	*ty = matrix->m[2][1];

    return CAIRO_STATUS_SUCCESS;
}

cairo_status_t
_cairo_matrix_set_translate (cairo_matrix_t *matrix,
			     double tx, double ty)
{
    return cairo_matrix_set_affine (matrix,
				    1, 0,
				    0, 1,
				    tx, ty);
}

/**
 * cairo_matrix_translate:
 * @matrix: a cairo_matrix_t
 * @tx: amount to translate in the X direction
 * @ty: amount to translate in the Y direction
 * 
 * Applies a translation by @tx, @ty to the transformation in
 * @matrix. The effect of the new transformation is to first translate
 * the coordinates by @tx and @ty, then apply the original transformation
 * to the coordinates.
 * 
 * Return value: %CAIRO_STATUS_SUCCESS, always.
 **/
cairo_status_t
cairo_matrix_translate (cairo_matrix_t *matrix, double tx, double ty)
{
    cairo_matrix_t tmp;

    _cairo_matrix_set_translate (&tmp, tx, ty);

    return cairo_matrix_multiply (matrix, &tmp, matrix);
}

cairo_status_t
_cairo_matrix_set_scale (cairo_matrix_t *matrix,
			 double sx, double sy)
{
    return cairo_matrix_set_affine (matrix,
				    sx,  0,
				    0, sy,
				    0, 0);
}

/**
 * cairo_matrix_scale:
 * @matrix: a #cairo_matrix_t
 * @sx: Scale factor in the X direction
 * @sy: Scale factor in the Y direction
 * 
 * Applies scaling by @tx, @ty to the transformation in @matrix. The
 * effect of the new transformation is to first scale the coordinates
 * by @sx and @sy, then apply the original transformation to the coordinates.
 * 
 * Return value: %CAIRO_STATUS_SUCCESS, always.
 **/
cairo_status_t
cairo_matrix_scale (cairo_matrix_t *matrix, double sx, double sy)
{
    cairo_matrix_t tmp;

    _cairo_matrix_set_scale (&tmp, sx, sy);

    return cairo_matrix_multiply (matrix, &tmp, matrix);
}
slim_hidden_def(cairo_matrix_scale);

cairo_status_t
_cairo_matrix_set_rotate (cairo_matrix_t *matrix,
		   double radians)
{
    double  s;
    double  c;
#if HAVE_SINCOS
    sincos (radians, &s, &c);
#else
    s = sin (radians);
    c = cos (radians);
#endif
    return cairo_matrix_set_affine (matrix,
				    c, s,
				    -s, c,
				    0, 0);
}

/**
 * cairo_matrix_rotate:
 * @matrix: a @cairo_matrix_t
 * @radians: angle of rotation, in radians. Angles are defined
 *  so that an angle of 90 degrees (%M_PI/2 radians) rotates the
 *  positive X axis into the positive Y axis. With the default
 *  cairo choice of axis orientation, positive rotations are
 *  clockwise.
 * 
 * Applies rotation by @radians to the transformation in
 * @matrix. The effect of the new transformation is to first rotate the
 * coordinates by @radians, then apply the original transformation
 * to the coordinates.
 * 
 * Return value: %CAIRO_STATUS_SUCCESS, always.
 **/
cairo_status_t
cairo_matrix_rotate (cairo_matrix_t *matrix, double radians)
{
    cairo_matrix_t tmp;

    _cairo_matrix_set_rotate (&tmp, radians);

    return cairo_matrix_multiply (matrix, &tmp, matrix);
}

/**
 * cairo_matrix_multiply:
 * @result: a @cairo_matrix_t in which to store the result
 * @a: a @cairo_matrix_t
 * @b: a @cairo_matrix_t
 * 
 * Multiplies the affine transformations in @a and @b together
 * and stores the result in @result. The effect of the resulting
 * transformation is to first apply the transformation in @a to the
 * coordinates and then apply the transformation in @b to the
 * coordinates.
 *
 * Return value: %CAIRO_STATUS_SUCCESS, always.
 **/
/*
 * XXX: The ordering of the arguments to this function corresponds
 *      to [row_vector]*A*B. If we want to use column vectors instead,
 *      then we need to switch the two arguments and fix up all
 *      uses.
 */
cairo_status_t
cairo_matrix_multiply (cairo_matrix_t *result, const cairo_matrix_t *a, const cairo_matrix_t *b)
{
    cairo_matrix_t r;
    int	    row, col, n;
    double  t;

    for (row = 0; row < 3; row++) {
	for (col = 0; col < 2; col++) {
	    if (row == 2)
		t = b->m[2][col];
	    else
		t = 0;
	    for (n = 0; n < 2; n++) {
		t += a->m[row][n] * b->m[n][col];
	    }
	    r.m[row][col] = t;
	}
    }

    *result = r;

    return CAIRO_STATUS_SUCCESS;
}
slim_hidden_def(cairo_matrix_multiply);

/**
 * cairo_matrix_transform_distance:
 * @matrix: a @cairo_matrix_t
 * @dx: X component of a distance vector. An in/out parameter
 * @dy: Y component of a distance vector. An in/out parameter
 * 
 * Transforms the distance vector (@dx,@dy) by @matrix. This is
 * similar to cairo_matrix_transform() except that the translation
 * components of the transformation are ignored. The calculation of
 * the returned vector is as follows:
 *
 * <programlisting>
 * dx2 = dx1 * a + dy1 * c;
 * dy2 = dx1 * b + dy1 * d;
 * </programlisting>
 *
 * Affine transformations are position invariant, so the same vector
 * always transforms to the same vector. If (@x1,@y1) transforms
 * to (@x2,@y2) then (@x1+@dx1,@y1+@dy1) will transform to
 * (@x1+@dx2,@y1+@dy2) for all values of @x1 and @x2.
 * 
 * Return value: %CAIRO_STATUS_SUCCESS, always.
 **/
cairo_status_t
cairo_matrix_transform_distance (cairo_matrix_t *matrix, double *dx, double *dy)
{
    double new_x, new_y;

    new_x = (matrix->m[0][0] * *dx
	     + matrix->m[1][0] * *dy);
    new_y = (matrix->m[0][1] * *dx
	     + matrix->m[1][1] * *dy);

    *dx = new_x;
    *dy = new_y;

    return CAIRO_STATUS_SUCCESS;
}
slim_hidden_def(cairo_matrix_transform_distance);

/**
 * cairo_matrix_transform_point:
 * @matrix: a @cairo_matrix_t
 * @x: X position. An in/out parameter
 * @y: Y position. An in/out parameter
 * 
 * Transforms the point (@x, @y) by @matrix.
 * 
 * Return value: %CAIRO_STATUS_SUCCESS, always.
 **/
cairo_status_t
cairo_matrix_transform_point (cairo_matrix_t *matrix, double *x, double *y)
{
    cairo_matrix_transform_distance (matrix, x, y);

    *x += matrix->m[2][0];
    *y += matrix->m[2][1];

    return CAIRO_STATUS_SUCCESS;
}
slim_hidden_def(cairo_matrix_transform_point);

cairo_status_t
_cairo_matrix_transform_bounding_box (cairo_matrix_t *matrix,
				      double *x, double *y,
				      double *width, double *height)
{
    int i;
    double quad_x[4], quad_y[4];
    double dx1, dy1;
    double dx2, dy2;
    double min_x, max_x;
    double min_y, max_y;

    quad_x[0] = *x;
    quad_y[0] = *y;
    cairo_matrix_transform_point (matrix, &quad_x[0], &quad_y[0]);

    dx1 = *width;
    dy1 = 0;
    cairo_matrix_transform_distance (matrix, &dx1, &dy1);
    quad_x[1] = quad_x[0] + dx1;
    quad_y[1] = quad_y[0] + dy1;

    dx2 = 0;
    dy2 = *height;
    cairo_matrix_transform_distance (matrix, &dx2, &dy2);
    quad_x[2] = quad_x[0] + dx2;
    quad_y[2] = quad_y[0] + dy2;

    quad_x[3] = quad_x[0] + dx1 + dx2;
    quad_y[3] = quad_y[0] + dy1 + dy2;

    min_x = max_x = quad_x[0];
    min_y = max_y = quad_y[0];

    for (i=1; i < 4; i++) {
	if (quad_x[i] < min_x)
	    min_x = quad_x[i];
	if (quad_x[i] > max_x)
	    max_x = quad_x[i];

	if (quad_y[i] < min_y)
	    min_y = quad_y[i];
	if (quad_y[i] > max_y)
	    max_y = quad_y[i];
    }

    *x = min_x;
    *y = min_y;
    *width = max_x - min_x;
    *height = max_y - min_y;

    return CAIRO_STATUS_SUCCESS;
}

static void
_cairo_matrix_scalar_multiply (cairo_matrix_t *matrix, double scalar)
{
    int row, col;

    for (row = 0; row < 3; row++)
	for (col = 0; col < 2; col++)
	    matrix->m[row][col] *= scalar;
}

/* This function isn't a correct adjoint in that the implicit 1 in the
   homogeneous result should actually be ad-bc instead. But, since this
   adjoint is only used in the computation of the inverse, which
   divides by det (A)=ad-bc anyway, everything works out in the end. */
static void
_cairo_matrix_compute_adjoint (cairo_matrix_t *matrix)
{
    /* adj (A) = transpose (C:cofactor (A,i,j)) */
    double a, b, c, d, tx, ty;

    a  = matrix->m[0][0]; b  = matrix->m[0][1];
    c  = matrix->m[1][0]; d  = matrix->m[1][1];
    tx = matrix->m[2][0]; ty = matrix->m[2][1];

    cairo_matrix_set_affine (matrix,
			     d, -b,
			     -c, a,
			     c*ty - d*tx, b*tx - a*ty);
}

/**
 * cairo_matrix_invert:
 * @matrix: a @cairo_matrix_t
 * 
 * Changes @matrix to be the inverse of it's original value. Not
 * all transformation matrices have inverses; if the matrix
 * collapses points together (it is <firstterm>degenerate</firstterm>),
 * then it has no inverse and this function will fail.
 * 
 * Returns: If @matrix has an inverse, modifies @matrix to
 *  be the inverse matrix and returns %CAIRO_STATUS_SUCCESS. Otherwise,
 *  returns %CAIRO_STATUS_INVALID_MATRIX.
 **/
cairo_status_t
cairo_matrix_invert (cairo_matrix_t *matrix)
{
    /* inv (A) = 1/det (A) * adj (A) */
    double det;

    _cairo_matrix_compute_determinant (matrix, &det);
    
    if (det == 0)
	return CAIRO_STATUS_INVALID_MATRIX;

    _cairo_matrix_compute_adjoint (matrix);
    _cairo_matrix_scalar_multiply (matrix, 1 / det);

    return CAIRO_STATUS_SUCCESS;
}
slim_hidden_def(cairo_matrix_invert);

cairo_status_t
_cairo_matrix_compute_determinant (cairo_matrix_t *matrix, double *det)
{
    double a, b, c, d;

    a = matrix->m[0][0]; b = matrix->m[0][1];
    c = matrix->m[1][0]; d = matrix->m[1][1];

    *det = a*d - b*c;

    return CAIRO_STATUS_SUCCESS;
}

cairo_status_t
_cairo_matrix_compute_eigen_values (cairo_matrix_t *matrix, double *lambda1, double *lambda2)
{
    /* The eigenvalues of an NxN matrix M are found by solving the polynomial:

       det (M - lI) = 0

       The zeros in our homogeneous 3x3 matrix make this equation equal
       to that formed by the sub-matrix:

       M = a b 
           c d

       by which:

       l^2 - (a+d)l + (ad - bc) = 0

       l = (a+d +/- sqrt (a^2 + 2ad + d^2 - 4 (ad-bc))) / 2;
    */

    double a, b, c, d, rad;

    a = matrix->m[0][0];
    b = matrix->m[0][1];
    c = matrix->m[1][0];
    d = matrix->m[1][1];

    rad = sqrt (a*a + 2*a*d + d*d - 4*(a*d - b*c));
    *lambda1 = (a + d + rad) / 2.0;
    *lambda2 = (a + d - rad) / 2.0;

    return CAIRO_STATUS_SUCCESS;
}

/* Compute the amount that each basis vector is scaled by. */
cairo_status_t
_cairo_matrix_compute_scale_factors (cairo_matrix_t *matrix, double *sx, double *sy, int x_major)
{
    double det;

    _cairo_matrix_compute_determinant (matrix, &det);

    if (det == 0)
	*sx = *sy = 0;
    else
    {
	double x = x_major != 0;
	double y = x == 0;
	double major, minor;
	
	cairo_matrix_transform_distance (matrix, &x, &y);
	major = sqrt(x*x + y*y);
	/*
	 * ignore mirroring
	 */
	if (det < 0)
	    det = -det;
	if (major)
	    minor = det / major;
	else 
	    minor = 0.0;
	if (x_major)
	{
	    *sx = major;
	    *sy = minor;
	}
	else
	{
	    *sx = minor;
	    *sy = major;
	}
    }

    return CAIRO_STATUS_SUCCESS;
}

cairo_bool_t 
_cairo_matrix_is_integer_translation(cairo_matrix_t *mat, 
				     int *itx, int *ity)
{
    double a, b, c, d, tx, ty;
    int ttx, tty;
    int ok = 0;
    cairo_matrix_get_affine (mat, &a, &b, &c, &d, &tx, &ty);
    ttx = _cairo_fixed_from_double (tx);
    tty = _cairo_fixed_from_double (ty);
    ok = ((a == 1.0)
	  && (b == 0.0)
	  && (c == 0.0)
	  && (d == 1.0)
	  && (_cairo_fixed_is_integer(ttx))
	  && (_cairo_fixed_is_integer(tty)));
    if (ok) {
	*itx = _cairo_fixed_integer_part(ttx);
	*ity = _cairo_fixed_integer_part(tty);
	return TRUE;
    } 
    return FALSE;
}