/* cairo - a vector graphics library with display and print output * * Copyright © 2004 Keith Packard * * This library is free software; you can redistribute it and/or * modify it either under the terms of the GNU Lesser General Public * License version 2.1 as published by the Free Software Foundation * (the "LGPL") or, at your option, under the terms of the Mozilla * Public License Version 1.1 (the "MPL"). If you do not alter this * notice, a recipient may use your version of this file under either * the MPL or the LGPL. * * You should have received a copy of the LGPL along with this library * in the file COPYING-LGPL-2.1; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * You should have received a copy of the MPL along with this library * in the file COPYING-MPL-1.1 * * The contents of this file are subject to the Mozilla Public License * Version 1.1 (the "License"); you may not use this file except in * compliance with the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY * OF ANY KIND, either express or implied. See the LGPL or the MPL for * the specific language governing rights and limitations. * * The Original Code is the cairo graphics library. * * The Initial Developer of the Original Code is Keith Packard * * Contributor(s): * Keith R. Packard */ #include "cairoint.h" #if HAVE_UINT64_T #define _cairo_uint32s_to_uint64(h,l) ((uint64_t) (h) << 32 | (l)) cairo_uquorem64_t _cairo_uint64_divrem (cairo_uint64_t num, cairo_uint64_t den) { cairo_uquorem64_t qr; qr.quo = num / den; qr.rem = num % den; return qr; } #else cairo_uint64_t _cairo_uint32_to_uint64 (uint32_t i) { cairo_uint64_t q; q.lo = i; q.hi = 0; return q; } cairo_int64_t _cairo_int32_to_int64 (int32_t i) { cairo_uint64_t q; q.lo = i; q.hi = i < 0 ? -1 : 0; return q; } static cairo_uint64_t _cairo_uint32s_to_uint64 (uint32_t h, uint32_t l) { cairo_uint64_t q; q.lo = l; q.hi = h; return q; } cairo_uint64_t _cairo_uint64_add (cairo_uint64_t a, cairo_uint64_t b) { cairo_uint64_t s; s.hi = a.hi + b.hi; s.lo = a.lo + b.lo; if (s.lo < a.lo) s.hi++; return s; } cairo_uint64_t _cairo_uint64_sub (cairo_uint64_t a, cairo_uint64_t b) { cairo_uint64_t s; s.hi = a.hi - b.hi; s.lo = a.lo - b.lo; if (s.lo > a.lo) s.hi--; return s; } #define uint32_lo(i) ((i) & 0xffff) #define uint32_hi(i) ((i) >> 16) #define uint32_carry16 ((1) << 16) cairo_uint64_t _cairo_uint32x32_64_mul (uint32_t a, uint32_t b) { cairo_uint64_t s; uint16_t ah, al, bh, bl; uint32_t r0, r1, r2, r3; al = uint32_lo (a); ah = uint32_hi (a); bl = uint32_lo (b); bh = uint32_hi (b); r0 = (uint32_t) al * bl; r1 = (uint32_t) al * bh; r2 = (uint32_t) ah * bl; r3 = (uint32_t) ah * bh; r1 += uint32_hi(r0); /* no carry possible */ r1 += r2; /* but this can carry */ if (r1 < r2) /* check */ r3 += uint32_carry16; s.hi = r3 + uint32_hi(r1); s.lo = (uint32_lo (r1) << 16) + uint32_lo (r0); return s; } cairo_int64_t _cairo_int32x32_64_mul (int32_t a, int32_t b) { cairo_int64_t s; s = _cairo_uint32x32_64_mul ((uint32_t) a, (uint32_t) b); if (a < 0) s.hi -= b; if (b < 0) s.hi -= a; return s; } cairo_uint64_t _cairo_uint64_mul (cairo_uint64_t a, cairo_uint64_t b) { cairo_uint64_t s; s = _cairo_uint32x32_64_mul (a.lo, b.lo); s.hi += a.lo * b.hi + a.hi * b.lo; return s; } cairo_uint64_t _cairo_uint64_lsl (cairo_uint64_t a, int shift) { if (shift >= 32) { a.hi = a.lo; a.lo = 0; shift -= 32; } if (shift) { a.hi = a.hi << shift | a.lo >> (32 - shift); a.lo = a.lo << shift; } return a; } cairo_uint64_t _cairo_uint64_rsl (cairo_uint64_t a, int shift) { if (shift >= 32) { a.lo = a.hi; a.hi = 0; shift -= 32; } if (shift) { a.lo = a.lo >> shift | a.hi << (32 - shift); a.hi = a.hi >> shift; } return a; } #define _cairo_uint32_rsa(a,n) ((uint32_t) (((int32_t) (a)) >> (n))) cairo_int64_t _cairo_uint64_rsa (cairo_int64_t a, int shift) { if (shift >= 32) { a.lo = a.hi; a.hi = _cairo_uint32_rsa (a.hi, 31); shift -= 32; } if (shift) { a.lo = a.lo >> shift | a.hi << (32 - shift); a.hi = _cairo_uint32_rsa (a.hi, shift); } return a; } int _cairo_uint64_lt (cairo_uint64_t a, cairo_uint64_t b) { return (a.hi < b.hi || (a.hi == b.hi && a.lo < b.lo)); } int _cairo_uint64_eq (cairo_uint64_t a, cairo_uint64_t b) { return a.hi == b.hi && a.lo == b.lo; } int _cairo_int64_lt (cairo_int64_t a, cairo_int64_t b) { if (_cairo_int64_negative (a) && !_cairo_int64_negative (b)) return 1; if (!_cairo_int64_negative (a) && _cairo_int64_negative (b)) return 0; return _cairo_uint64_lt (a, b); } cairo_uint64_t _cairo_uint64_not (cairo_uint64_t a) { a.lo = ~a.lo; a.hi = ~a.hi; return a; } cairo_uint64_t _cairo_uint64_negate (cairo_uint64_t a) { a.lo = ~a.lo; a.hi = ~a.hi; if (++a.lo == 0) ++a.hi; return a; } /* * Simple bit-at-a-time divide. */ cairo_uquorem64_t _cairo_uint64_divrem (cairo_uint64_t num, cairo_uint64_t den) { cairo_uquorem64_t qr; cairo_uint64_t bit; cairo_uint64_t quo; bit = _cairo_uint32_to_uint64 (1); /* normalize to make den >= num, but not overflow */ while (_cairo_uint64_lt (den, num) && (den.hi & 0x80000000) == 0) { bit = _cairo_uint64_lsl (bit, 1); den = _cairo_uint64_lsl (den, 1); } quo = _cairo_uint32_to_uint64 (0); /* generate quotient, one bit at a time */ while (bit.hi | bit.lo) { if (_cairo_uint64_le (den, num)) { num = _cairo_uint64_sub (num, den); quo = _cairo_uint64_add (quo, bit); } bit = _cairo_uint64_rsl (bit, 1); den = _cairo_uint64_rsl (den, 1); } qr.quo = quo; qr.rem = num; return qr; } #endif /* !HAVE_UINT64_T */ cairo_quorem64_t _cairo_int64_divrem (cairo_int64_t num, cairo_int64_t den) { int num_neg = _cairo_int64_negative (num); int den_neg = _cairo_int64_negative (den); cairo_uquorem64_t uqr; cairo_quorem64_t qr; if (num_neg) num = _cairo_int64_negate (num); if (den_neg) den = _cairo_int64_negate (den); uqr = _cairo_uint64_divrem (num, den); if (num_neg) qr.rem = _cairo_int64_negate (uqr.rem); else qr.rem = uqr.rem; if (num_neg != den_neg) qr.quo = (cairo_int64_t) _cairo_int64_negate (uqr.quo); else qr.quo = (cairo_int64_t) uqr.quo; return qr; } #if HAVE_UINT128_T cairo_uquorem128_t _cairo_uint128_divrem (cairo_uint128_t num, cairo_uint128_t den) { cairo_uquorem128_t qr; qr.quo = num / den; qr.rem = num % den; return qr; } #else cairo_uint128_t _cairo_uint32_to_uint128 (uint32_t i) { cairo_uint128_t q; q.lo = _cairo_uint32_to_uint64 (i); q.hi = _cairo_uint32_to_uint64 (0); return q; } cairo_int128_t _cairo_int32_to_int128 (int32_t i) { cairo_int128_t q; q.lo = _cairo_int32_to_int64 (i); q.hi = _cairo_int32_to_int64 (i < 0 ? -1 : 0); return q; } cairo_uint128_t _cairo_uint64_to_uint128 (cairo_uint64_t i) { cairo_uint128_t q; q.lo = i; q.hi = _cairo_uint32_to_uint64 (0); return q; } cairo_int128_t _cairo_int64_to_int128 (cairo_int64_t i) { cairo_int128_t q; q.lo = i; q.hi = _cairo_int32_to_int64 (_cairo_int64_negative(i) ? -1 : 0); return q; } cairo_uint128_t _cairo_uint128_add (cairo_uint128_t a, cairo_uint128_t b) { cairo_uint128_t s; s.hi = _cairo_uint64_add (a.hi, b.hi); s.lo = _cairo_uint64_add (a.lo, b.lo); if (_cairo_uint64_lt (s.lo, a.lo)) s.hi = _cairo_uint64_add (s.hi, _cairo_uint32_to_uint64 (1)); return s; } cairo_uint128_t _cairo_uint128_sub (cairo_uint128_t a, cairo_uint128_t b) { cairo_uint128_t s; s.hi = _cairo_uint64_sub (a.hi, b.hi); s.lo = _cairo_uint64_sub (a.lo, b.lo); if (_cairo_uint64_gt (s.lo, a.lo)) s.hi = _cairo_uint64_sub (s.hi, _cairo_uint32_to_uint64(1)); return s; } #if HAVE_UINT64_T #define uint64_lo32(i) ((i) & 0xffffffff) #define uint64_hi32(i) ((i) >> 32) #define uint64_lo(i) ((i) & 0xffffffff) #define uint64_hi(i) ((i) >> 32) #define uint64_shift32(i) ((i) << 32) #define uint64_carry32 (((uint64_t) 1) << 32) #else #define uint64_lo32(i) ((i).lo) #define uint64_hi32(i) ((i).hi) static cairo_uint64_t uint64_lo (cairo_uint64_t i) { cairo_uint64_t s; s.lo = i.lo; s.hi = 0; return s; } static cairo_uint64_t uint64_hi (cairo_uint64_t i) { cairo_uint64_t s; s.lo = i.hi; s.hi = 0; return s; } static cairo_uint64_t uint64_shift32 (cairo_uint64_t i) { cairo_uint64_t s; s.lo = 0; s.hi = i.lo; return s; } static const cairo_uint64_t uint64_carry32 = { 0, 1 }; #endif cairo_uint128_t _cairo_uint64x64_128_mul (cairo_uint64_t a, cairo_uint64_t b) { cairo_uint128_t s; uint32_t ah, al, bh, bl; cairo_uint64_t r0, r1, r2, r3; al = uint64_lo32 (a); ah = uint64_hi32 (a); bl = uint64_lo32 (b); bh = uint64_hi32 (b); r0 = _cairo_uint32x32_64_mul (al, bl); r1 = _cairo_uint32x32_64_mul (al, bh); r2 = _cairo_uint32x32_64_mul (ah, bl); r3 = _cairo_uint32x32_64_mul (ah, bh); r1 = _cairo_uint64_add (r1, uint64_hi (r0)); /* no carry possible */ r1 = _cairo_uint64_add (r1, r2); /* but this can carry */ if (_cairo_uint64_lt (r1, r2)) /* check */ r3 = _cairo_uint64_add (r3, uint64_carry32); s.hi = _cairo_uint64_add (r3, uint64_hi(r1)); s.lo = _cairo_uint64_add (uint64_shift32 (r1), uint64_lo (r0)); return s; } cairo_int128_t _cairo_int64x64_128_mul (cairo_int64_t a, cairo_int64_t b) { cairo_int128_t s; s = _cairo_uint64x64_128_mul (_cairo_int64_to_uint64(a), _cairo_int64_to_uint64(b)); if (_cairo_int64_negative (a)) s.hi = _cairo_uint64_sub (s.hi, _cairo_int64_to_uint64 (b)); if (_cairo_int64_negative (b)) s.hi = _cairo_uint64_sub (s.hi, _cairo_int64_to_uint64 (a)); return s; } cairo_uint128_t _cairo_uint128_mul (cairo_uint128_t a, cairo_uint128_t b) { cairo_uint128_t s; s = _cairo_uint64x64_128_mul (a.lo, b.lo); s.hi = _cairo_uint64_add (s.hi, _cairo_uint64_mul (a.lo, b.hi)); s.hi = _cairo_uint64_add (s.hi, _cairo_uint64_mul (a.hi, b.lo)); return s; } cairo_uint128_t _cairo_uint128_lsl (cairo_uint128_t a, int shift) { if (shift >= 64) { a.hi = a.lo; a.lo = _cairo_uint32_to_uint64 (0); shift -= 64; } if (shift) { a.hi = _cairo_uint64_add (_cairo_uint64_lsl (a.hi, shift), _cairo_uint64_rsl (a.lo, (64 - shift))); a.lo = _cairo_uint64_lsl (a.lo, shift); } return a; } cairo_uint128_t _cairo_uint128_rsl (cairo_uint128_t a, int shift) { if (shift >= 64) { a.lo = a.hi; a.hi = _cairo_uint32_to_uint64 (0); shift -= 64; } if (shift) { a.lo = _cairo_uint64_add (_cairo_uint64_rsl (a.lo, shift), _cairo_uint64_lsl (a.hi, (64 - shift))); a.hi = _cairo_uint64_rsl (a.hi, shift); } return a; } cairo_uint128_t _cairo_uint128_rsa (cairo_int128_t a, int shift) { if (shift >= 64) { a.lo = a.hi; a.hi = _cairo_uint64_rsa (a.hi, 64-1); shift -= 64; } if (shift) { a.lo = _cairo_uint64_add (_cairo_uint64_rsl (a.lo, shift), _cairo_uint64_lsl (a.hi, (64 - shift))); a.hi = _cairo_uint64_rsa (a.hi, shift); } return a; } int _cairo_uint128_lt (cairo_uint128_t a, cairo_uint128_t b) { return (_cairo_uint64_lt (a.hi, b.hi) || (_cairo_uint64_eq (a.hi, b.hi) && _cairo_uint64_lt (a.lo, b.lo))); } int _cairo_int128_lt (cairo_int128_t a, cairo_int128_t b) { if (_cairo_int128_negative (a) && !_cairo_int128_negative (b)) return 1; if (!_cairo_int128_negative (a) && _cairo_int128_negative (b)) return 0; return _cairo_uint128_lt (a, b); } int _cairo_uint128_eq (cairo_uint128_t a, cairo_uint128_t b) { return (_cairo_uint64_eq (a.hi, b.hi) && _cairo_uint64_eq (a.lo, b.lo)); } #if HAVE_UINT64_T #define _cairo_msbset64(q) (q & ((uint64_t) 1 << 63)) #else #define _cairo_msbset64(q) (q.hi & ((uint32_t) 1 << 31)) #endif cairo_uquorem128_t _cairo_uint128_divrem (cairo_uint128_t num, cairo_uint128_t den) { cairo_uquorem128_t qr; cairo_uint128_t bit; cairo_uint128_t quo; bit = _cairo_uint32_to_uint128 (1); /* normalize to make den >= num, but not overflow */ while (_cairo_uint128_lt (den, num) && !_cairo_msbset64(den.hi)) { bit = _cairo_uint128_lsl (bit, 1); den = _cairo_uint128_lsl (den, 1); } quo = _cairo_uint32_to_uint128 (0); /* generate quotient, one bit at a time */ while (_cairo_uint128_ne (bit, _cairo_uint32_to_uint128(0))) { if (_cairo_uint128_le (den, num)) { num = _cairo_uint128_sub (num, den); quo = _cairo_uint128_add (quo, bit); } bit = _cairo_uint128_rsl (bit, 1); den = _cairo_uint128_rsl (den, 1); } qr.quo = quo; qr.rem = num; return qr; } cairo_int128_t _cairo_int128_negate (cairo_int128_t a) { a.lo = _cairo_uint64_not (a.lo); a.hi = _cairo_uint64_not (a.hi); return _cairo_uint128_add (a, _cairo_uint32_to_uint128 (1)); } cairo_int128_t _cairo_int128_not (cairo_int128_t a) { a.lo = _cairo_uint64_not (a.lo); a.hi = _cairo_uint64_not (a.hi); return a; } #endif /* !HAVE_UINT128_T */ cairo_quorem128_t _cairo_int128_divrem (cairo_int128_t num, cairo_int128_t den) { int num_neg = _cairo_int128_negative (num); int den_neg = _cairo_int128_negative (den); cairo_uquorem128_t uqr; cairo_quorem128_t qr; if (num_neg) num = _cairo_int128_negate (num); if (den_neg) den = _cairo_int128_negate (den); uqr = _cairo_uint128_divrem (num, den); if (num_neg) qr.rem = _cairo_int128_negate (uqr.rem); else qr.rem = uqr.rem; if (num_neg != den_neg) qr.quo = _cairo_int128_negate (uqr.quo); else qr.quo = uqr.quo; return qr; } /** * _cairo_uint_96by64_32x64_divrem: * * Compute a 32 bit quotient and 64 bit remainder of a 96 bit unsigned * dividend and 64 bit divisor. If the quotient doesn't fit into 32 * bits then the returned remainder is equal to the divisor, and the * quotient is the largest representable 64 bit integer. It is an * error to call this function with the high 32 bits of @num being * non-zero. */ cairo_uquorem64_t _cairo_uint_96by64_32x64_divrem (cairo_uint128_t num, cairo_uint64_t den) { cairo_uquorem64_t result; cairo_uint64_t B = _cairo_uint32s_to_uint64 (1, 0); /* These are the high 64 bits of the *96* bit numerator. We're * going to represent the numerator as xB + y, where x is a 64, * and y is a 32 bit number. */ cairo_uint64_t x = _cairo_uint128_to_uint64 (_cairo_uint128_rsl(num, 32)); /* Initialise the result to indicate overflow. */ result.quo = _cairo_uint32s_to_uint64 (-1U, -1U); result.rem = den; /* Don't bother if the quotient is going to overflow. */ if (_cairo_uint64_ge (x, den)) { return /* overflow */ result; } if (_cairo_uint64_lt (x, B)) { /* When the final quotient is known to fit in 32 bits, then * num < 2^64 if and only if den < 2^32. */ return _cairo_uint64_divrem (_cairo_uint128_to_uint64 (num), den); } else { /* Denominator is >= 2^32. the numerator is >= 2^64, and the * division won't overflow: need two divrems. Write the * numerator and denominator as * * num = xB + y x : 64 bits, y : 32 bits * den = uB + v u, v : 32 bits */ uint32_t y = _cairo_uint128_to_uint32 (num); uint32_t u = uint64_hi32 (den); uint32_t v = _cairo_uint64_to_uint32 (den); /* Compute a lower bound approximate quotient of num/den * from x/(u+1). Then we have * * x = q(u+1) + r ; q : 32 bits, r <= u : 32 bits. * * xB + y = q(u+1)B + (rB+y) * = q(uB + B + v - v) + (rB+y) * = q(uB + v) + qB - qv + (rB+y) * = q(uB + v) + q(B-v) + (rB+y) * * The true quotient of num/den then is q plus the * contribution of q(B-v) + (rB+y). The main contribution * comes from the term q(B-v), with the term (rB+y) only * contributing at most one part. * * The term q(B-v) must fit into 64 bits, since q fits into 32 * bits on account of being a lower bound to the true * quotient, and as B-v <= 2^32, we may safely use a single * 64/64 bit division to find its contribution. */ cairo_uquorem64_t quorem; cairo_uint64_t remainder; /* will contain final remainder */ uint32_t quotient; /* will contain final quotient. */ uint32_t q; uint32_t r; /* Approximate quotient by dividing the high 64 bits of num by * u+1. Watch out for overflow of u+1. */ if (u+1) { quorem = _cairo_uint64_divrem (x, _cairo_uint32_to_uint64 (u+1)); q = _cairo_uint64_to_uint32 (quorem.quo); r = _cairo_uint64_to_uint32 (quorem.rem); } else { q = uint64_hi32 (x); r = _cairo_uint64_to_uint32 (x); } quotient = q; /* Add the main term's contribution to quotient. Note B-v = * -v as an uint32 (unless v = 0) */ if (v) quorem = _cairo_uint64_divrem (_cairo_uint32x32_64_mul (q, -v), den); else quorem = _cairo_uint64_divrem (_cairo_uint32s_to_uint64 (q, 0), den); quotient += _cairo_uint64_to_uint32 (quorem.quo); /* Add the contribution of the subterm and start computing the * true remainder. */ remainder = _cairo_uint32s_to_uint64 (r, y); if (_cairo_uint64_ge (remainder, den)) { remainder = _cairo_uint64_sub (remainder, den); quotient++; } /* Add the contribution of the main term's remainder. The * funky test here checks that remainder + main_rem >= den, * taking into account overflow of the addition. */ remainder = _cairo_uint64_add (remainder, quorem.rem); if (_cairo_uint64_ge (remainder, den) || _cairo_uint64_lt (remainder, quorem.rem)) { remainder = _cairo_uint64_sub (remainder, den); quotient++; } result.quo = _cairo_uint32_to_uint64 (quotient); result.rem = remainder; } return result; } cairo_quorem64_t _cairo_int_96by64_32x64_divrem (cairo_int128_t num, cairo_int64_t den) { int num_neg = _cairo_int128_negative (num); int den_neg = _cairo_int64_negative (den); cairo_uint64_t nonneg_den; cairo_uquorem64_t uqr; cairo_quorem64_t qr; if (num_neg) num = _cairo_int128_negate (num); if (den_neg) nonneg_den = _cairo_int64_negate (den); else nonneg_den = den; uqr = _cairo_uint_96by64_32x64_divrem (num, nonneg_den); if (_cairo_uint64_eq (uqr.rem, nonneg_den)) { /* bail on overflow. */ qr.quo = _cairo_uint32s_to_uint64 (0x7FFFFFFF, -1U);; qr.rem = den; return qr; } if (num_neg) qr.rem = _cairo_int64_negate (uqr.rem); else qr.rem = uqr.rem; if (num_neg != den_neg) qr.quo = _cairo_int64_negate (uqr.quo); else qr.quo = uqr.quo; return qr; }