/* cairo - a vector graphics library with display and print output * * Copyright © 2002 University of Southern California * * This library is free software; you can redistribute it and/or * modify it either under the terms of the GNU Lesser General Public * License version 2.1 as published by the Free Software Foundation * (the "LGPL") or, at your option, under the terms of the Mozilla * Public License Version 1.1 (the "MPL"). If you do not alter this * notice, a recipient may use your version of this file under either * the MPL or the LGPL. * * You should have received a copy of the LGPL along with this library * in the file COPYING-LGPL-2.1; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * You should have received a copy of the MPL along with this library * in the file COPYING-MPL-1.1 * * The contents of this file are subject to the Mozilla Public License * Version 1.1 (the "License"); you may not use this file except in * compliance with the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY * OF ANY KIND, either express or implied. See the LGPL or the MPL for * the specific language governing rights and limitations. * * The Original Code is the cairo graphics library. * * The Initial Developer of the Original Code is University of Southern * California. * * Contributor(s): * Carl D. Worth */ #include "cairoint.h" static int _cairo_pen_vertices_needed (double tolerance, double radius, cairo_matrix_t *matrix); static void _cairo_pen_compute_slopes (cairo_pen_t *pen); static cairo_status_t _cairo_pen_stroke_spline_half (cairo_pen_t *pen, cairo_spline_t *spline, cairo_direction_t dir, cairo_polygon_t *polygon); void _cairo_pen_init_empty (cairo_pen_t *pen) { pen->radius = 0; pen->tolerance = 0; pen->vertices = NULL; pen->num_vertices = 0; } cairo_status_t _cairo_pen_init (cairo_pen_t *pen, double radius, double tolerance, cairo_matrix_t *ctm) { int i; int reflect; double det; pen->radius = radius; pen->tolerance = tolerance; _cairo_matrix_compute_determinant (ctm, &det); if (det >= 0) { reflect = 0; } else { reflect = 1; } pen->num_vertices = _cairo_pen_vertices_needed (tolerance, radius, ctm); pen->vertices = malloc (pen->num_vertices * sizeof (cairo_pen_vertex_t)); if (pen->vertices == NULL) { return CAIRO_STATUS_NO_MEMORY; } /* * Compute pen coordinates. To generate the right ellipse, compute points around * a circle in user space and transform them to device space. To get a consistent * orientation in device space, flip the pen if the transformation matrix * is reflecting */ for (i=0; i < pen->num_vertices; i++) { double theta = 2 * M_PI * i / (double) pen->num_vertices; double dx = radius * cos (reflect ? -theta : theta); double dy = radius * sin (reflect ? -theta : theta); cairo_pen_vertex_t *v = &pen->vertices[i]; cairo_matrix_transform_distance (ctm, &dx, &dy); v->point.x = _cairo_fixed_from_double (dx); v->point.y = _cairo_fixed_from_double (dy); } _cairo_pen_compute_slopes (pen); return CAIRO_STATUS_SUCCESS; } void _cairo_pen_fini (cairo_pen_t *pen) { free (pen->vertices); pen->vertices = NULL; _cairo_pen_init_empty (pen); } cairo_status_t _cairo_pen_init_copy (cairo_pen_t *pen, cairo_pen_t *other) { *pen = *other; if (pen->num_vertices) { pen->vertices = malloc (pen->num_vertices * sizeof (cairo_pen_vertex_t)); if (pen->vertices == NULL) { return CAIRO_STATUS_NO_MEMORY; } memcpy (pen->vertices, other->vertices, pen->num_vertices * sizeof (cairo_pen_vertex_t)); } return CAIRO_STATUS_SUCCESS; } cairo_status_t _cairo_pen_add_points (cairo_pen_t *pen, cairo_point_t *point, int num_points) { cairo_pen_vertex_t *vertices; cairo_status_t status; int num_vertices; int i; num_vertices = pen->num_vertices + num_points; vertices = realloc (pen->vertices, num_vertices * sizeof (cairo_pen_vertex_t)); if (vertices == NULL) return CAIRO_STATUS_NO_MEMORY; pen->vertices = vertices; pen->num_vertices = num_vertices; /* initialize new vertices */ for (i=0; i < num_points; i++) pen->vertices[pen->num_vertices-num_points+i].point = point[i]; status = _cairo_hull_compute (pen->vertices, &pen->num_vertices); if (status) return status; _cairo_pen_compute_slopes (pen); return CAIRO_STATUS_SUCCESS; } /* The circular pen in user space is transformed into an ellipse in device space. We construct the pen by computing points along the circumference using equally spaced angles. We show that this approximation to the ellipse has maximum error at the major axis of the ellipse. Set M = major axis length m = minor axis length Align 'M' along the X axis and 'm' along the Y axis and draw an ellipse parameterized by angle 't': x = M cos t y = m sin t Perturb t by ± d and compute two new points (x+,y+), (x-,y-). The distance from the average of these two points to (x,y) represents the maximum error in approximating the ellipse with a polygon formed from vertices 2∆ radians apart. x+ = M cos (t+∆) y+ = m sin (t+∆) x- = M cos (t-∆) y- = m sin (t-∆) Now compute the approximation error, E: Ex = (x - (x+ + x-) / 2) Ex = (M cos(t) - (Mcos(t+∆) + Mcos(t-∆))/2) = M (cos(t) - (cos(t)cos(∆) + sin(t)sin(∆) + cos(t)cos(∆) - sin(t)sin(∆))/2) = M(cos(t) - cos(t)cos(∆)) = M cos(t) (1 - cos(∆)) Ey = y - (y+ - y-) / 2 = m sin (t) - (m sin(t+∆) + m sin(t-∆)) / 2 = m (sin(t) - (sin(t)cos(∆) + cos(t)sin(∆) + sin(t)cos(∆) - cos(t)sin(∆))/2) = m (sin(t) - sin(t)cos(∆)) = m sin(t) (1 - cos(∆)) E² = Ex² + Ey² = (M cos(t) (1 - cos (∆)))² + (m sin(t) (1-cos(∆)))² = (1 - cos(∆))² (M² cos²(t) + m² sin²(t)) = (1 - cos(∆))² ((m² + M² - m²) cos² (t) + m² sin²(t)) = (1 - cos(∆))² (M² - m²) cos² (t) + (1 - cos(∆))² m² Find the extremum by differentiation wrt t and setting that to zero ∂(E²)/∂(t) = (1-cos(∆))² (M² - m²) (-2 cos(t) sin(t)) 0 = 2 cos (t) sin (t) 0 = sin (2t) t = nπ Which is to say that the maximum and minimum errors occur on the axes of the ellipse at 0 and π radians: E²(0) = (1-cos(∆))² (M² - m²) + (1-cos(∆))² m² = (1-cos(∆))² M² E²(π) = (1-cos(∆))² m² maximum error = M (1-cos(∆)) minimum error = m (1-cos(∆)) We must make maximum error ≤ tolerance, so compute the ∆ needed: tolerance = M (1-cos(∆)) tolerance / M = 1 - cos (∆) cos(∆) = 1 - tolerance/M ∆ = acos (1 - tolerance / M); Remembering that ∆ is half of our angle between vertices, the number of vertices is then vertices = ceil(2π/2∆). = ceil(π/∆). Note that this also equation works for M == m (a circle) as it doesn't matter where on the circle the error is computed. */ static int _cairo_pen_vertices_needed (double tolerance, double radius, cairo_matrix_t *matrix) { /* * the pen is a circle that gets transformed to an ellipse by matrix. * compute major axis length for a pen with the specified radius. * we don't need the minor axis length. */ double major_axis = _cairo_matrix_transformed_circle_major_axis(matrix, radius); /* * compute number of vertices needed */ int num_vertices; /* Where tolerance / M is > 1, we use 4 points */ if (tolerance >= major_axis) { num_vertices = 4; } else { double delta = acos (1 - tolerance / major_axis); num_vertices = ceil (M_PI / delta); /* number of vertices must be even */ if (num_vertices % 2) num_vertices++; /* And we must always have at least 4 vertices. */ if (num_vertices < 4) num_vertices = 4; } return num_vertices; } static void _cairo_pen_compute_slopes (cairo_pen_t *pen) { int i, i_prev; cairo_pen_vertex_t *prev, *v, *next; for (i=0, i_prev = pen->num_vertices - 1; i < pen->num_vertices; i_prev = i++) { prev = &pen->vertices[i_prev]; v = &pen->vertices[i]; next = &pen->vertices[(i + 1) % pen->num_vertices]; _cairo_slope_init (&v->slope_cw, &prev->point, &v->point); _cairo_slope_init (&v->slope_ccw, &v->point, &next->point); } } /* * Find active pen vertex for clockwise edge of stroke at the given slope. * * NOTE: The behavior of this function is sensitive to the sense of * the inequality within _cairo_slope_clockwise/_cairo_slope_counter_clockwise. * * The issue is that the slope_ccw member of one pen vertex will be * equivalent to the slope_cw member of the next pen vertex in a * counterclockwise order. However, for this function, we care * strongly about which vertex is returned. */ cairo_status_t _cairo_pen_find_active_cw_vertex_index (cairo_pen_t *pen, cairo_slope_t *slope, int *active) { int i; for (i=0; i < pen->num_vertices; i++) { if (_cairo_slope_clockwise (slope, &pen->vertices[i].slope_ccw) && _cairo_slope_counter_clockwise (slope, &pen->vertices[i].slope_cw)) break; } assert (i < pen->num_vertices); *active = i; return CAIRO_STATUS_SUCCESS; } /* Find active pen vertex for counterclockwise edge of stroke at the given slope. * * NOTE: The behavior of this function is sensitive to the sense of * the inequality within _cairo_slope_clockwise/_cairo_slope_counter_clockwise. */ cairo_status_t _cairo_pen_find_active_ccw_vertex_index (cairo_pen_t *pen, cairo_slope_t *slope, int *active) { int i; cairo_slope_t slope_reverse; slope_reverse = *slope; slope_reverse.dx = -slope_reverse.dx; slope_reverse.dy = -slope_reverse.dy; for (i=pen->num_vertices-1; i >= 0; i--) { if (_cairo_slope_counter_clockwise (&pen->vertices[i].slope_ccw, &slope_reverse) && _cairo_slope_clockwise (&pen->vertices[i].slope_cw, &slope_reverse)) break; } *active = i; return CAIRO_STATUS_SUCCESS; } static cairo_status_t _cairo_pen_stroke_spline_half (cairo_pen_t *pen, cairo_spline_t *spline, cairo_direction_t dir, cairo_polygon_t *polygon) { int i; cairo_status_t status; int start, stop, step; int active = 0; cairo_point_t hull_point; cairo_slope_t slope, initial_slope, final_slope; cairo_point_t *point = spline->points; int num_points = spline->num_points; if (dir == CAIRO_DIRECTION_FORWARD) { start = 0; stop = num_points; step = 1; initial_slope = spline->initial_slope; final_slope = spline->final_slope; } else { start = num_points - 1; stop = -1; step = -1; initial_slope = spline->final_slope; initial_slope.dx = -initial_slope.dx; initial_slope.dy = -initial_slope.dy; final_slope = spline->initial_slope; final_slope.dx = -final_slope.dx; final_slope.dy = -final_slope.dy; } status = _cairo_pen_find_active_cw_vertex_index (pen, &initial_slope, &active); if (status) return status; i = start; while (i != stop) { hull_point.x = point[i].x + pen->vertices[active].point.x; hull_point.y = point[i].y + pen->vertices[active].point.y; _cairo_polygon_line_to (polygon, &hull_point); if (i + step == stop) slope = final_slope; else _cairo_slope_init (&slope, &point[i], &point[i+step]); if (_cairo_slope_counter_clockwise (&slope, &pen->vertices[active].slope_ccw)) { if (++active == pen->num_vertices) active = 0; } else if (_cairo_slope_clockwise (&slope, &pen->vertices[active].slope_cw)) { if (--active == -1) active = pen->num_vertices - 1; } else { i += step; } } return CAIRO_STATUS_SUCCESS; } /* Compute outline of a given spline using the pen. The trapezoids needed to fill that outline will be added to traps */ cairo_status_t _cairo_pen_stroke_spline (cairo_pen_t *pen, cairo_spline_t *spline, double tolerance, cairo_traps_t *traps) { cairo_status_t status; cairo_polygon_t polygon; /* If the line width is so small that the pen is reduced to a single point, then we have nothing to do. */ if (pen->num_vertices <= 1) return CAIRO_STATUS_SUCCESS; _cairo_polygon_init (&polygon); status = _cairo_spline_decompose (spline, tolerance); if (status) goto BAIL; status = _cairo_pen_stroke_spline_half (pen, spline, CAIRO_DIRECTION_FORWARD, &polygon); if (status) goto BAIL; status = _cairo_pen_stroke_spline_half (pen, spline, CAIRO_DIRECTION_REVERSE, &polygon); if (status) goto BAIL; _cairo_polygon_close (&polygon); status = _cairo_polygon_status (&polygon); if (status) goto BAIL; status = _cairo_bentley_ottmann_tessellate_polygon (traps, &polygon, CAIRO_FILL_RULE_WINDING); BAIL: _cairo_polygon_fini (&polygon); return status; }