summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorGeorg Chini <georg@chini.tk>2020-01-27 20:21:02 +0100
committerGeorg Chini <georg@chini.tk>2021-11-07 18:17:37 +0000
commit68f7aee7c02134ad6abf7dfd989ed234b303e359 (patch)
tree5c7e799910143f7b2b70dfe75bfbe0e3b1a68ad2
parent6a906e54cc8cd47ff2827b9ef3b04ff1a8eab99f (diff)
loopback: Add latency prediction and Kalman filter
A Kalman filter is added to further reduce noise. The Kalman filter needs a latency prediction as input, so estimate the next expected latency as well. Again, theory is at https://www.freedesktop.org/software/pulseaudio/misc/rate_estimator.odt Part-of: <https://gitlab.freedesktop.org/pulseaudio/pulseaudio/-/merge_requests/56>
-rw-r--r--src/modules/module-loopback.c70
1 files changed, 69 insertions, 1 deletions
diff --git a/src/modules/module-loopback.c b/src/modules/module-loopback.c
index d2eec9b72..5a0dc90e8 100644
--- a/src/modules/module-loopback.c
+++ b/src/modules/module-loopback.c
@@ -110,11 +110,19 @@ struct userdata {
/* State variable of the latency controller */
int32_t last_latency_difference;
+ int64_t last_source_latency_offset;
+ int64_t last_sink_latency_offset;
+ int64_t next_latency_with_drift;
+ int64_t next_latency_at_optimum_rate_with_drift;
/* Filter varables used for 2nd order filter */
double drift_filter;
double drift_compensation_rate;
+ /* Variables for Kalman filter */
+ double latency_variance;
+ double kalman_variance;
+
/* lower latency limit found by underruns */
pa_usec_t underrun_latency_limit;
@@ -382,6 +390,7 @@ static void adjust_rates(struct userdata *u) {
pa_usec_t current_buffer_latency, snapshot_delay;
int64_t current_source_sink_latency, current_latency, latency_at_optimum_rate;
pa_usec_t final_latency, now, time_passed;
+ double filtered_latency, current_latency_error, latency_correction, base_rate_with_drift;
pa_assert(u);
pa_assert_ctl_context();
@@ -430,6 +439,9 @@ static void adjust_rates(struct userdata *u) {
} else {
u->drift_compensation_rate = 0;
u->drift_filter = 0;
+ /* Ensure that source_sink_changed is set, so that the Kalman filter parameters
+ * will also be reset. */
+ u->source_sink_changed = true;
}
u->adjust_time_stamp = now;
@@ -456,6 +468,28 @@ static void adjust_rates(struct userdata *u) {
final_latency = PA_MAX(u->latency, u->minimum_latency);
latency_difference = (int32_t)(current_latency - final_latency);
+ /* Do not filter or calculate error if source or sink changed or if there was an underrun */
+ if (u->source_sink_changed || u->underrun_occured) {
+ /* Initial conditions are very unsure, so use a high variance */
+ u->kalman_variance = 10000000;
+ filtered_latency = latency_at_optimum_rate;
+ u->next_latency_at_optimum_rate_with_drift = latency_at_optimum_rate;
+ u->next_latency_with_drift = current_latency;
+
+ } else {
+ /* Correct predictions if one of the latency offsets changed between iterations */
+ u->next_latency_at_optimum_rate_with_drift += u->source_latency_offset - u->last_source_latency_offset;
+ u->next_latency_at_optimum_rate_with_drift += u->sink_latency_offset - u->last_sink_latency_offset;
+ u->next_latency_with_drift += u->source_latency_offset - u->last_source_latency_offset;
+ u->next_latency_with_drift += u->sink_latency_offset - u->last_sink_latency_offset;
+ /* Low pass filtered latency variance */
+ current_latency_error = (double)abs((int32_t)(latency_at_optimum_rate - u->next_latency_at_optimum_rate_with_drift));
+ u->latency_variance = (1.0 - FILTER_PARAMETER) * u->latency_variance + FILTER_PARAMETER * current_latency_error * current_latency_error;
+ /* Kalman filter */
+ filtered_latency = (latency_at_optimum_rate * u->kalman_variance + u->next_latency_at_optimum_rate_with_drift * u->latency_variance) / (u->kalman_variance + u->latency_variance);
+ u->kalman_variance = u->kalman_variance * u->latency_variance / (u->kalman_variance + u->latency_variance) + u->latency_variance / 4 + 200;
+ }
+
pa_log_debug("Loopback overall latency is %0.2f ms + %0.2f ms + %0.2f ms = %0.2f ms",
(double) u->latency_snapshot.sink_latency / PA_USEC_PER_MSEC,
(double) current_buffer_latency / PA_USEC_PER_MSEC,
@@ -476,7 +510,7 @@ static void adjust_rates(struct userdata *u) {
}
/* Calculate new rate */
- new_rate = rate_controller(u, base_rate, old_rate, (int32_t)(latency_at_optimum_rate - final_latency), latency_difference);
+ new_rate = rate_controller(u, base_rate, old_rate, (int32_t)(filtered_latency - final_latency), latency_difference);
/* Save current latency difference at new rate for next cycle and reset flags */
u->last_latency_difference = current_source_sink_latency + current_buffer_latency * old_rate / new_rate - final_latency;
@@ -484,9 +518,35 @@ static void adjust_rates(struct userdata *u) {
/* Set variables that may change between calls of adjust_rate() */
u->source_sink_changed = false;
u->underrun_occured = false;
+ u->last_source_latency_offset = u->source_latency_offset;
+ u->last_sink_latency_offset = u->sink_latency_offset;
u->source_latency_offset_changed = false;
u->sink_latency_offset_changed = false;
+ /* Predicton of next latency */
+
+ /* Evaluate optimum rate */
+ base_rate_with_drift = u->drift_compensation_rate + base_rate;
+
+ /* Latency correction on next iteration */
+ latency_correction = (base_rate_with_drift - new_rate) * (int64_t)u->real_adjust_time / new_rate;
+
+ if ((int)new_rate != (int)base_rate_with_drift || new_rate != old_rate) {
+ /* While we are correcting, the next latency is determined by the current value and the difference
+ * between the new sampling rate and the base rate*/
+ u->next_latency_with_drift = current_latency + latency_correction + ((double)old_rate / new_rate - 1) * current_buffer_latency;
+ u->next_latency_at_optimum_rate_with_drift = filtered_latency + latency_correction * new_rate / base_rate_with_drift;
+
+ } else {
+ /* We are in steady state, now only the fractional drift should matter.
+ * To make sure that we do not drift away due to errors in the fractional
+ * drift, use a running average of the measured and predicted values */
+ u->next_latency_with_drift = (filtered_latency + u->next_latency_with_drift) / 2.0 + (1.0 - (double)(int)base_rate_with_drift / base_rate_with_drift) * (int64_t)u->real_adjust_time;
+
+ /* We are at the optimum rate, so nothing to correct */
+ u->next_latency_at_optimum_rate_with_drift = u->next_latency_with_drift;
+ }
+
/* Set rate */
pa_sink_input_set_rate(u->sink_input, new_rate);
pa_log_debug("[%s] Updated sampling rate to %lu Hz.", u->sink_input->sink->name, (unsigned long) new_rate);
@@ -809,6 +869,7 @@ static void source_output_moving_cb(pa_source_output *o, pa_source *dest) {
/* Set latency and calculate latency limits */
u->underrun_latency_limit = 0;
+ u->last_source_latency_offset = dest->port_latency_offset;
u->initial_adjust_pending = true;
update_latency_boundaries(u, dest, u->sink_input->sink);
set_source_output_latency(u, dest);
@@ -1226,6 +1287,7 @@ static void sink_input_moving_cb(pa_sink_input *i, pa_sink *dest) {
/* Set latency and calculate latency limits */
u->underrun_latency_limit = 0;
+ u->last_sink_latency_offset = dest->port_latency_offset;
u->initial_adjust_pending = true;
update_latency_boundaries(u, NULL, dest);
set_sink_input_latency(u, dest);
@@ -1396,6 +1458,8 @@ static pa_hook_result_t sink_port_latency_offset_changed_cb(pa_core *core, pa_si
if (sink != u->sink_input->sink)
return PA_HOOK_OK;
+ if (!u->sink_latency_offset_changed)
+ u->last_sink_latency_offset = u->sink_latency_offset;
u->sink_latency_offset_changed = true;
u->sink_latency_offset = sink->port_latency_offset;
update_minimum_latency(u, sink, true);
@@ -1409,6 +1473,8 @@ static pa_hook_result_t source_port_latency_offset_changed_cb(pa_core *core, pa_
if (source != u->source_output->source)
return PA_HOOK_OK;
+ if (!u->source_latency_offset_changed)
+ u->last_source_latency_offset = u->source_latency_offset;
u->source_latency_offset_changed = true;
u->source_latency_offset = source->port_latency_offset;
update_minimum_latency(u, u->sink_input->sink, true);
@@ -1680,6 +1746,8 @@ int pa__init(pa_module *m) {
u->sink_input->update_sink_fixed_latency = update_sink_latency_range_cb;
u->sink_input->userdata = u;
+ u->last_source_latency_offset = u->source_output->source->port_latency_offset;
+ u->last_sink_latency_offset = u->sink_input->sink->port_latency_offset;
update_latency_boundaries(u, u->source_output->source, u->sink_input->sink);
set_sink_input_latency(u, u->sink_input->sink);
set_source_output_latency(u, u->source_output->source);