/* * Copyright © 2005 Eric Anholt * Copyright © 2009 Chris Wilson * Copyright © 2010 Soeren Sandmann * Copyright © 2010 Red Hat, Inc. * * Permission to use, copy, modify, distribute, and sell this software and its * documentation for any purpose is hereby granted without fee, provided that * the above copyright notice appear in all copies and that both that * copyright notice and this permission notice appear in supporting * documentation, and that the name of Eric Anholt not be used in * advertising or publicity pertaining to distribution of the software without * specific, written prior permission. Eric Anholt makes no * representations about the suitability of this software for any purpose. It * is provided "as is" without express or implied warranty. * * ERIC ANHOLT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO * EVENT SHALL ERIC ANHOLT BE LIABLE FOR ANY SPECIAL, INDIRECT OR * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR * PERFORMANCE OF THIS SOFTWARE. */ #include #include /* abort() */ #include #include #include "utils.h" typedef struct format_t format_t; typedef struct image_t image_t; typedef struct operator_t operator_t; struct format_t { pixman_format_code_t format; const char *name; }; static const color_t colors[] = { { 1.0, 1.0, 1.0, 1.0 }, { 1.0, 1.0, 1.0, 0.0 }, { 0.0, 0.0, 0.0, 1.0 }, { 0.0, 0.0, 0.0, 0.0 }, { 1.0, 0.0, 0.0, 1.0 }, { 0.0, 1.0, 0.0, 1.0 }, { 0.0, 0.0, 1.0, 1.0 }, { 0.5, 0.0, 0.0, 0.5 }, }; static uint16_t _color_double_to_short (double d) { uint32_t i; i = (uint32_t) (d * 65536); i -= (i >> 16); return i; } static void compute_pixman_color (const color_t *color, pixman_color_t *out) { out->red = _color_double_to_short (color->r); out->green = _color_double_to_short (color->g); out->blue = _color_double_to_short (color->b); out->alpha = _color_double_to_short (color->a); } #define REPEAT 0x01000000 #define FLAGS 0xff000000 static const int sizes[] = { 0, 1, 1 | REPEAT, 10 }; static const format_t formats[] = { #define P(x) { PIXMAN_##x, #x } /* 32 bpp formats */ P(a8r8g8b8), P(x8r8g8b8), P(a8b8g8r8), P(x8b8g8r8), P(b8g8r8a8), P(b8g8r8x8), P(r8g8b8a8), P(r8g8b8x8), P(x2r10g10b10), P(x2b10g10r10), P(a2r10g10b10), P(a2b10g10r10), /* sRGB formats */ P(a8r8g8b8_sRGB), /* 24 bpp formats */ P(r8g8b8), P(b8g8r8), P(r5g6b5), P(b5g6r5), /* 16 bpp formats */ P(x1r5g5b5), P(x1b5g5r5), P(a1r5g5b5), P(a1b5g5r5), P(a4b4g4r4), P(x4b4g4r4), P(a4r4g4b4), P(x4r4g4b4), /* 8 bpp formats */ P(a8), P(r3g3b2), P(b2g3r3), P(a2r2g2b2), P(a2b2g2r2), P(x4a4), /* 4 bpp formats */ P(a4), P(r1g2b1), P(b1g2r1), P(a1r1g1b1), P(a1b1g1r1), /* 1 bpp formats */ P(a1) #undef P }; struct image_t { pixman_image_t *image; const format_t *format; const color_t *color; pixman_repeat_t repeat; int size; }; struct operator_t { pixman_op_t op; const char *name; }; static const operator_t operators[] = { #define P(x) { PIXMAN_OP_##x, #x } P(CLEAR), P(SRC), P(DST), P(OVER), P(OVER_REVERSE), P(IN), P(IN_REVERSE), P(OUT), P(OUT_REVERSE), P(ATOP), P(ATOP_REVERSE), P(XOR), P(ADD), P(SATURATE), P(DISJOINT_CLEAR), P(DISJOINT_SRC), P(DISJOINT_DST), P(DISJOINT_OVER), P(DISJOINT_OVER_REVERSE), P(DISJOINT_IN), P(DISJOINT_IN_REVERSE), P(DISJOINT_OUT), P(DISJOINT_OUT_REVERSE), P(DISJOINT_ATOP), P(DISJOINT_ATOP_REVERSE), P(DISJOINT_XOR), P(CONJOINT_CLEAR), P(CONJOINT_SRC), P(CONJOINT_DST), P(CONJOINT_OVER), P(CONJOINT_OVER_REVERSE), P(CONJOINT_IN), P(CONJOINT_IN_REVERSE), P(CONJOINT_OUT), P(CONJOINT_OUT_REVERSE), P(CONJOINT_ATOP), P(CONJOINT_ATOP_REVERSE), P(CONJOINT_XOR), #undef P }; static double calc_op (pixman_op_t op, double src, double dst, double srca, double dsta) { #define mult_chan(src, dst, Fa, Fb) MIN ((src) * (Fa) + (dst) * (Fb), 1.0) double Fa, Fb; switch (op) { case PIXMAN_OP_CLEAR: case PIXMAN_OP_DISJOINT_CLEAR: case PIXMAN_OP_CONJOINT_CLEAR: return mult_chan (src, dst, 0.0, 0.0); case PIXMAN_OP_SRC: case PIXMAN_OP_DISJOINT_SRC: case PIXMAN_OP_CONJOINT_SRC: return mult_chan (src, dst, 1.0, 0.0); case PIXMAN_OP_DST: case PIXMAN_OP_DISJOINT_DST: case PIXMAN_OP_CONJOINT_DST: return mult_chan (src, dst, 0.0, 1.0); case PIXMAN_OP_OVER: return mult_chan (src, dst, 1.0, 1.0 - srca); case PIXMAN_OP_OVER_REVERSE: return mult_chan (src, dst, 1.0 - dsta, 1.0); case PIXMAN_OP_IN: return mult_chan (src, dst, dsta, 0.0); case PIXMAN_OP_IN_REVERSE: return mult_chan (src, dst, 0.0, srca); case PIXMAN_OP_OUT: return mult_chan (src, dst, 1.0 - dsta, 0.0); case PIXMAN_OP_OUT_REVERSE: return mult_chan (src, dst, 0.0, 1.0 - srca); case PIXMAN_OP_ATOP: return mult_chan (src, dst, dsta, 1.0 - srca); case PIXMAN_OP_ATOP_REVERSE: return mult_chan (src, dst, 1.0 - dsta, srca); case PIXMAN_OP_XOR: return mult_chan (src, dst, 1.0 - dsta, 1.0 - srca); case PIXMAN_OP_ADD: return mult_chan (src, dst, 1.0, 1.0); case PIXMAN_OP_SATURATE: case PIXMAN_OP_DISJOINT_OVER_REVERSE: if (srca == 0.0) Fa = 1.0; else Fa = MIN (1.0, (1.0 - dsta) / srca); return mult_chan (src, dst, Fa, 1.0); case PIXMAN_OP_DISJOINT_OVER: if (dsta == 0.0) Fb = 1.0; else Fb = MIN (1.0, (1.0 - srca) / dsta); return mult_chan (src, dst, 1.0, Fb); case PIXMAN_OP_DISJOINT_IN: if (srca == 0.0) Fa = 0.0; else Fa = MAX (0.0, 1.0 - (1.0 - dsta) / srca); return mult_chan (src, dst, Fa, 0.0); case PIXMAN_OP_DISJOINT_IN_REVERSE: if (dsta == 0.0) Fb = 0.0; else Fb = MAX (0.0, 1.0 - (1.0 - srca) / dsta); return mult_chan (src, dst, 0.0, Fb); case PIXMAN_OP_DISJOINT_OUT: if (srca == 0.0) Fa = 1.0; else Fa = MIN (1.0, (1.0 - dsta) / srca); return mult_chan (src, dst, Fa, 0.0); case PIXMAN_OP_DISJOINT_OUT_REVERSE: if (dsta == 0.0) Fb = 1.0; else Fb = MIN (1.0, (1.0 - srca) / dsta); return mult_chan (src, dst, 0.0, Fb); case PIXMAN_OP_DISJOINT_ATOP: if (srca == 0.0) Fa = 0.0; else Fa = MAX (0.0, 1.0 - (1.0 - dsta) / srca); if (dsta == 0.0) Fb = 1.0; else Fb = MIN (1.0, (1.0 - srca) / dsta); return mult_chan (src, dst, Fa, Fb); case PIXMAN_OP_DISJOINT_ATOP_REVERSE: if (srca == 0.0) Fa = 1.0; else Fa = MIN (1.0, (1.0 - dsta) / srca); if (dsta == 0.0) Fb = 0.0; else Fb = MAX (0.0, 1.0 - (1.0 - srca) / dsta); return mult_chan (src, dst, Fa, Fb); case PIXMAN_OP_DISJOINT_XOR: if (srca == 0.0) Fa = 1.0; else Fa = MIN (1.0, (1.0 - dsta) / srca); if (dsta == 0.0) Fb = 1.0; else Fb = MIN (1.0, (1.0 - srca) / dsta); return mult_chan (src, dst, Fa, Fb); case PIXMAN_OP_CONJOINT_OVER: if (dsta == 0.0) Fb = 0.0; else Fb = MAX (0.0, 1.0 - srca / dsta); return mult_chan (src, dst, 1.0, Fb); case PIXMAN_OP_CONJOINT_OVER_REVERSE: if (srca == 0.0) Fa = 0.0; else Fa = MAX (0.0, 1.0 - dsta / srca); return mult_chan (src, dst, Fa, 1.0); case PIXMAN_OP_CONJOINT_IN: if (srca == 0.0) Fa = 1.0; else Fa = MIN (1.0, dsta / srca); return mult_chan (src, dst, Fa, 0.0); case PIXMAN_OP_CONJOINT_IN_REVERSE: if (dsta == 0.0) Fb = 1.0; else Fb = MIN (1.0, srca / dsta); return mult_chan (src, dst, 0.0, Fb); case PIXMAN_OP_CONJOINT_OUT: if (srca == 0.0) Fa = 0.0; else Fa = MAX (0.0, 1.0 - dsta / srca); return mult_chan (src, dst, Fa, 0.0); case PIXMAN_OP_CONJOINT_OUT_REVERSE: if (dsta == 0.0) Fb = 0.0; else Fb = MAX (0.0, 1.0 - srca / dsta); return mult_chan (src, dst, 0.0, Fb); case PIXMAN_OP_CONJOINT_ATOP: if (srca == 0.0) Fa = 1.0; else Fa = MIN (1.0, dsta / srca); if (dsta == 0.0) Fb = 0.0; else Fb = MAX (0.0, 1.0 - srca / dsta); return mult_chan (src, dst, Fa, Fb); case PIXMAN_OP_CONJOINT_ATOP_REVERSE: if (srca == 0.0) Fa = 0.0; else Fa = MAX (0.0, 1.0 - dsta / srca); if (dsta == 0.0) Fb = 1.0; else Fb = MIN (1.0, srca / dsta); return mult_chan (src, dst, Fa, Fb); case PIXMAN_OP_CONJOINT_XOR: if (srca == 0.0) Fa = 0.0; else Fa = MAX (0.0, 1.0 - dsta / srca); if (dsta == 0.0) Fb = 0.0; else Fb = MAX (0.0, 1.0 - srca / dsta); return mult_chan (src, dst, Fa, Fb); case PIXMAN_OP_MULTIPLY: case PIXMAN_OP_SCREEN: case PIXMAN_OP_OVERLAY: case PIXMAN_OP_DARKEN: case PIXMAN_OP_LIGHTEN: case PIXMAN_OP_COLOR_DODGE: case PIXMAN_OP_COLOR_BURN: case PIXMAN_OP_HARD_LIGHT: case PIXMAN_OP_SOFT_LIGHT: case PIXMAN_OP_DIFFERENCE: case PIXMAN_OP_EXCLUSION: case PIXMAN_OP_HSL_HUE: case PIXMAN_OP_HSL_SATURATION: case PIXMAN_OP_HSL_COLOR: case PIXMAN_OP_HSL_LUMINOSITY: default: abort(); return 0; /* silence MSVC */ } #undef mult_chan } static void do_composite (pixman_op_t op, const color_t *src, const color_t *mask, const color_t *dst, color_t *result, pixman_bool_t component_alpha) { color_t srcval, srcalpha; if (mask == NULL) { srcval = *src; srcalpha.r = src->a; srcalpha.g = src->a; srcalpha.b = src->a; srcalpha.a = src->a; } else if (component_alpha) { srcval.r = src->r * mask->r; srcval.g = src->g * mask->g; srcval.b = src->b * mask->b; srcval.a = src->a * mask->a; srcalpha.r = src->a * mask->r; srcalpha.g = src->a * mask->g; srcalpha.b = src->a * mask->b; srcalpha.a = src->a * mask->a; } else { srcval.r = src->r * mask->a; srcval.g = src->g * mask->a; srcval.b = src->b * mask->a; srcval.a = src->a * mask->a; srcalpha.r = src->a * mask->a; srcalpha.g = src->a * mask->a; srcalpha.b = src->a * mask->a; srcalpha.a = src->a * mask->a; } result->r = calc_op (op, srcval.r, dst->r, srcalpha.r, dst->a); result->g = calc_op (op, srcval.g, dst->g, srcalpha.g, dst->a); result->b = calc_op (op, srcval.b, dst->b, srcalpha.b, dst->a); result->a = calc_op (op, srcval.a, dst->a, srcalpha.a, dst->a); } static uint32_t get_value (pixman_image_t *image) { uint32_t value = *(uint32_t *)pixman_image_get_data (image); #ifdef WORDS_BIGENDIAN { pixman_format_code_t format = pixman_image_get_format (image); value >>= 8 * sizeof(value) - PIXMAN_FORMAT_BPP (format); } #endif return value; } static char * describe_image (image_t *info, char *buf) { if (info->size) { sprintf (buf, "%s, %dx%d%s", info->format->name, info->size, info->size, info->repeat ? " R" :""); } else { sprintf (buf, "solid"); } return buf; } static char * describe_color (const color_t *color, char *buf) { sprintf (buf, "%.3f %.3f %.3f %.3f", color->r, color->g, color->b, color->a); return buf; } static pixman_bool_t composite_test (image_t *dst, const operator_t *op, image_t *src, image_t *mask, pixman_bool_t component_alpha, int testno) { color_t expected, tdst, tsrc, tmsk; pixel_checker_t checker; if (mask) { pixman_image_set_component_alpha (mask->image, component_alpha); pixman_image_composite (op->op, src->image, mask->image, dst->image, 0, 0, 0, 0, 0, 0, dst->size, dst->size); } else { pixman_image_composite (op->op, src->image, NULL, dst->image, 0, 0, 0, 0, 0, 0, dst->size, dst->size); } tdst = *dst->color; tsrc = *src->color; if (mask) { tmsk = *mask->color; } /* It turns out that by construction all source, mask etc. colors are * linear because they are made from fills, and fills are always in linear * color space. However, if they have been converted to bitmaps, we need * to simulate the sRGB approximation to pass the test cases. */ if (src->size) { if (PIXMAN_FORMAT_TYPE (src->format->format) == PIXMAN_TYPE_ARGB_SRGB) { tsrc.r = convert_linear_to_srgb (tsrc.r); tsrc.g = convert_linear_to_srgb (tsrc.g); tsrc.b = convert_linear_to_srgb (tsrc.b); round_color (src->format->format, &tsrc); tsrc.r = convert_srgb_to_linear (tsrc.r); tsrc.g = convert_srgb_to_linear (tsrc.g); tsrc.b = convert_srgb_to_linear (tsrc.b); } else { round_color (src->format->format, &tsrc); } } if (mask && mask->size) { if (PIXMAN_FORMAT_TYPE (mask->format->format) == PIXMAN_TYPE_ARGB_SRGB) { tmsk.r = convert_linear_to_srgb (tmsk.r); tmsk.g = convert_linear_to_srgb (tmsk.g); tmsk.b = convert_linear_to_srgb (tmsk.b); round_color (mask->format->format, &tmsk); tmsk.r = convert_srgb_to_linear (tmsk.r); tmsk.g = convert_srgb_to_linear (tmsk.g); tmsk.b = convert_srgb_to_linear (tmsk.b); } else { round_color (mask->format->format, &tmsk); } } if (mask) { if (component_alpha && PIXMAN_FORMAT_R (mask->format->format) == 0) { /* Ax component-alpha masks expand alpha into * all color channels. */ tmsk.r = tmsk.g = tmsk.b = tmsk.a; } } if (PIXMAN_FORMAT_TYPE (dst->format->format) == PIXMAN_TYPE_ARGB_SRGB) { tdst.r = convert_linear_to_srgb (tdst.r); tdst.g = convert_linear_to_srgb (tdst.g); tdst.b = convert_linear_to_srgb (tdst.b); round_color (dst->format->format, &tdst); tdst.r = convert_srgb_to_linear (tdst.r); tdst.g = convert_srgb_to_linear (tdst.g); tdst.b = convert_srgb_to_linear (tdst.b); } else { round_color (dst->format->format, &tdst); } do_composite (op->op, &tsrc, mask? &tmsk : NULL, &tdst, &expected, component_alpha); pixel_checker_init (&checker, dst->format->format); if (!pixel_checker_check (&checker, get_value (dst->image), &expected)) { char buf[40], buf2[40]; int a, r, g, b; uint32_t pixel; printf ("---- Test %d failed ----\n", testno); printf ("Operator: %s %s\n", op->name, component_alpha ? "CA" : ""); printf ("Source: %s\n", describe_image (src, buf)); if (mask != NULL) printf ("Mask: %s\n", describe_image (mask, buf)); printf ("Destination: %s\n\n", describe_image (dst, buf)); printf (" R G B A Rounded\n"); printf ("Source color: %s %s\n", describe_color (src->color, buf), describe_color (&tsrc, buf2)); if (mask) { printf ("Mask color: %s %s\n", describe_color (mask->color, buf), describe_color (&tmsk, buf2)); } printf ("Dest. color: %s %s\n", describe_color (dst->color, buf), describe_color (&tdst, buf2)); pixel = get_value (dst->image); printf ("Expected: %s\n", describe_color (&expected, buf)); pixel_checker_split_pixel (&checker, pixel, &a, &r, &g, &b); printf ("Got: %5d %5d %5d %5d [pixel: 0x%08x]\n", r, g, b, a, pixel); pixel_checker_get_min (&checker, &expected, &a, &r, &g, &b); printf ("Min accepted: %5d %5d %5d %5d\n", r, g, b, a); pixel_checker_get_max (&checker, &expected, &a, &r, &g, &b); printf ("Max accepted: %5d %5d %5d %5d\n", r, g, b, a); return FALSE; } return TRUE; } static void image_init (image_t *info, int color, int format, int size) { pixman_color_t fill; info->color = &colors[color]; compute_pixman_color (info->color, &fill); info->format = &formats[format]; info->size = sizes[size] & ~FLAGS; info->repeat = PIXMAN_REPEAT_NONE; if (info->size) { pixman_image_t *solid; info->image = pixman_image_create_bits (info->format->format, info->size, info->size, NULL, 0); solid = pixman_image_create_solid_fill (&fill); pixman_image_composite32 (PIXMAN_OP_SRC, solid, NULL, info->image, 0, 0, 0, 0, 0, 0, info->size, info->size); pixman_image_unref (solid); if (sizes[size] & REPEAT) { pixman_image_set_repeat (info->image, PIXMAN_REPEAT_NORMAL); info->repeat = PIXMAN_REPEAT_NORMAL; } } else { info->image = pixman_image_create_solid_fill (&fill); } } static void image_fini (image_t *info) { pixman_image_unref (info->image); } static int random_size (void) { return prng_rand_n (ARRAY_LENGTH (sizes)); } static int random_color (void) { return prng_rand_n (ARRAY_LENGTH (colors)); } static int random_format (void) { return prng_rand_n (ARRAY_LENGTH (formats)); } static pixman_bool_t run_test (uint32_t seed) { image_t src, mask, dst; const operator_t *op; int ca; int ok; prng_srand (seed); image_init (&dst, random_color(), random_format(), 1); image_init (&src, random_color(), random_format(), random_size()); image_init (&mask, random_color(), random_format(), random_size()); op = &(operators [prng_rand_n (ARRAY_LENGTH (operators))]); ca = prng_rand_n (3); switch (ca) { case 0: ok = composite_test (&dst, op, &src, NULL, FALSE, seed); break; case 1: ok = composite_test (&dst, op, &src, &mask, FALSE, seed); break; case 2: ok = composite_test (&dst, op, &src, &mask, mask.size? TRUE : FALSE, seed); break; default: ok = FALSE; break; } image_fini (&src); image_fini (&mask); image_fini (&dst); return ok; } int main (int argc, char **argv) { #define N_TESTS (8 * 1024 * 1024) int result = 0; uint32_t seed; int32_t i; if (argc > 1) { char *end; i = strtol (argv[1], &end, 0); if (end != argv[1]) { if (!run_test (i)) return 1; else return 0; } else { printf ("Usage:\n\n %s \n\n", argv[0]); return -1; } } if (getenv ("PIXMAN_RANDOMIZE_TESTS")) seed = get_random_seed(); else seed = 1; #ifdef USE_OPENMP # pragma omp parallel for default(none) shared(result, argv, seed) #endif for (i = 0; i <= N_TESTS; ++i) { if (!result && !run_test (i + seed)) { printf ("Test 0x%08X failed.\n", seed + i); result = seed + i; } } return result; }