/*--------------------------------------------------------------------*/ /*--- The leak checker. mc_leakcheck.c ---*/ /*--------------------------------------------------------------------*/ /* This file is part of MemCheck, a heavyweight Valgrind tool for detecting memory errors. Copyright (C) 2000-2009 Julian Seward jseward@acm.org This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA. The GNU General Public License is contained in the file COPYING. */ #include "pub_tool_basics.h" #include "pub_tool_vki.h" #include "pub_tool_aspacemgr.h" #include "pub_tool_execontext.h" #include "pub_tool_hashtable.h" #include "pub_tool_libcbase.h" #include "pub_tool_libcassert.h" #include "pub_tool_libcprint.h" #include "pub_tool_libcsignal.h" #include "pub_tool_machine.h" #include "pub_tool_mallocfree.h" #include "pub_tool_options.h" #include "pub_tool_signals.h" #include "pub_tool_tooliface.h" // Needed for mc_include.h #include "mc_include.h" #include // For jmp_buf /*------------------------------------------------------------*/ /*--- An overview of leak checking. ---*/ /*------------------------------------------------------------*/ // Leak-checking is a directed-graph traversal problem. The graph has // two kinds of nodes: // - root-set nodes: // - GP registers of all threads; // - valid, aligned, pointer-sized data words in valid client memory, // including stacks, but excluding words within client heap-allocated // blocks (they are excluded so that later on we can differentiate // between heap blocks that are indirectly leaked vs. directly leaked). // - heap-allocated blocks. A block is a mempool chunk or a malloc chunk // that doesn't contain a mempool chunk. Nb: the terms "blocks" and // "chunks" are used interchangeably below. // // There are two kinds of edges: // - start-pointers, i.e. pointers to the start of a block; // - interior-pointers, i.e. pointers to the interior of a block. // // We use "pointers" rather than "edges" below. // // Root set nodes only point to blocks. Blocks only point to blocks; // a block can point to itself. // // The aim is to traverse the graph and determine the status of each block. // // There are 9 distinct cases. See memcheck/docs/mc-manual.xml for details. // Presenting all nine categories to the user is probably too much. // Currently we do this: // - definitely lost: case 3 // - indirectly lost: case 4, 9 // - possibly lost: cases 5..8 // - still reachable: cases 1, 2 // // It's far from clear that this is the best possible categorisation; it's // accreted over time without any central guiding principle. /*------------------------------------------------------------*/ /*--- XXX: Thoughts for improvement. ---*/ /*------------------------------------------------------------*/ // From the user's point of view: // - If they aren't using interior-pointers, they just have to fix the // directly lost blocks, and the indirectly lost ones will be fixed as // part of that. Any possibly lost blocks will just be due to random // pointer garbage and can be ignored. // // - If they are using interior-pointers, the fact that they currently are not // being told which ones might be directly lost vs. indirectly lost makes // it hard to know where to begin. // // All this makes me wonder if new option is warranted: // --follow-interior-pointers. By default it would be off, the leak checker // wouldn't follow interior-pointers and there would only be 3 categories: // R, DL, IL. // // If turned on, then it would show 7 categories (R, DL, IL, DR/DL, IR/IL, // IR/IL/DL, IL/DL). That output is harder to understand but it's your own // damn fault for using interior-pointers... // // ---- // // Also, why are two blank lines printed between each loss record? // // ---- // // Also, --show-reachable is a bad name because it also turns on the showing // of indirectly leaked blocks(!) It would be better named --show-all or // --show-all-heap-blocks, because that's the end result. // // ---- // // Also, the VALGRIND_LEAK_CHECK and VALGRIND_QUICK_LEAK_CHECK aren't great // names. VALGRIND_FULL_LEAK_CHECK and VALGRIND_SUMMARY_LEAK_CHECK would be // better. // // ---- // // Also, VALGRIND_COUNT_LEAKS and VALGRIND_COUNT_LEAK_BLOCKS aren't great as // they combine direct leaks and indirect leaks into one. New, more precise // ones (they'll need new names) would be good. If more categories are // used, as per the --follow-interior-pointers option, they should be // updated accordingly. And they should use a struct to return the values. // // ---- // // Also, for this case: // // (4) p4 BBB ---> AAA // // BBB is definitely directly lost. AAA is definitely indirectly lost. // Here's the relevant loss records printed for a full check (each block is // 16 bytes): // // ==20397== 16 bytes in 1 blocks are indirectly lost in loss record 9 of 15 // ==20397== at 0x4C2694E: malloc (vg_replace_malloc.c:177) // ==20397== by 0x400521: mk (leak-cases.c:49) // ==20397== by 0x400578: main (leak-cases.c:72) // // ==20397== 32 (16 direct, 16 indirect) bytes in 1 blocks are definitely // lost in loss record 14 of 15 // ==20397== at 0x4C2694E: malloc (vg_replace_malloc.c:177) // ==20397== by 0x400521: mk (leak-cases.c:49) // ==20397== by 0x400580: main (leak-cases.c:72) // // The first one is fine -- it describes AAA. // // The second one is for BBB. It's correct in that 16 bytes in 1 block are // directly lost. It's also correct that 16 are indirectly lost as a result, // but it means that AAA is being counted twice in the loss records. (It's // not, thankfully, counted twice in the summary counts). Argh. // // This would be less confusing for the second one: // // ==20397== 16 bytes in 1 blocks are definitely lost in loss record 14 // of 15 (and 16 bytes in 1 block are indirectly lost as a result; they // are mentioned elsewhere (if --show-reachable=yes is given!)) // ==20397== at 0x4C2694E: malloc (vg_replace_malloc.c:177) // ==20397== by 0x400521: mk (leak-cases.c:49) // ==20397== by 0x400580: main (leak-cases.c:72) // // But ideally we'd present the loss record for the directly lost block and // then the resultant indirectly lost blocks and make it clear the // dependence. Double argh. /*------------------------------------------------------------*/ /*--- The actual algorithm. ---*/ /*------------------------------------------------------------*/ // - Find all the blocks (a.k.a. chunks) to check. Mempool chunks require // some special treatment because they can be within malloc'd blocks. // - Scan every word in the root set (GP registers and valid // non-heap memory words). // - First, we skip if it doesn't point to valid memory. // - Then, we see if it points to the start or interior of a block. If // so, we push the block onto the mark stack and mark it as having been // reached. // - Then, we process the mark stack, repeating the scanning for each block; // this can push more blocks onto the mark stack. We repeat until the // mark stack is empty. Each block is marked as definitely or possibly // reachable, depending on whether interior-pointers were required to // reach it. // - At this point we know for every block if it's reachable or not. // - We then push each unreached block onto the mark stack, using the block // number as the "clique" number. // - We process the mark stack again, this time grouping blocks into cliques // in order to facilitate the directly/indirectly lost categorisation. // - We group blocks by their ExeContexts and categorisation, and print them // if --leak-check=full. We also print summary numbers. // // A note on "cliques": // - A directly lost block is one with no pointers to it. An indirectly // lost block is one that is pointed to by a directly or indirectly lost // block. // - Each directly lost block has zero or more indirectly lost blocks // hanging off it. All these blocks together form a "clique". The // directly lost block is called the "clique leader". The clique number // is the number (in lc_chunks[]) of the clique leader. // - Actually, a directly lost block may be pointed to if it's part of a // cycle. In that case, there may be more than one choice for the clique // leader, and the choice is arbitrary. Eg. if you have A-->B and B-->A // either A or B could be the clique leader. // - Cliques cannot overlap, and will be truncated to avoid this. Eg. if we // have A-->C and B-->C, the two cliques will be {A,C} and {B}, or {A} and // {B,C} (again the choice is arbitrary). This is because we don't want // to count a block as indirectly lost more than once. // // A note on 'is_prior_definite': // - This is a boolean used in various places that indicates if the chain // up to the prior node (prior to the one being considered) is definite. // - In the clique == -1 case: // - if True it means that the prior node is a root-set node, or that the // prior node is a block which is reachable from the root-set via // start-pointers. // - if False it means that the prior node is a block that is only // reachable from the root-set via a path including at least one // interior-pointer. // - In the clique != -1 case, currently it's always True because we treat // start-pointers and interior-pointers the same for direct/indirect leak // checking. If we added a PossibleIndirectLeak state then this would // change. // Define to debug the memory-leak-detector. #define VG_DEBUG_LEAKCHECK 0 #define VG_DEBUG_CLIQUE 0 #define UMSG(args...) VG_(message)(Vg_UserMsg, ##args) /*------------------------------------------------------------*/ /*--- Getting the initial chunks, and searching them. ---*/ /*------------------------------------------------------------*/ // Compare the MC_Chunks by 'data' (i.e. the address of the block). static Int compare_MC_Chunks(void* n1, void* n2) { MC_Chunk* mc1 = *(MC_Chunk**)n1; MC_Chunk* mc2 = *(MC_Chunk**)n2; if (mc1->data < mc2->data) return -1; if (mc1->data > mc2->data) return 1; return 0; } #if VG_DEBUG_LEAKCHECK // Used to sanity-check the fast binary-search mechanism. static Int find_chunk_for_OLD ( Addr ptr, MC_Chunk** chunks, Int n_chunks ) { Int i; Addr a_lo, a_hi; PROF_EVENT(70, "find_chunk_for_OLD"); for (i = 0; i < n_chunks; i++) { PROF_EVENT(71, "find_chunk_for_OLD(loop)"); a_lo = chunks[i]->data; a_hi = ((Addr)chunks[i]->data) + chunks[i]->szB; if (a_lo <= ptr && ptr < a_hi) return i; } return -1; } #endif // Find the i such that ptr points at or inside the block described by // chunks[i]. Return -1 if none found. This assumes that chunks[] // has been sorted on the 'data' field. static Int find_chunk_for ( Addr ptr, MC_Chunk** chunks, Int n_chunks ) { Addr a_mid_lo, a_mid_hi; Int lo, mid, hi, retVal; // VG_(printf)("find chunk for %p = ", ptr); retVal = -1; lo = 0; hi = n_chunks-1; while (True) { // Invariant: current unsearched space is from lo to hi, inclusive. if (lo > hi) break; // not found mid = (lo + hi) / 2; a_mid_lo = chunks[mid]->data; a_mid_hi = chunks[mid]->data + chunks[mid]->szB; // Extent of block 'mid' is [a_mid_lo .. a_mid_hi). // Special-case zero-sized blocks - treat them as if they had // size 1. Not doing so causes them to not cover any address // range at all and so will never be identified as the target of // any pointer, which causes them to be incorrectly reported as // definitely leaked. if (chunks[mid]->szB == 0) a_mid_hi++; if (ptr < a_mid_lo) { hi = mid-1; continue; } if (ptr >= a_mid_hi) { lo = mid+1; continue; } tl_assert(ptr >= a_mid_lo && ptr < a_mid_hi); retVal = mid; break; } # if VG_DEBUG_LEAKCHECK tl_assert(retVal == find_chunk_for_OLD ( ptr, chunks, n_chunks )); # endif // VG_(printf)("%d\n", retVal); return retVal; } static MC_Chunk** find_active_chunks(UInt* pn_chunks) { // Our goal is to construct a set of chunks that includes every // mempool chunk, and every malloc region that *doesn't* contain a // mempool chunk. MC_Mempool *mp; MC_Chunk **mallocs, **chunks, *mc; UInt n_mallocs, n_chunks, m, s; Bool *malloc_chunk_holds_a_pool_chunk; // First we collect all the malloc chunks into an array and sort it. // We do this because we want to query the chunks by interior // pointers, requiring binary search. mallocs = (MC_Chunk**) VG_(HT_to_array)( MC_(malloc_list), &n_mallocs ); if (n_mallocs == 0) { tl_assert(mallocs == NULL); *pn_chunks = 0; return NULL; } VG_(ssort)(mallocs, n_mallocs, sizeof(VgHashNode*), compare_MC_Chunks); // Then we build an array containing a Bool for each malloc chunk, // indicating whether it contains any mempools. malloc_chunk_holds_a_pool_chunk = VG_(calloc)( "mc.fas.1", n_mallocs, sizeof(Bool) ); n_chunks = n_mallocs; // Then we loop over the mempool tables. For each chunk in each // pool, we set the entry in the Bool array corresponding to the // malloc chunk containing the mempool chunk. VG_(HT_ResetIter)(MC_(mempool_list)); while ( (mp = VG_(HT_Next)(MC_(mempool_list))) ) { VG_(HT_ResetIter)(mp->chunks); while ( (mc = VG_(HT_Next)(mp->chunks)) ) { // We'll need to record this chunk. n_chunks++; // Possibly invalidate the malloc holding the beginning of this chunk. m = find_chunk_for(mc->data, mallocs, n_mallocs); if (m != -1 && malloc_chunk_holds_a_pool_chunk[m] == False) { tl_assert(n_chunks > 0); n_chunks--; malloc_chunk_holds_a_pool_chunk[m] = True; } // Possibly invalidate the malloc holding the end of this chunk. if (mc->szB > 1) { m = find_chunk_for(mc->data + (mc->szB - 1), mallocs, n_mallocs); if (m != -1 && malloc_chunk_holds_a_pool_chunk[m] == False) { tl_assert(n_chunks > 0); n_chunks--; malloc_chunk_holds_a_pool_chunk[m] = True; } } } } tl_assert(n_chunks > 0); // Create final chunk array. chunks = VG_(malloc)("mc.fas.2", sizeof(VgHashNode*) * (n_chunks)); s = 0; // Copy the mempool chunks and the non-marked malloc chunks into a // combined array of chunks. VG_(HT_ResetIter)(MC_(mempool_list)); while ( (mp = VG_(HT_Next)(MC_(mempool_list))) ) { VG_(HT_ResetIter)(mp->chunks); while ( (mc = VG_(HT_Next)(mp->chunks)) ) { tl_assert(s < n_chunks); chunks[s++] = mc; } } for (m = 0; m < n_mallocs; ++m) { if (!malloc_chunk_holds_a_pool_chunk[m]) { tl_assert(s < n_chunks); chunks[s++] = mallocs[m]; } } tl_assert(s == n_chunks); // Free temporaries. VG_(free)(mallocs); VG_(free)(malloc_chunk_holds_a_pool_chunk); *pn_chunks = n_chunks; return chunks; } /*------------------------------------------------------------*/ /*--- The leak detector proper. ---*/ /*------------------------------------------------------------*/ // Holds extra info about each block during leak checking. typedef struct { UInt state:2; // Reachedness. SizeT indirect_szB : (sizeof(SizeT)*8)-2; // If Unreached, how many bytes // are unreachable from here. } LC_Extra; // An array holding pointers to every chunk we're checking. Sorted by address. static MC_Chunk** lc_chunks; // How many chunks we're dealing with. static Int lc_n_chunks; // This has the same number of entries as lc_chunks, and each entry // in lc_chunks corresponds with the entry here (ie. lc_chunks[i] and // lc_extras[i] describe the same block). static LC_Extra* lc_extras; // Records chunks that are currently being processed. Each element in the // stack is an index into lc_chunks and lc_extras. Its size is // 'lc_n_chunks' because in the worst case that's how many chunks could be // pushed onto it (actually I think the maximum is lc_n_chunks-1 but let's // be conservative). static Int* lc_markstack; // The index of the top element of the stack; -1 if the stack is empty, 0 if // the stack has one element, 1 if it has two, etc. static Int lc_markstack_top; // Keeps track of how many bytes of memory we've scanned, for printing. // (Nb: We don't keep track of how many register bytes we've scanned.) static SizeT lc_scanned_szB; SizeT MC_(bytes_leaked) = 0; SizeT MC_(bytes_indirect) = 0; SizeT MC_(bytes_dubious) = 0; SizeT MC_(bytes_reachable) = 0; SizeT MC_(bytes_suppressed) = 0; SizeT MC_(blocks_leaked) = 0; SizeT MC_(blocks_indirect) = 0; SizeT MC_(blocks_dubious) = 0; SizeT MC_(blocks_reachable) = 0; SizeT MC_(blocks_suppressed) = 0; /* TODO: GIVE THIS A PROPER HOME TODO: MERGE THIS WITH DUPLICATE IN m_main.c and coredump-elf.c. Extract from aspacem a vector of the current segment start addresses. The vector is dynamically allocated and should be freed by the caller when done. REQUIRES m_mallocfree to be running. Writes the number of addresses required into *n_acquired. */ static Addr* get_seg_starts ( /*OUT*/Int* n_acquired ) { Addr* starts; Int n_starts, r = 0; n_starts = 1; while (True) { starts = VG_(malloc)( "mc.gss.1", n_starts * sizeof(Addr) ); if (starts == NULL) break; r = VG_(am_get_segment_starts)( starts, n_starts ); if (r >= 0) break; VG_(free)(starts); n_starts *= 2; } if (starts == NULL) { *n_acquired = 0; return NULL; } *n_acquired = r; return starts; } // Determines if a pointer is to a chunk. Returns the chunk number et al // via call-by-reference. static Bool lc_is_a_chunk_ptr(Addr ptr, Int* pch_no, MC_Chunk** pch, LC_Extra** pex) { Int ch_no; MC_Chunk* ch; LC_Extra* ex; // Quick filter. if (!VG_(am_is_valid_for_client)(ptr, 1, VKI_PROT_READ)) { return False; } else { ch_no = find_chunk_for(ptr, lc_chunks, lc_n_chunks); tl_assert(ch_no >= -1 && ch_no < lc_n_chunks); if (ch_no == -1) { return False; } else { // Ok, we've found a pointer to a chunk. Get the MC_Chunk and its // LC_Extra. ch = lc_chunks[ch_no]; ex = &(lc_extras[ch_no]); tl_assert(ptr >= ch->data); tl_assert(ptr < ch->data + ch->szB + (ch->szB==0 ? 1 : 0)); if (VG_DEBUG_LEAKCHECK) VG_(printf)("ptr=%#lx -> block %d\n", ptr, ch_no); *pch_no = ch_no; *pch = ch; *pex = ex; return True; } } } // Push a chunk (well, just its index) onto the mark stack. static void lc_push(Int ch_no, MC_Chunk* ch) { if (0) { VG_(printf)("pushing %#lx-%#lx\n", ch->data, ch->data + ch->szB); } lc_markstack_top++; tl_assert(lc_markstack_top < lc_n_chunks); lc_markstack[lc_markstack_top] = ch_no; } // Return the index of the chunk on the top of the mark stack, or -1 if // there isn't one. static Bool lc_pop(Int* ret) { if (-1 == lc_markstack_top) { return False; } else { tl_assert(0 <= lc_markstack_top && lc_markstack_top < lc_n_chunks); *ret = lc_markstack[lc_markstack_top]; lc_markstack_top--; return True; } } // If 'ptr' is pointing to a heap-allocated block which hasn't been seen // before, push it onto the mark stack. static void lc_push_without_clique_if_a_chunk_ptr(Addr ptr, Bool is_prior_definite) { Int ch_no; MC_Chunk* ch; LC_Extra* ex; if ( ! lc_is_a_chunk_ptr(ptr, &ch_no, &ch, &ex) ) return; // Only push it if it hasn't been seen previously. if (ex->state == Unreached) { lc_push(ch_no, ch); } // Possibly upgrade the state, ie. one of: // - Unreached --> Possible // - Unreached --> Reachable // - Possible --> Reachable if (ptr == ch->data && is_prior_definite) { // 'ptr' points to the start of the block, and the prior node is // definite, which means that this block is definitely reachable. ex->state = Reachable; } else if (ex->state == Unreached) { // Either 'ptr' is a interior-pointer, or the prior node isn't definite, // which means that we can only mark this block as possibly reachable. ex->state = Possible; } } static void lc_push_if_a_chunk_ptr_register(Addr ptr) { lc_push_without_clique_if_a_chunk_ptr(ptr, /*is_prior_definite*/True); } // If ptr is pointing to a heap-allocated block which hasn't been seen // before, push it onto the mark stack. Clique is the index of the // clique leader. static void lc_push_with_clique_if_a_chunk_ptr(Addr ptr, Int clique) { Int ch_no; MC_Chunk* ch; LC_Extra* ex; tl_assert(0 <= clique && clique < lc_n_chunks); if ( ! lc_is_a_chunk_ptr(ptr, &ch_no, &ch, &ex) ) return; // If it's not Unreached, it's already been handled so ignore it. // If ch_no==clique, it's the clique leader, which means this is a cyclic // structure; again ignore it because it's already been handled. if (ex->state == Unreached && ch_no != clique) { // Note that, unlike reachable blocks, we currently don't distinguish // between start-pointers and interior-pointers here. We probably // should, though. ex->state = IndirectLeak; lc_push(ch_no, ch); // Add the block to the clique, and add its size to the // clique-leader's indirect size. Also, if the new block was // itself a clique leader, it isn't any more, so add its // indirect_szB to the new clique leader. if (VG_DEBUG_CLIQUE) { if (ex->indirect_szB > 0) VG_(printf)(" clique %d joining clique %d adding %lu+%lu\n", ch_no, clique, (SizeT)ch->szB, (SizeT)ex->indirect_szB); else VG_(printf)(" block %d joining clique %d adding %lu\n", ch_no, clique, (SizeT)ch->szB); } lc_extras[clique].indirect_szB += ch->szB; lc_extras[clique].indirect_szB += ex->indirect_szB; ex->indirect_szB = 0; // Shouldn't matter. } } static void lc_push_if_a_chunk_ptr(Addr ptr, Int clique, Bool is_prior_definite) { if (-1 == clique) lc_push_without_clique_if_a_chunk_ptr(ptr, is_prior_definite); else lc_push_with_clique_if_a_chunk_ptr(ptr, clique); } static jmp_buf memscan_jmpbuf; static void scan_all_valid_memory_catcher ( Int sigNo, Addr addr ) { if (0) VG_(printf)("OUCH! sig=%d addr=%#lx\n", sigNo, addr); if (sigNo == VKI_SIGSEGV || sigNo == VKI_SIGBUS) __builtin_longjmp(memscan_jmpbuf, 1); } // Scan a block of memory between [start, start+len). This range may // be bogus, inaccessable, or otherwise strange; we deal with it. For each // valid aligned word we assume it's a pointer to a chunk a push the chunk // onto the mark stack if so. static void lc_scan_memory(Addr start, SizeT len, Bool is_prior_definite, Int clique) { Addr ptr = VG_ROUNDUP(start, sizeof(Addr)); Addr end = VG_ROUNDDN(start+len, sizeof(Addr)); vki_sigset_t sigmask; if (VG_DEBUG_LEAKCHECK) VG_(printf)("scan %#lx-%#lx (%lu)\n", start, end, len); VG_(sigprocmask)(VKI_SIG_SETMASK, NULL, &sigmask); VG_(set_fault_catcher)(scan_all_valid_memory_catcher); // We might be in the middle of a page. Do a cheap check to see if // it's valid; if not, skip onto the next page. if (!VG_(am_is_valid_for_client)(ptr, sizeof(Addr), VKI_PROT_READ)) ptr = VG_PGROUNDUP(ptr+1); // First page is bad - skip it. while (ptr < end) { Addr addr; // Skip invalid chunks. if ( ! MC_(is_within_valid_secondary)(ptr) ) { ptr = VG_ROUNDUP(ptr+1, SM_SIZE); continue; } // Look to see if this page seems reasonable. if ((ptr % VKI_PAGE_SIZE) == 0) { if (!VG_(am_is_valid_for_client)(ptr, sizeof(Addr), VKI_PROT_READ)) { ptr += VKI_PAGE_SIZE; // Bad page - skip it. continue; } } if (__builtin_setjmp(memscan_jmpbuf) == 0) { if ( MC_(is_valid_aligned_word)(ptr) ) { lc_scanned_szB += sizeof(Addr); addr = *(Addr *)ptr; // If we get here, the scanned word is in valid memory. Now // let's see if its contents point to a chunk. lc_push_if_a_chunk_ptr(addr, clique, is_prior_definite); } else if (0 && VG_DEBUG_LEAKCHECK) { VG_(printf)("%#lx not valid\n", ptr); } ptr += sizeof(Addr); } else { // We need to restore the signal mask, because we were // longjmped out of a signal handler. VG_(sigprocmask)(VKI_SIG_SETMASK, &sigmask, NULL); ptr = VG_PGROUNDUP(ptr+1); // Bad page - skip it. } } VG_(sigprocmask)(VKI_SIG_SETMASK, &sigmask, NULL); VG_(set_fault_catcher)(NULL); } // Process the mark stack until empty. static void lc_process_markstack(Int clique) { Int top; Bool is_prior_definite; while (lc_pop(&top)) { tl_assert(top >= 0 && top < lc_n_chunks); // See comment about 'is_prior_definite' at the top to understand this. is_prior_definite = ( Possible != lc_extras[top].state ); lc_scan_memory(lc_chunks[top]->data, lc_chunks[top]->szB, is_prior_definite, clique); } } static void print_results(ThreadId tid, Bool is_full_check) { Int i, n_lossrecords; LossRecord* errlist; LossRecord* p; Bool is_suppressed; // Common up the lost blocks so we can print sensible error messages. n_lossrecords = 0; errlist = NULL; for (i = 0; i < lc_n_chunks; i++) { MC_Chunk* ch = lc_chunks[i]; LC_Extra* ex = &(lc_extras)[i]; for (p = errlist; p != NULL; p = p->next) { if (p->loss_mode == ex->state && VG_(eq_ExeContext) ( MC_(clo_leak_resolution), p->allocated_at, ch->where) ) { break; } } if (p != NULL) { p->num_blocks++; p->total_bytes += ch->szB; p->indirect_szB += ex->indirect_szB; } else { n_lossrecords++; p = VG_(malloc)( "mc.fr.1", sizeof(LossRecord)); p->loss_mode = ex->state; p->allocated_at = ch->where; p->total_bytes = ch->szB; p->indirect_szB = ex->indirect_szB; p->num_blocks = 1; p->next = errlist; errlist = p; } } MC_(blocks_leaked) = MC_(bytes_leaked) = 0; MC_(blocks_indirect) = MC_(bytes_indirect) = 0; MC_(blocks_dubious) = MC_(bytes_dubious) = 0; MC_(blocks_reachable) = MC_(bytes_reachable) = 0; MC_(blocks_suppressed) = MC_(bytes_suppressed) = 0; // Print out the commoned-up blocks and collect summary stats. for (i = 0; i < n_lossrecords; i++) { Bool print_record; LossRecord* p_min = NULL; SizeT n_min = ~(0x0L); for (p = errlist; p != NULL; p = p->next) { if (p->num_blocks > 0 && p->total_bytes < n_min) { n_min = p->total_bytes + p->indirect_szB; p_min = p; } } tl_assert(p_min != NULL); // Rules for printing: // - We don't show suppressed loss records ever (and that's controlled // within the error manager). // - We show non-suppressed loss records that are not "reachable" if // --leak-check=yes. // - We show all non-suppressed loss records if --leak-check=yes and // --show-reachable=yes. // // Nb: here "reachable" means Reachable *or* IndirectLeak; note that // this is different to "still reachable" used elsewhere because it // includes indirectly lost blocks! // print_record = is_full_check && ( MC_(clo_show_reachable) || Unreached == p_min->loss_mode || Possible == p_min->loss_mode ); is_suppressed = MC_(record_leak_error) ( tid, i+1, n_lossrecords, p_min, print_record ); if (is_suppressed) { MC_(blocks_suppressed) += p_min->num_blocks; MC_(bytes_suppressed) += p_min->total_bytes; } else if (Unreached == p_min->loss_mode) { MC_(blocks_leaked) += p_min->num_blocks; MC_(bytes_leaked) += p_min->total_bytes; } else if (IndirectLeak == p_min->loss_mode) { MC_(blocks_indirect) += p_min->num_blocks; MC_(bytes_indirect) += p_min->total_bytes; } else if (Possible == p_min->loss_mode) { MC_(blocks_dubious) += p_min->num_blocks; MC_(bytes_dubious) += p_min->total_bytes; } else if (Reachable == p_min->loss_mode) { MC_(blocks_reachable) += p_min->num_blocks; MC_(bytes_reachable) += p_min->total_bytes; } else { VG_(tool_panic)("unknown loss mode"); } p_min->num_blocks = 0; } if (VG_(clo_verbosity) > 0 && !VG_(clo_xml)) { UMSG(""); UMSG("LEAK SUMMARY:"); UMSG(" definitely lost: %'lu bytes in %'lu blocks.", MC_(bytes_leaked), MC_(blocks_leaked) ); UMSG(" indirectly lost: %'lu bytes in %'lu blocks.", MC_(bytes_indirect), MC_(blocks_indirect) ); UMSG(" possibly lost: %'lu bytes in %'lu blocks.", MC_(bytes_dubious), MC_(blocks_dubious) ); UMSG(" still reachable: %'lu bytes in %'lu blocks.", MC_(bytes_reachable), MC_(blocks_reachable) ); UMSG(" suppressed: %'lu bytes in %'lu blocks.", MC_(bytes_suppressed), MC_(blocks_suppressed) ); if (!is_full_check && (MC_(blocks_leaked) + MC_(blocks_indirect) + MC_(blocks_dubious) + MC_(blocks_reachable)) > 0) { UMSG("Rerun with --leak-check=full to see details of leaked memory."); } if (is_full_check && MC_(blocks_reachable) > 0 && !MC_(clo_show_reachable)) { UMSG("Reachable blocks (those to which a pointer was found) are not shown."); UMSG("To see them, rerun with: --leak-check=full --show-reachable=yes"); } } } /*------------------------------------------------------------*/ /*--- Top-level entry point. ---*/ /*------------------------------------------------------------*/ void MC_(detect_memory_leaks) ( ThreadId tid, LeakCheckMode mode ) { Int i; tl_assert(mode != LC_Off); // Get the chunks, stop if there were none. lc_chunks = find_active_chunks(&lc_n_chunks); if (lc_n_chunks == 0) { tl_assert(lc_chunks == NULL); if (VG_(clo_verbosity) >= 1 && !VG_(clo_xml)) { UMSG("All heap blocks were freed -- no leaks are possible."); } return; } // Sort the array so blocks are in ascending order in memory. VG_(ssort)(lc_chunks, lc_n_chunks, sizeof(VgHashNode*), compare_MC_Chunks); // Sanity check -- make sure they're in order. for (i = 0; i < lc_n_chunks-1; i++) { tl_assert( lc_chunks[i]->data <= lc_chunks[i+1]->data); } // Sanity check -- make sure they don't overlap. But do allow exact // duplicates. If this assertion fails, it may mean that the application // has done something stupid with VALGRIND_MALLOCLIKE_BLOCK client // requests, specifically, has made overlapping requests (which are // nonsensical). Another way to screw up is to use // VALGRIND_MALLOCLIKE_BLOCK for stack locations; again nonsensical. for (i = 0; i < lc_n_chunks-1; i++) { MC_Chunk* ch1 = lc_chunks[i]; MC_Chunk* ch2 = lc_chunks[i+1]; Bool nonsense_overlap = ! ( // Normal case - no overlap. (ch1->data + ch1->szB <= ch2->data) || // Degenerate case: exact duplicates. (ch1->data == ch2->data && ch1->szB == ch2->szB) ); if (nonsense_overlap) { UMSG("Block [0x%lx, 0x%lx) overlaps with block [0x%lx, 0x%lx)", ch1->data, (ch1->data + ch1->szB), ch2->data, (ch2->data + ch2->szB)); } tl_assert (!nonsense_overlap); } // Initialise lc_extras. lc_extras = VG_(malloc)( "mc.dml.2", lc_n_chunks * sizeof(LC_Extra) ); for (i = 0; i < lc_n_chunks; i++) { lc_extras[i].state = Unreached; lc_extras[i].indirect_szB = 0; } // Initialise lc_markstack. lc_markstack = VG_(malloc)( "mc.dml.2", lc_n_chunks * sizeof(Int) ); for (i = 0; i < lc_n_chunks; i++) { lc_markstack[i] = -1; } lc_markstack_top = -1; // Verbosity. if (VG_(clo_verbosity) > 0 && !VG_(clo_xml)) UMSG( "searching for pointers to %'d not-freed blocks.", lc_n_chunks ); // Scan the memory root-set, pushing onto the mark stack any blocks // pointed to. { Int n_seg_starts; Addr* seg_starts = get_seg_starts( &n_seg_starts ); tl_assert(seg_starts && n_seg_starts > 0); lc_scanned_szB = 0; // VG_(am_show_nsegments)( 0, "leakcheck"); for (i = 0; i < n_seg_starts; i++) { SizeT seg_size; NSegment const* seg = VG_(am_find_nsegment)( seg_starts[i] ); tl_assert(seg); if (seg->kind != SkFileC && seg->kind != SkAnonC) continue; if (!(seg->hasR && seg->hasW)) continue; if (seg->isCH) continue; // Don't poke around in device segments as this may cause // hangs. Exclude /dev/zero just in case someone allocated // memory by explicitly mapping /dev/zero. if (seg->kind == SkFileC && (VKI_S_ISCHR(seg->mode) || VKI_S_ISBLK(seg->mode))) { HChar* dev_name = VG_(am_get_filename)( (NSegment*)seg ); if (dev_name && 0 == VG_(strcmp)(dev_name, "/dev/zero")) { // Don't skip /dev/zero. } else { // Skip this device mapping. continue; } } if (0) VG_(printf)("ACCEPT %2d %#lx %#lx\n", i, seg->start, seg->end); // Scan the segment. We use -1 for the clique number, because this // is a root-set. seg_size = seg->end - seg->start + 1; if (VG_(clo_verbosity) > 2) { VG_(message)(Vg_DebugMsg, " Scanning root segment: %#lx..%#lx (%lu)", seg->start, seg->end, seg_size); } lc_scan_memory(seg->start, seg_size, /*is_prior_definite*/True, -1); } } // Scan GP registers for chunk pointers. VG_(apply_to_GP_regs)(lc_push_if_a_chunk_ptr_register); // Process the pushed blocks. After this, every block that is reachable // from the root-set has been traced. lc_process_markstack(/*clique*/-1); if (VG_(clo_verbosity) > 0 && !VG_(clo_xml)) UMSG("checked %'lu bytes.", lc_scanned_szB); // Trace all the leaked blocks to determine which are directly leaked and // which are indirectly leaked. For each Unreached block, push it onto // the mark stack, and find all the as-yet-Unreached blocks reachable // from it. These form a clique and are marked IndirectLeak, and their // size is added to the clique leader's indirect size. If one of the // found blocks was itself a clique leader (from a previous clique), then // the cliques are merged. for (i = 0; i < lc_n_chunks; i++) { MC_Chunk* ch = lc_chunks[i]; LC_Extra* ex = &(lc_extras[i]); if (VG_DEBUG_CLIQUE) VG_(printf)("cliques: %d at %#lx -> Loss state %d\n", i, ch->data, ex->state); tl_assert(lc_markstack_top == -1); if (ex->state == Unreached) { if (VG_DEBUG_CLIQUE) VG_(printf)("%d: gathering clique %#lx\n", i, ch->data); // Push this Unreached block onto the stack and process it. lc_push(i, ch); lc_process_markstack(i); tl_assert(lc_markstack_top == -1); tl_assert(ex->state == Unreached); } } print_results( tid, ( mode == LC_Full ? True : False ) ); VG_(free) ( lc_chunks ); VG_(free) ( lc_extras ); VG_(free) ( lc_markstack ); } /*--------------------------------------------------------------------*/ /*--- end ---*/ /*--------------------------------------------------------------------*/