summaryrefslogtreecommitdiff
path: root/src/nouveau/vulkan/nvk_device_memory.c
blob: 1310ae7d3b08bad344fa29e27b4fc0cebdec7861 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
#include "nvk_device_memory.h"

#include "nouveau_bo.h"

#include "nvk_device.h"
#include "nvk_image.h"
#include "nvk_physical_device.h"
#include "nv_push.h"

#include <inttypes.h>
#include <sys/mman.h>

#include "nvtypes.h"
#include "nvk_cl902d.h"

/* Supports opaque fd only */
const VkExternalMemoryProperties nvk_opaque_fd_mem_props = {
   .externalMemoryFeatures =
      VK_EXTERNAL_MEMORY_FEATURE_EXPORTABLE_BIT |
      VK_EXTERNAL_MEMORY_FEATURE_IMPORTABLE_BIT,
   .exportFromImportedHandleTypes =
      VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT,
   .compatibleHandleTypes =
      VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT,
};

/* Supports opaque fd and dma_buf. */
const VkExternalMemoryProperties nvk_dma_buf_mem_props = {
   .externalMemoryFeatures =
      VK_EXTERNAL_MEMORY_FEATURE_EXPORTABLE_BIT |
      VK_EXTERNAL_MEMORY_FEATURE_IMPORTABLE_BIT,
   .exportFromImportedHandleTypes =
      VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT |
      VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT,
   .compatibleHandleTypes =
      VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT |
      VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT,
};

static VkResult
zero_vram(struct nvk_device *dev, struct nouveau_ws_bo *bo)
{
   uint32_t push_data[256];
   struct nv_push push;
   nv_push_init(&push, push_data, ARRAY_SIZE(push_data));
   struct nv_push *p = &push;

   uint64_t addr = bo->offset;

   /* can't go higher for whatever reason */
   uint32_t pitch = 1 << 19;

   P_IMMD(p, NV902D, SET_OPERATION, V_SRCCOPY);

   P_MTHD(p, NV902D, SET_DST_FORMAT);
   P_NV902D_SET_DST_FORMAT(p, V_A8B8G8R8);
   P_NV902D_SET_DST_MEMORY_LAYOUT(p, V_PITCH);

   P_MTHD(p, NV902D, SET_DST_PITCH);
   P_NV902D_SET_DST_PITCH(p, pitch);

   P_MTHD(p, NV902D, SET_DST_OFFSET_UPPER);
   P_NV902D_SET_DST_OFFSET_UPPER(p, addr >> 32);
   P_NV902D_SET_DST_OFFSET_LOWER(p, addr & 0xffffffff);

   P_MTHD(p, NV902D, SET_RENDER_SOLID_PRIM_COLOR_FORMAT);
   P_NV902D_SET_RENDER_SOLID_PRIM_COLOR_FORMAT(p, V_A8B8G8R8);
   P_NV902D_SET_RENDER_SOLID_PRIM_COLOR(p, 0);

   uint32_t height = bo->size / pitch;
   uint32_t extra = bo->size % pitch;

   if (height > 0) {
      P_IMMD(p, NV902D, RENDER_SOLID_PRIM_MODE, V_RECTS);

      P_MTHD(p, NV902D, RENDER_SOLID_PRIM_POINT_SET_X(0));
      P_NV902D_RENDER_SOLID_PRIM_POINT_SET_X(p, 0, 0);
      P_NV902D_RENDER_SOLID_PRIM_POINT_Y(p, 0, 0);
      P_NV902D_RENDER_SOLID_PRIM_POINT_SET_X(p, 1, pitch / 4);
      P_NV902D_RENDER_SOLID_PRIM_POINT_Y(p, 1, height);
   }

   P_IMMD(p, NV902D, RENDER_SOLID_PRIM_MODE, V_RECTS);

   P_MTHD(p, NV902D, RENDER_SOLID_PRIM_POINT_SET_X(0));
   P_NV902D_RENDER_SOLID_PRIM_POINT_SET_X(p, 0, 0);
   P_NV902D_RENDER_SOLID_PRIM_POINT_Y(p, 0, height);
   P_NV902D_RENDER_SOLID_PRIM_POINT_SET_X(p, 1, extra / 4);
   P_NV902D_RENDER_SOLID_PRIM_POINT_Y(p, 1, height);

   return nvk_queue_submit_simple(&dev->queue, nv_push_dw_count(&push),
                                  push_data, 1, &bo);
}

static enum nouveau_ws_bo_flags
nvk_memory_type_flags(const VkMemoryType *type)
{
   enum nouveau_ws_bo_flags flags = 0;
   if (type->propertyFlags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT)
      flags = NOUVEAU_WS_BO_LOCAL;
   else
      flags = NOUVEAU_WS_BO_GART;

   if (type->propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT)
      flags |= NOUVEAU_WS_BO_MAP;

   return flags;
}

VKAPI_ATTR VkResult VKAPI_CALL
nvk_GetMemoryFdPropertiesKHR(VkDevice device,
                             VkExternalMemoryHandleTypeFlagBits handleType,
                             int fd,
                             VkMemoryFdPropertiesKHR *pMemoryFdProperties)
{
   VK_FROM_HANDLE(nvk_device, dev, device);
   struct nvk_physical_device *pdev = nvk_device_physical(dev);
   struct nouveau_ws_bo *bo;

   switch (handleType) {
   case VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT_KHR:
   case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT:
      bo = nouveau_ws_bo_from_dma_buf(dev->ws_dev, fd);
      if (bo == NULL)
         return vk_error(dev, VK_ERROR_INVALID_EXTERNAL_HANDLE);
      break;
   default:
      return vk_error(dev, VK_ERROR_INVALID_EXTERNAL_HANDLE);
   }

   uint32_t type_bits = 0;
   for (unsigned t = 0; t < ARRAY_SIZE(pdev->mem_types); t++) {
      const enum nouveau_ws_bo_flags flags =
         nvk_memory_type_flags(&pdev->mem_types[t]);
      if (!(flags & ~bo->flags))
         type_bits |= (1 << t);
   }

   pMemoryFdProperties->memoryTypeBits = type_bits;

   nouveau_ws_bo_destroy(bo);

   return VK_SUCCESS;
}

VkResult
nvk_allocate_memory(struct nvk_device *dev,
                    const VkMemoryAllocateInfo *pAllocateInfo,
                    const struct nvk_memory_tiling_info *tile_info,
                    const VkAllocationCallbacks *pAllocator,
                    struct nvk_device_memory **mem_out)
{
   struct nvk_physical_device *pdev = nvk_device_physical(dev);
   struct nvk_device_memory *mem;
   VkResult result = VK_SUCCESS;

   const VkImportMemoryFdInfoKHR *fd_info =
      vk_find_struct_const(pAllocateInfo->pNext, IMPORT_MEMORY_FD_INFO_KHR);

   const VkMemoryType *type =
      &pdev->mem_types[pAllocateInfo->memoryTypeIndex];
   const enum nouveau_ws_bo_flags flags = nvk_memory_type_flags(type);

   uint32_t alignment = (1ULL << 12);
   if (flags & NOUVEAU_WS_BO_LOCAL)
      alignment = (1ULL << 16);

   const uint64_t aligned_size =
      ALIGN_POT(pAllocateInfo->allocationSize, alignment);

   mem = vk_device_memory_create(&dev->vk, pAllocateInfo,
                                 pAllocator, sizeof(*mem));
   if (!mem)
      return vk_error(dev, VK_ERROR_OUT_OF_HOST_MEMORY);


   mem->map = NULL;
   if (fd_info && fd_info->handleType) {
      assert(fd_info->handleType ==
               VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
             fd_info->handleType ==
               VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);

      mem->bo = nouveau_ws_bo_from_dma_buf(dev->ws_dev, fd_info->fd);
      if (mem->bo == NULL) {
         result = vk_error(dev, VK_ERROR_INVALID_EXTERNAL_HANDLE);
         goto fail_alloc;
      }
      assert(!(flags & ~mem->bo->flags));
   } else if (tile_info) {
      mem->bo = nouveau_ws_bo_new_tiled(dev->ws_dev,
                                        pAllocateInfo->allocationSize, 0,
                                        tile_info->pte_kind,
                                        tile_info->tile_mode,
                                        flags);
      if (!mem->bo) {
         result = vk_error(dev, VK_ERROR_OUT_OF_DEVICE_MEMORY);
         goto fail_alloc;
      }
   } else {
      mem->bo = nouveau_ws_bo_new(dev->ws_dev, aligned_size, alignment, flags);
      if (!mem->bo) {
         result = vk_error(dev, VK_ERROR_OUT_OF_DEVICE_MEMORY);
         goto fail_alloc;
      }
   }

   if (dev->ws_dev->debug_flags & NVK_DEBUG_ZERO_MEMORY) {
      if (type->propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) {
         void *map = nouveau_ws_bo_map(mem->bo, NOUVEAU_WS_BO_RDWR);
         if (map == NULL) {
            result = vk_errorf(dev, VK_ERROR_OUT_OF_HOST_MEMORY,
                               "Memory map failed");
            goto fail_bo;
         }
         memset(map, 0, mem->bo->size);
         nouveau_ws_bo_unmap(mem->bo, map);
      } else {
         result = zero_vram(dev, mem->bo);
         if (result != VK_SUCCESS)
            goto fail_bo;
      }
   }

   if (fd_info && fd_info->handleType) {
      /* From the Vulkan spec:
       *
       *    "Importing memory from a file descriptor transfers ownership of
       *    the file descriptor from the application to the Vulkan
       *    implementation. The application must not perform any operations on
       *    the file descriptor after a successful import."
       *
       * If the import fails, we leave the file descriptor open.
       */
      close(fd_info->fd);
   }

   pthread_mutex_lock(&dev->mutex);
   list_addtail(&mem->link, &dev->memory_objects);
   pthread_mutex_unlock(&dev->mutex);

   *mem_out = mem;

   return VK_SUCCESS;

fail_bo:
   nouveau_ws_bo_destroy(mem->bo);
fail_alloc:
   vk_device_memory_destroy(&dev->vk, pAllocator, &mem->vk);
   return result;
}

void
nvk_free_memory(struct nvk_device *dev,
                struct nvk_device_memory *mem,
                const VkAllocationCallbacks *pAllocator)
{
   if (mem->map)
      nouveau_ws_bo_unmap(mem->bo, mem->map);

   pthread_mutex_lock(&dev->mutex);
   list_del(&mem->link);
   pthread_mutex_unlock(&dev->mutex);

   nouveau_ws_bo_destroy(mem->bo);

   vk_device_memory_destroy(&dev->vk, pAllocator, &mem->vk);
}

VKAPI_ATTR VkResult VKAPI_CALL
nvk_AllocateMemory(VkDevice device,
                   const VkMemoryAllocateInfo *pAllocateInfo,
                   const VkAllocationCallbacks *pAllocator,
                   VkDeviceMemory *pMem)
{
   VK_FROM_HANDLE(nvk_device, dev, device);
   struct nvk_device_memory *mem;
   VkResult result;

#if NVK_NEW_UAPI == 0
   const VkMemoryDedicatedAllocateInfo *dedicated_info =
      vk_find_struct_const(pAllocateInfo->pNext,
                           MEMORY_DEDICATED_ALLOCATE_INFO);
#endif

   struct nvk_memory_tiling_info *p_tile_info = NULL;

#if NVK_NEW_UAPI == 0
   struct nvk_image_plane *dedicated_image_plane = NULL;
   struct nvk_memory_tiling_info tile_info;
   if (dedicated_info && dedicated_info->image != VK_NULL_HANDLE) {
      VK_FROM_HANDLE(nvk_image, image, dedicated_info->image);
      if (image->plane_count == 1 && image->planes[0].nil.pte_kind) {
         dedicated_image_plane = &image->planes[0];
         tile_info = (struct nvk_memory_tiling_info) {
            .tile_mode = image->planes[0].nil.tile_mode,
            .pte_kind = image->planes[0].nil.pte_kind,
         };
         p_tile_info = &tile_info;
      }
   }
#endif

   result = nvk_allocate_memory(dev, pAllocateInfo, p_tile_info,
                                pAllocator, &mem);
   if (result != VK_SUCCESS)
      return result;

#if NVK_NEW_UAPI == 0
   mem->dedicated_image_plane = dedicated_image_plane;
#endif

   *pMem = nvk_device_memory_to_handle(mem);

   return VK_SUCCESS;
}

VKAPI_ATTR void VKAPI_CALL
nvk_FreeMemory(VkDevice device,
               VkDeviceMemory _mem,
               const VkAllocationCallbacks *pAllocator)
{
   VK_FROM_HANDLE(nvk_device, dev, device);
   VK_FROM_HANDLE(nvk_device_memory, mem, _mem);

   if (!mem)
      return;

   nvk_free_memory(dev, mem, pAllocator);
}

VKAPI_ATTR VkResult VKAPI_CALL
nvk_MapMemory2KHR(VkDevice device,
                  const VkMemoryMapInfoKHR *pMemoryMapInfo,
                  void **ppData)
{
   VK_FROM_HANDLE(nvk_device, dev, device);
   VK_FROM_HANDLE(nvk_device_memory, mem, pMemoryMapInfo->memory);

   if (mem == NULL) {
      *ppData = NULL;
      return VK_SUCCESS;
   }

   const VkDeviceSize offset = pMemoryMapInfo->offset;
   const VkDeviceSize size =
      vk_device_memory_range(&mem->vk, pMemoryMapInfo->offset,
                                       pMemoryMapInfo->size);

   /* From the Vulkan spec version 1.0.32 docs for MapMemory:
    *
    *  * If size is not equal to VK_WHOLE_SIZE, size must be greater than 0
    *    assert(size != 0);
    *  * If size is not equal to VK_WHOLE_SIZE, size must be less than or
    *    equal to the size of the memory minus offset
    */
   assert(size > 0);
   assert(offset + size <= mem->bo->size);

   if (size != (size_t)size) {
      return vk_errorf(dev, VK_ERROR_MEMORY_MAP_FAILED,
                       "requested size 0x%"PRIx64" does not fit in %u bits",
                       size, (unsigned)(sizeof(size_t) * 8));
   }

   /* From the Vulkan 1.2.194 spec:
    *
    *    "memory must not be currently host mapped"
    */
   if (mem->map != NULL) {
      return vk_errorf(dev, VK_ERROR_MEMORY_MAP_FAILED,
                       "Memory object already mapped.");
   }

   mem->map = nouveau_ws_bo_map(mem->bo, NOUVEAU_WS_BO_RDWR);
   if (mem->map == NULL) {
      return vk_errorf(dev, VK_ERROR_MEMORY_MAP_FAILED,
                       "Memory object couldn't be mapped.");
   }

   *ppData = mem->map + offset;

   return VK_SUCCESS;
}

VKAPI_ATTR VkResult VKAPI_CALL
nvk_UnmapMemory2KHR(VkDevice device,
                    const VkMemoryUnmapInfoKHR *pMemoryUnmapInfo)
{
   VK_FROM_HANDLE(nvk_device_memory, mem, pMemoryUnmapInfo->memory);

   if (mem == NULL)
      return VK_SUCCESS;

   nouveau_ws_bo_unmap(mem->bo, mem->map);
   mem->map = NULL;

   return VK_SUCCESS;
}

VKAPI_ATTR VkResult VKAPI_CALL
nvk_FlushMappedMemoryRanges(VkDevice device,
                            uint32_t memoryRangeCount,
                            const VkMappedMemoryRange *pMemoryRanges)
{
   return VK_SUCCESS;
}

VKAPI_ATTR VkResult VKAPI_CALL
nvk_InvalidateMappedMemoryRanges(VkDevice device,
                                 uint32_t memoryRangeCount,
                                 const VkMappedMemoryRange *pMemoryRanges)
{
   return VK_SUCCESS;
}

VKAPI_ATTR void VKAPI_CALL
nvk_GetDeviceMemoryCommitment(VkDevice device,
                              VkDeviceMemory _mem,
                              VkDeviceSize* pCommittedMemoryInBytes)
{
   VK_FROM_HANDLE(nvk_device_memory, mem, _mem);

   *pCommittedMemoryInBytes = mem->bo->size;
}

VKAPI_ATTR VkResult VKAPI_CALL
nvk_GetMemoryFdKHR(VkDevice device,
                   const VkMemoryGetFdInfoKHR *pGetFdInfo,
                   int *pFD)
{
   VK_FROM_HANDLE(nvk_device, dev, device);
   VK_FROM_HANDLE(nvk_device_memory, memory, pGetFdInfo->memory);

   switch (pGetFdInfo->handleType) {
   case VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT_KHR:
   case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT:
      if (nouveau_ws_bo_dma_buf(memory->bo, pFD))
         return vk_error(dev, VK_ERROR_TOO_MANY_OBJECTS);
      return VK_SUCCESS;
   default:
      assert(!"unsupported handle type");
      return vk_error(dev, VK_ERROR_FEATURE_NOT_PRESENT);
   }
}

VKAPI_ATTR uint64_t VKAPI_CALL
nvk_GetDeviceMemoryOpaqueCaptureAddress(
   UNUSED VkDevice device,
   const VkDeviceMemoryOpaqueCaptureAddressInfo* pInfo)
{
   VK_FROM_HANDLE(nvk_device_memory, mem, pInfo->memory);

   return mem->bo->offset;
}