
XMP TOOLKIT SDK
PROGRAMMER’S GUIDE

August 2016

Copyright © 2016 Adobe. All rights reserved.

Extensible Metadata Platform (XMP) Toolkit SDK, Programmer’s Guide.

NOTICE: All information contained herein is the property of Adobe Systems Incorporated. No part of this publication
(whether in hardcopy or electronic form) may be reproduced or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written consent of Adobe Systems Incorporated.

Adobe, the Adobe logo, InDesign, Photoshop, PostScript, and the XMP logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States and/or other countries. MS-DOS, Windows, and
Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other
countries. Apple, Macintosh, and QuickTime are trademarks of Apple Computer, Inc., registered in the United States and
other countries. UNIX is a trademark in the United States and other countries, licensed exclusively through X/Open
Company, Ltd. All other trademarks are the property of their respective owners.

This publication and the information herein is furnished AS IS, is subject to change without notice, and should not be
construed as a commitment by Adobe Systems Incorporated. Adobe Systems Incorporated assumes no responsibility or
liability for any errors or inaccuracies, makes no warranty of any kind (express, implied, or statutory) with respect to this
publication, and expressly disclaims any and all warranties of merchantability, fitness for particular purposes, and
noninfringement of third party rights.

 3

Contents

Preface . 5
About this document . 5

How this document is organized . 5
New features and changes in this release . 5
Conventions used in this document . 6

1 XMP Toolkit SDK Overview . 7
The XMP Data Model . 7

About the XMP Toolkit SDK . 7
SDK components . 8

The XMP libraries . 9
Template classes and accessing the API . 10
Multi-threading in the API . 10
Error handling . 11
Progress notifications . 11
Sample code and tools . 11

2 The XMPCore Component . 15
Reading XMP properties . 15

Basic property types . 16
Special value handling . 17
Examining XMP objects . 19

Modifying XMP data in the XMP object . 21
Creating and modifying simple properties . 21
Creating and modifying arrays . 22
Modifying and creating complex properties . 22
Modifying language alternatives . 26
Modifying dates and times . 28

Working with schemas . 29
Creating custom schemas . 29
Registering namespaces . 30
Extending schemas . 30

Iterating over metadata . 31
Creating iterators . 31
Visiting nodes . 32
Skipping nodes . 33

API summary: the XMPCore component . 34

SXMPMeta class . 35
Creating metadata objects . 35
Preparing metadata for I/O . 36
Working with namespaces . 38
Working with properties . 39
Handling error notifications . 42

: 4

Toolkit configuration . 42

SXMPIterator class . 42
Creating iterator objects . 42
Performing iterations . 43

SXMPUtils class . 43
Path composition functions . 44
Type conversion functions . 45

3 The XMPFiles Component . 46
Using XMPFiles for metadata I/O . 46

Initializing and terminating XMPFiles . 47
Accessing metadata in files . 48
File formats and open options . 49
Updating and writing file XMP . 50
Using client-managed I/O . 51

API summary: SXMPFiles class . 52
File handler configuration . 52
Creating file objects . 52
Performing file operations . 53
Accessing metadata in files . 53
Handling notifications . 54

4 Using the XMP Toolkit SDK . 55
Getting started . 55

Before you begin . 55
Building the XMP libraries . 56

Obtaining and creating XMP data . 58
Parsing XMP . 58
Combining XMP objects . 59
Serializing XMP . 61

Walkthrough 1: Opening files and reading XMP . 63
Setting up a project . 63
Creating a CMake script for a new project . 64
Creating the MyReadXMP application . 66
Adding a debugging callback . 69

Walkthrough 2: Modifying XMP . 71
Creating the MyModifyXMP application . 71
Modifying XMP properties . 71
Using RDF to create XMP . 73
Serializing the updated XMP . 74
Writing the updated XMP back to the file . 75

Walkthrough 3: Working with a custom schema . 75
Creating the MyCustomSchema application . 76
Creating a custom schema . 76
Examining the new schema . 79

A XMP Toolkit Build Reference . 80

 5

Preface

The Extensible Metadata Platform (XMP) provides a standard format for the creation, processing, and
interchange of metadata, for a wide variety of applications.

About this document
This document, the XMP Toolkit SDK Programmer’s Guide, provides guidance for programmers wishing to
work with XMP metadata using the XMP Toolkit SDK, which is provided by Adobe® as a free Software
Development Kit (SDK). This guide emphasizes tutorial material. The complete API reference is provided as
separate HTML documentation in the SDK.

The public XMP Toolkit SDK contains two components, XMPCore and XMPFiles. The SDK is available for
download (in C++ and Java implementations) from Adobe Developer’s Center. This toolkit also includes
the XMPFiles Plug-in SDK, which allows you to create plug-ins that XMPFiles can load and use to handle
additional file formats. See the companion document XMPFiles Custom File-handler Plug-in SDK.

JAVASCRIPT: A JavaScript API for both components is available through the scripting interface of
applications such as Adobe Bridge. The JavaScript API, known as XMPScript, is documented in the
JavaScript Tools Guide. This document is available as part of the ExtendScript SDK, available at Adobe
Developer’s Center (Scripting), and also with the Adobe Bridge SDK, available at Adobe Developer’s
Center (Adobe Bridge).

How this document is organized

This document has the following sections:

 Chapter 1, “XMP Toolkit SDK Overview," provides an introduction to the XMP Toolkit SDK components
and usage.

 Chapter 2, “The XMPCore Component," describes the core API, which allows you to manipulate XMP
metadata programmatically.

 Chapter 3, “The XMPFiles Component," describes the file-handler API, which allows you to read and
write XMP metadata that is embedded in files.

 Chapter 4, “Using the XMP Toolkit SDK," explains how to get started using the XMP Toolkit SDK, and
provides hands-on examples of how to perform typical metadata-handling tasks.

New features and changes in this release

CMake Upgrade

The latest XMP Toolkit supports CMake version 3.5.2. It is recommended to use this version while
creating XMP Toolkit projects using the CMake scripts provided. The provided CMake scripts have also
been restructured across different platforms to ensure better modularity.

http://adobe.com/devnet/bridge/
http://adobe.com/devnet/bridge/
http://adobe.com/devnet/scripting/
http://adobe.com/devnet/scripting/
http://adobe.com/devnet/xmp/
http://www.adobe.com/products/xmp/

: Preface About this document 6

Compiler Upgrade

The latest XMP Toolkit supports Microsoft Visual Studio 2015 for Windows, XCode 7.2.1 compiler for
Mac platform, and gcc 4.8.2 for linux.

XMPFiles on iOS

This release supports development for iOS on XMPFiles, in addition to the previously supported
platforms (Windows, Mac OS and Linux).

DOM based API's in XMPCore

XMPCore introduces new DOM based APIs to access metadata tree hierarchy. For more details, see
Addendum for the XMP Toolkit SDK Programmer’s Guide.

SVG Handler

XMPFiles now supports read/write metadata into SVG (Scalable Vector Graphics) file. The specification
exactly explains where to embed metadata into SVG. The metadata could be relative to a particular
element or whole document. But XMP is interested only in the document level metadata. Only UTF-8
encoded SVG files are currently supported. Compressed SVG files are not supported. See XMP
Specification Part 3, Storage in Files (XMPSpecificationPart3.pdf).

GIF Handler

XMPFiles now supports read/write metadata into GIF files through the GIF handler. See XMP
Specification Part 3, Image Formats (XMPSpecificationPart3.pdf)

Restructuring of XDCAM

XDCAM Handler has been restructured to support XDCAM-SAM and XDCAM-FAM as per the latest
XDCAM standards. XMP Specification Part 3, Video package formats (XMPSpecificationPart3.pdf).

Support for reconciliation of iXML TRACK_LIST

The WAVE handler has now been enhanced to support the reconciliation of iXML TRACK_LIST and its
components to get microphone data for the customers in Wave files. See XMPSpecification Part 3,
Native metadata specific to WAV (XMPSpecificationPart3.pdf).

Support for MPEG4 videos shot from Google Nexus

XMPFiles now supports video files shot using the Google Nexus through the MPEG4 handler.

Modified ImageDescription alias

Modified the alias tiff:ImageDescription for dc:description as language alternative array instead of
simple property.

Other bug fixes

Several other fixes for bugs have also been made to this SDK release.

: Preface About this document 7

Conventions used in this document

The following type styles are used for specific types of text:

Typeface Style Used for:

Monospaced bold XMP property names. For example, xmp:CreateDate

Monospaced Regular XML code and other literal values, such as value types and names in
other languages or formats

 7

1 XMP Toolkit SDK Overview

The XMP Toolkit Software Development Kit (SDK) is available for download from the Adobe Developer
Center (XMP).

The XMP Toolkit SDK provides an API for handling XMP metadata. This document supplies an overview of
the API, together with hands-on example code and usage guidance. This is a companion document to the
API reference documentation, also included in the XMP Toolkit SDK.

The XMP Data Model
The XMP Specification, available from Adobe Developer Center (XMP), provides a complete formal
specification for XMP. Before working with the XMP Toolkit SDK, you must be familiar with, at a minimum,
the XMP Data Model.

The specification has three parts:

 Part 1, Data Model, Serialization, and Core Properties covers the basic metadata representation model
that is the foundation of the XMP standard format. The Data Model prescribes how XMP metadata can
be organized; it is independent of file format or specific usage. The Serialization Model prescribes how
the Data Model is represented in XML, specifically RDF.

This document provides all the details a programmer would need to implement a metadata
manipulation system such as the XMP Toolkit SDK (which is available from Adobe).

 Part 2, Additional Properties, provides detailed property lists and descriptions for standard XMP
metadata schemas; these include general-purpose schemas such as Dublin Core, and special-purpose
schemas for Adobe applications such as Photoshop®. It also provides information on extending
existing schemas and creating new schemas.

 Part 3, Storage in Files, provides information about how serialized XMP metadata is packaged into XMP
Packets and embedded in different file formats. It includes information about how XMP relates to and
incorporates other metadata formats, and how to reconcile values that are represented in multiple
metadata formats.

About the XMP Toolkit SDK
The latest version of the XMP Toolkit SDK is available from:

http://www.adobe.com/devnet/xmp/

The extracted archive places all of the SDK contents beneath a root folder named
XMP-Toolkit-SDK-CC201607 (referred to in this document as <xmpsdk>).

http://adobe.com/devnet/xmp/
http://adobe.com/devnet/xmp/
http://adobe.com/devnet/xmp/
http://www.adobe.com/devnet/xmp/

CHAPTER 1: XMP Toolkit SDK Overview About the XMP Toolkit SDK 8

The root folder contains these subfolders:

/ At the root level:

BSD_License.txt The license agreement.
XMP-Toolkit-SDK-Overview.pdf An overview document.

build/ CMake scripts for generating the C++ version of the XMP Toolkit SDK in Mac OS,
Windows, and UNIX/Linux.

Contains the file README.txt with compilation instructions for all supported
platforms.

docs/ The three-part XMP Specification, this document, the companion document
XMPFiles Custom File-handler Plug-in SDK, and the API reference documentation
(API/index.html).

public/include/ The header files and client-side glue code used by clients of the XMP Toolkit
SDK.

samples/ Sample and tutorial projects and the necessary resources to run the sample
code.

source/ The source code that implements the XMP Toolkit SDK. This folder contains
generic source code for XMPCore, XMPFiles, and the plug-ins.

third-party/
 expat/
 zlib/
 zuid/interfaces/

Place holders for third party source files which are needed for the XMP Toolkit
SDK, including ReadMe.txt files with information on how to obtain and install
the tools. MD5 source code, needed by both components for MD5 hash
computation, is included.

XMPFilesPlugins/
 PDFHandler/

The root folder for the XMPFiles plug-in SDK, which allows you to create
metadata-handler plug-ins that XMPFiles can load and use to handle additional
file formats. This includes compiled binaries for a plug-in that handles metadata
in PDF files. To use the plug-in, you must have the correct C run-time libraries
installed; see SDK components.

For complete details of using the SDK, see the companion document XMPFiles
Custom File-handler Plug-in SDK.

tools/cmake/ Placeholder for the CMake tool that manages the build process for the XMP
Toolkit SDK for all supported platforms and compilers. Contains a ReadMe.txt
file that provides information on how to obtain and where to install this tool.

XMPCore/ The source code that implements the XMPCore library.

XMPFiles/ The source code that implements the XMPFiles library.

CHAPTER 1: XMP Toolkit SDK Overview The XMP libraries 9

SDK components

The XMP Toolkit SDK contains two libraries, XMPCore and XMPFiles. Compilation instructions for all
platforms are in the file <xmpsdk>/build/README.txt. See also “Building the XMP libraries” on page 56
and Appendix A, “XMP Toolkit Build Reference."

 Both XMPCore and XMPFiles are provided as C++ implementations with CMake scripts that generate
project files for:

 Windows 7 and above (32-bit and 64-bit), using Visual Studio 2015 (VC++ 14)

 Mac OS X 10.9 and above (64-bit), using Xcode 7.2.1, creating binaries for Intel processors.

 Linux using makefiles for the GNU C Compile (gcc) version 4.8.2.

 XMPCore and XMPFiles are also provided for iOS 7.x, as C++ implementations with CMake scripts that
generate project files for Mac OS X 10.9 and above (64-bit), using Xcode 7.2.1 and above, creating
binaries for armv7 and arm64 architectures on devices or i386 and x86-64 architectures on simulators.

Dependencies

These publicly available components and tools are also required to build the C/C++ libraries:

 CMake build tool: You must provide CMake 3.5.2. Obtain the distribution for your platform from
http://www.cmake.org/cmake/resources/software.html.

 Expat XML parser: You must provide the Expat XML parser 2.1 or higher. See
http://sourceforge.net/projects/expat/.

 ZLIB: This public compression library is required by XMPFiles to work with compressed formats such as
UCF. You must provide ZLIB 1.2.8 or higher. See http://www.zlib.net.

The XMP libraries
The XMP Toolkit SDK contains two libraries, XMPCore and XMPFiles.

 XMPCore provides the fundamental API for manipulating, serializing, and deserializing XMP data,
along with support utilities for building particular structures and for iteration. It does not deal with
files.

 XMPFiles provides an API for convenient I/O access to the main, or document level, XMP for a file. It
allows you to locate and retrieve existing metadata from a file, update file metadata, and add new
metadata to a file. It contains file handlers for individual file formats, and a packet scanner that can be
used for unknown file formats.

Typically, you will use XMPFiles to read XMP metadata from a file into an XMP object (represented by the
concrete class SXMPMeta in the XMPCore component). You will use XMPCore functions to examine and
manipulate the metadata, then use XMPFiles again to write it back into the file.

The XMPFiles Plug-in SDK allows you to extend XMPFiles by creating plug-in metadata handlers for
additional file formats. For complete details, see the companion document XMPFiles Custom File-handler
Plug-in SDK.

http://www.zlib.net
http://sourceforge.net/projects/expat/
http://www.cmake.org/cmake/resources/software.html

CHAPTER 1: XMP Toolkit SDK Overview The XMP libraries 10

The following chapters provide overviews and API summaries for the components. This section discusses
issues relevant to the Toolkit as a whole.

Template classes and accessing the API

The full client API is defined and documented in the TXMP*.hpp header files. The TXMP* classes are C++
template classes that must be instantiated with a string class such as std::string, which is used to return
text strings for property values, serialized XMP, and so on.

To allow your code to access the entire XMP API you must:

 Provide a string class such as std::string to instantiate the template classes.

 Provide access to XMPCore and XMPFiles by including the necessary defines and headers.

To do this, add the necessary define and includes directives to your source code so that all necessary code
is incorporated into the build:

#include <string>
#define XMP_INCLUDE_XMPFILES 1 //if using XMPFiles
#define TXMP_STRING_TYPE std::string
#include "XMP.hpp"

The SDK provides complete reference documentation for the template classes, but the templates must be
instantiated for use. You can read the header files (TXMPMeta.hpp and so on) for information, but do not
include them directly in your code. There is one overall header file, XMP.hpp, which is the only one that
C++ clients should include using the #include directive. Read the instructions in this file for instantiating
the template classes.

When you have done this, the API is available through the concrete classes named SXMP*; that is,
SXMPMeta, SXMPUtils, SXMPIterator, and SXMPFiles. This document refers to the SXMP* classes, which
you can instantiate and which provide static functions.

 Clients must compile XMP.incl_cpp to ensure that all client-side glue code is generated. Do this by
including it in exactly one of your source files.

 Read XMP_Const.h for detailed information about types and constants for namespace URIs and
option flags.

Multi-threading in the API

The functions in XMPCore and XMPFiles are thread safe. You must call the initialization and termination
functions in a single-threaded manner; between those calls, you can use threads freely, following a
multi-read, single-writer locking model. All locking is automatic and transparent.

After initialization, several readers can access an object concurrently, but a writer locks the object for every
thread until the operation is complete. The locking occurs automatically when a write operation is
attempted. For example, if you call SetProperty(), all other incoming read and write requests are queued
until that operation completes and the lock is released.

The SDK allows you to configure and change the XMPCore and XMPFiles locking mechanism through
conditional compilation. For example, you can choose to use a global lock instead of the multi-read/single
writer model. You can choose to use native Mac OS or Windows APIs, or even Boost for the lock
implementation. For details, see the file XMP_LibUtils.hpp in <sdkroot>/source/.

CHAPTER 1: XMP Toolkit SDK Overview The XMP libraries 11

When using the toolkit in a multi-threaded environment, you should be aware that it is the hidden internal
library object that is locked, not the client object. Multiple client objects can refer to the same internal
object. For example, if you call SetProperty() on one client object, that change appears in all
GetProperty() calls on all other client objects that refer to the same internal object.

Multiple references to the same library object are created by assignments (a = b;) which perform a shallow
copy of the client object. The Clone() method creates a deep copy of the internal library object; see
“Copying metadata” on page 36.

If you are developing an XMPFiles custom file-handler plug-in, you must ensure that your custom
implementations of Plug-in API functions are thread safe. For complete details, see the XMPFiles Custom
File-handler Plug-in SDK.

Error handling

All of the API functions throw exceptions for serious errors. The XMP toolkit provides notification for errors
arising in calls to SXMPMeta and SXMPFiles. You can choose to register error-notification callback
functions for your client, which you use to suggest an intention for recovery from the error. See “Handling
error notifications” on page 42, and API documentation for the functions declared in TXMPMeta.hpp and
TXMPFiles.hpp.

The XMP Toolkit makes a best effort at recovery and continuation using the provided suggestion, and
throws an XMP_Error exception only if recovery is not possible. The XMP_Error exception object includes
a numeric code and diagnostic string; use XMP_Error::GetId() and XMPError::GetErrorMsg() to
retrieve them.

New numeric codes may be added at any time. There are typically many possible explanations for each
numeric code; the error explanations try to be precise about the specific circumstances causing the error.
The error explanation strings are intended for debugging use only; they are not localized, and should not
be displayed to users.

Data-dump utilities also provide debugging assistance; see “Examining XMP objects” on page 19.

Progress notifications

Write and update operations for very large files can be very time consuming; see “Updating and writing
file XMP” on page 50. The Toolkit provides periodic progress-report notifications for these operations. You
can register a progress-notification callback function for your client, which you can use to report on
progress to your user or abort the operation if needed.

You can specify a time interval between consecutive callbacks. Each notification reports an estimated
fraction of the operation completed and an estimated time to finish the operation, in seconds. See API
documentation of XMP_ProgressReportProc in XMP_Const.h.

Sample code and tools

The SDK provides a set of samples that illustrate coding techniques for various tasks. In addition to the
source code for each sample, there are CMake scripts to generate the platform specific project files. These
generated project files can then be used with the platform-specific IDE to build and run the samples. All
samples offer both 32-bit and 64-bit targets. Also, all the samples link against a static version of the XMP
Toolkit libraries.

CHAPTER 1: XMP Toolkit SDK Overview The XMP libraries 12

The folder <xmpsdk>/samples/build/ contains helper scripts that use the CMake tool to generate the
project files; execute the scripts only from this folder. Detailed instructions are in the readme.txt file. To
create your project, execute the appropriate batch file, script, or makefile:

 In Windows, run GenerateSampleProjects_win.bat and choose from the option list. The project is
created in the VC11/ folder.

 In Mac OS, run GenerateSampleProjects_mac.sh and choose from the option list. The project is
created in the xcode/ folder.

 In Linux, run Makefile. The project is created in the gcc/ folder.

The source code for the samples is in <xmpsdk>/samples/source. When you build them, the compiled
code is written to <xmpsdk>/samples/target/, to a platform-specific folder with debug and release
subfolders.

These sample console applications are provided:

ReadingXMP filename Demonstrates the basic use of the XMPFiles and XMPCore components,
obtaining read-only XMP from a file and examining it through the XMP
object.

Takes one parameter, the file name. Prints results to the screen, and to an
output file named XMPDump.txt.

For a tutorial walkthrough based on this sample, see “Walkthrough 1:
Opening files and reading XMP” on page 63.

ModifyingXMP filename Demonstrates how to open a file for update, and modifying the
contained XMP before writing it back to the file.

Takes one parameter, the file name. Prints results to the screen, and to
two output files named XMP_RDF.txt and XMP_RDF_compact.txt

For a tutorial walkthrough based on this sample, see “Walkthrough 2:
Modifying XMP” on page 71.

CustomSchema Demonstrates how to work with a custom schema that has complex
properties. It shows how to access and modify properties with complex
paths using the path composition utilities from the XMP API.

Takes no parameters.

Output files are named CS_RDF.txt,NameDump.txt, and XMPDump.txt.

For a tutorial walkthrough based on this sample, see “Walkthrough 3:
Working with a custom schema” on page 75.

XMPCoreCoverage
XMPFilesCoverage

These demonstrate syntax and usage by exercising most of the API
functions of each XMP Toolkit SDK component, using a sample XMP
Packet that contains all of the different property and attribute types.

These commands take no parameters.

Output files are named XMPCoreCoverageLog.txt, and
XMPFileCoverageLog.txt.

CHAPTER 1: XMP Toolkit SDK Overview The XMP libraries 13

In addition, these command-line tools are provided:

dumpfile

dumpfile [-help | -version | [-tree|-keys|-list] | -nocomments] path]

Recursively parses the structure of the given file and prints a view of the file structure to standard output.
The tool identifies chunks, subchunks, fields, and properties (in a broad sense), and creates a tree structure
where each node contains a triple of <key, value, comment>; the comment portion is anything that is not a
value, but can still be useful for understanding or validating the content. If an XMP Packet is found, it is
identified.

This tool is not intended to extract metadata from files, or for any kind of use in production. It is a
development aid that can help you determine whether a file that cannot be read by XMPFiles is
malformed.

xmpcommand

xmpcommand [-help | -out | -safe | -smart | -scan | -compact]
[info mediafile | put xmpfile mediafile | get mediafile |
 dump mediafile]

XMPIterations Demonstrates how to use the iteration utility in the XMPCore
component to walk through property trees.

Takes no parameters; the file name
"../../../testfiles/Image1.jpg" is specified in the code.

DumpMainXMP filename Uses the XMPFiles component API to find the main XMP Packet for a data
file, serialize the XMP, and display it.

Takes one parameter, the file name.

DumpScannedXMP filename Scans a data file to find all embedded XMP Packets, without using the
XMPFiles API or smart handlers. If a packet is found, serializes the XMP
and displays it. This is not a particularly efficient scan, and is meant for
use in debugging.

Takes one parameter, the file name.

Switches

-help Prints usage information for the command.

-version Prints version information for this tool, and for the version of XMPCore to which it
is statically linked. This tool does not use XMPFiles.

-tree Shows the tree structure of the file. This is the default.

-keys Shows only the key-value nodes found in the file, as a list with no hierarchical
structure, in alphabetical order by key.

-list Shows only the key-value nodes found in the file, as a list with no hierarchical
structure, in the order of parsing.

-nocomments Does not show the comment portion of key-value nodes.

CHAPTER 1: XMP Toolkit SDK Overview The XMP libraries 14

A command-line tool for performing basic XMP actions such as get, put, and dump. Can be used for
testing and scripting automation.

Returns 0 if there are no errors. Warnings and errors are printed as part of the output, either to stdout or
the output file, not to stderr; you should check the return value before using the output.

EXAMPLES:

xmpcommand info Sample.jpg
xmpcommand get ../Sample.jpg >onlyFileOut.txt
xmpcommand -out alsoFileOut.txt get Sample.eps
xmpcommand put xmp_mySnippet.xmp Sample.jpg
xmpcommand -smart put xmp_mySnippet.xmp Sample.jpg,exename

(Note that in the last example, a smart handler would be used by default for a JPEG file, or any other
supported file type, even without the -smart switch.)

Switches

-help Prints usage information for the command, with examples.

-out outfile Writes output and logs all warnings and errors both to standard output and to the
specified output file. If you specify the output file without this switch, stdout is
not used.

-safe Updates safely, writing to a temporary file then renaming it to the original file
name. See API documentation for safeSave(kXMPFiles_UpdateSafely).

-smart Requires the use of a smart file-format handler, does no packet scanning. Use of
smart handlers is the default, if one is available.

-scan Forces packet scanning, does not use a smart file-format handler.

-compact Writes extracted XMP Packet in compact RDF-style, rather than pretty-printing
attribute value for readability (which is the default).

Actions

info mediafile Prints basic information about the file.

put xmpfile
mediafile

Injects the XMP contained in the specified XMP file into the specified media file.

get mediafile Retrieves the XMP Packet contained in the specified media file.

dump mediafile Prints the XMP Packet contained in the specified media file to standard output.
Preferred to get for testing output.

 15

2 The XMPCore Component

The XMPCore component of the XMP Toolkit SDK provides the fundamental API for manipulating and
serializing XMP data, along with support utilities for building particular structures and for iteration. It does
not deal with files.

This chapter introduces the XMPCore component and describes how it relates to the XMP Data Model.

 “Reading XMP properties” on page 15 provides a brief overview of the XMP Data Model and describes
the basic property-access and debugging capabilities of the XMPCore component.

 “Modifying XMP data in the XMP object” on page 21 discusses how to use XMPCore to modify XMP by
creating and deleting properties and modifying property values.

 “Working with schemas” on page 29 discusses how to create a new schema with a unique namespace,
and how to extend existing schemas by creating new properties.

 “Iterating over metadata” on page 31 discusses how to use the iteration utility in XMPCore to traverse
a metadata tree in an XMP object.

 “API summary: the XMPCore component” on page 34 summarizes the functions provided by the main
XMPCore classes.

For reference details of the C++ API, see the HTML documentation of the template classes, provided in the
SDK under <xmpsdk>/docs/API.

Reading XMP properties
NOTE: This provides only a brief overview of the XMP Data Model; before working with the XMP Toolkit
SDK, developers should understand the XMP Data Model, as documented in the XMP Specification Part 1,
Data Model, Serialization, and Core Properties.

XMP properties are simple or complex:

 Simple properties have literal values such as strings and Booleans

 Arrays and structures are sets of related values.

 Arrays are sets of indexed items, with each item holding a value.

 Structures are sets of named properties (fields), with each field holding a value.

Structures and arrays can contain other structures or arrays, nested to any depth. See the XMP
Specification for complete details on data types and properties.

In addition to these basic types, there is special handling for Property qualifiers and language alternatives,
and for Dates and times.

CHAPTER 2: The XMPCore Component Reading XMP properties 16

Basic property types

The SXMPMeta class provides a basic property accessor, GetProperty(), which is completely general, and
additional accessors that are specialized for specifying items in arrays and structures. Call these functions
in an instance of the SXMPMeta concrete class.

Because arrays and structures can be nested, the path to a particular item can be quite complex; the
SXMPUtils class provides utilities for constructing paths, which you can then pass to the accessors. These
helper functions are all static; call them directly from the SXMPUtils concrete class. There is no need to
create SXMPUtils objects.

Simple properties

The easiest way to access simple properties is with the function SXMPMeta::GetProperty(). Provide the
function with the namespace URI, property name and a string pointer to store the value. You can also pass
a pointer to an XMP_OptionBits structure in which to return option flags that describe the property; if you
do not want that information, the pointer can be null.

meta.GetProperty(kXMP_NS_XMP, "CreatorTool", &value, &opts);

The property name can be a general path expression to a property located somewhere other than at the
top level.

The GetProperty() function returns true if the desired property exists and the reference variable are set
accordingly. When the function returns false, indicating that the property does not exist, the reference
variables (&value and &option) are not guaranteed to contain any meaningful values. You should always
check the function’s return value to discover whether you can depend on the contents of the reference
variables:

bool result = meta.GetProperty(kXMP_NS_XMP, "CreatorTool", &value, &options);
if(result == false)

value.clear();

Arrays and structures

To access the elements of a top-level array, use SXMPMeta::GetArrayItem(). The function signature is
similar to that of GetProperty() except that you must pass the index of the desired element:

meta.GetArrayItem(kXMP_NS_DC, "creator", 1, &value, &opts);

This is a 1-based index; that is, the index for the first element is 1, not 0.

You can use CountArrayItems() to discover the number of elements in the array. Pass the namespace URI
for the array and the array name:

int numItems = meta.CountArrayItems(kXMP_NS_DC, "subject");

A special index value, the constant kXMP_ArrayLastItem, allows you to access the last element, regardless
of how many elements are present.

Structures are analogous to associative arrays as they have named fields. Structures can have their own
namespaces; to access a structure’s field you must supply the structure’s namespace URI and the field

CHAPTER 2: The XMPCore Component Reading XMP properties 17

name. Field namespaces (unlike schema namespaces) cannot be referenced using prefixes. The URI and
field name are passed separately:

... fieldNamespaceURI, "MyFieldName"...

Because arrays and structures can contain nested arrays and structures, you may need a path to access an
item or field value below the top level. In the XMP Toolkit SDK, paths are similar to, but not identical to,
those defined by the XML path language, XPath. It is highly recommended that you use the provided
utility functions to construct complex paths, rather than constructing them by hand.

Use the Compose...Path() methods in the SXMPUtils class to compose paths. These are static methods,
called on class itself. For example, to compose the path to a field in a structure:

SXMPUtils::ComposeStructFieldPath(structNamepace, "MyStruct",
fieldNamespace, "MyFieldName", &path);

This composes a path to the field ‘MyFieldName’ within the ‘MyStruct’ structure, and stores the composed
path in the path variable. You can then use this composed path to get the property value with
GetProperty().

The composition utilities are very useful for complex, multi-step cases with nested structures or arrays, or
for use with the retrieve-by-type accessor functions such as GetProperty_Int(). For example the
following retrieves a Boolean value from the ‘Flash’ structure to determine whether the flash was fired:

bool value;
string path;

//compose the path
SXMPUtils::ComposeStructFieldPath(kXMP_NS_EXIF, "Flash", kXMP_NS_EXIF,

"Fired", &path);

//pass the composed path to the accessor
meta.GetProperty_Bool(kXMP_NS_EXIF, path.c_str(), &value, NULL);

For additional detail, see “Composing paths to complex properties” on page 24.

Special value handling

The API provides helper functions for dealing with more complex values, including language alternatives
and date-times.

Property qualifiers and language alternatives

Properties themselves may have their own properties attached to them. These "properties of properties"
are known as property qualifiers. Language alternatives, called alt-text items, are a special case of qualified
properties, indicated by the qualifier xml:lang. This is an example of a qualifier identified by a name and a
namespace prefix. To retrieve the value for a property qualifier, you specify the qualifier namespace URI
and the qualifier name:

meta::GetQualifier(schemaNamespaceURI, propertyName, qualNS, qualName,
&qualVal, opts)

A language alternative array allows a text property to be chosen based on a desired language, so that the
property value can be localized for several different languages. Each item in the array has a property
qualifier named xml:lang. The value of the xml:lang qualifier is used to determine which language
should be selected.

CHAPTER 2: The XMPCore Component Reading XMP properties 18

The easiest way to access alt-text items is with the SXMPMeta::GetLocalizedText() function, which has
this signature:

bool SXMPMeta::GetLocalizedText (
XMP_StringPtr schemaNS,
XMP_StringPtr altTextName
XMP_StringPtr genericLang,
XMP_StringPtr specificLang,
tStringObj * actualLang,
tStringObj * itemValue,
XMP_OptionBits * options)

The genericLang and specificLang parameters determine how an array item is selected. Both parameters
are RFC 3066 language tags; see http://www.w3.org/International/articles/language-tags. The specific
language tag is required and is used first to try and locate the desired element within the alt-text array. The
optional generic language tag is used if there is no match for a specific language tag.

The specific language tag should consist of both primary and secondary subtags, for example "en-US".
(Case is not considered, but the secondary subtag is uppercase by convention.) The generic language tag
is simply the first part of the specific language tag. For example if the specific language tag is ‘en-US’ then
the generic language tag is ‘en’. Although the specific tag can be supplied with just a primary tag it is
recommended that the specific language tag has both primary and secondary subtags, for example:

// Providing a generic language of ‘en’ and a specific language of ‘en-US’
meta.GetLocalizedText(kXMP_NS_DC, "title", "en", "en-US", NULL, &itemValue, NULL);

Ideally both the generic and specific tags should be supplied to GetLocalizedText(), as this gives the
greatest chance of success of finding a suitable item.

The actualLang output parameter is used to store the actual language of the item that was selected, if any.
The actual language is the value of the qualifier attached to the array item, for example ‘en-US’.

An alt-text array can have a default item, which has the property qualifier value of ‘x-default’ and is known
as the ‘x-default’ item. If present, it is always the first item of the array. The following shows a debugging
dump of an alt-text property:

dc: http://purl.org/dc/elements/1.1 (0x80000000 : schema)
dc:title (0x1E00 : isLangAlt isAlt isOrdered isArray)

[1] = "An English Title" (0x50 : hasLang hasQual)
? xml:lang = "x-default" (0x20 : isQual)

[2] = "An English Title" (0x50 : hasLang hasQual)
? xml:lang = "en-US" (0x20 : isQual)

[2] = "Un Titre Francais" (0x50 : hasLang hasQual)
? xml:lang = "fr-FR" (0x20 : isQual)

You can see that the x-default qualifier is attached to the first element within the array. When
GetLocalizedText() cannot match the specific language or the generic language, it returns the
x-default item if there is one. If no item can be found, the function returns false.

To summarize, GetLocalizedText() takes the following steps:

1. Attempt to find and return an item with a qualifier that is an exact match of the specific language.

2. If no match is found, attempt to find and return a partial match from the generic language.

3. If no match is found, locate and return the item with the ‘x-default’ qualifier.

4. If no x-default item is present, return false and do not modify the output parameter.

http://www.w3.org/International/articles/language-tags

CHAPTER 2: The XMPCore Component Reading XMP properties 19

For additional detail, see “Modifying language alternatives” on page 26.

Dates and times

The XMP_DateTime class represents a date-time value. It can store times to nanoseconds, and provides
fields to handle UTC times and time-zone offsets. Utility functions help you to handle and manage dates
and times.

To retrieve a date value from metadata, use the accessor function SXMPMeta::GetProperty_Date(). This
has a similar signature to the generic accessor function GetProperty() except that you pass an explicit
XMP_DateTime pointer in which to store the retrieved date and time. If the property being accessed does
not exist, the function returns false. For example, to access the date-time value of a property named
‘MetadataDate’:

XMP_DateTime myDate;
meta.GetProperty_Date(kMP_NS_XMP, "MetadataDate", &myDate, NULL);

For additional detail, see “Modifying dates and times” on page 28.

Examining XMP objects

If you wish to view XMP data you can produce a data dump of an XMP object. This allows you to view all
properties of the XMP object. Examining XMP objects is a good way to become familiar with the XMP Data
Model, as well as aiding in debugging.

To use SXMPMeta::DumpObject() you provide a callback function, which can output the contents of the
XMP object to the console or to a file. For example, the following shows some standard properties in the
Basic XMP schema:

xmp: http://ns.adobe.com/xap/1.0/ (0x80000000 : schema)
xmp:ModifyDate = "2007-07-16T11:33:20+01:00"
xmp:CreatorTool = "Adobe Photoshop CS3 Windows"
xmp:CreateDate = "2007-07-16T11:33:20+01:00"
xmp:MetadataDate = "2007-07-24T17:05:26+01:00"

dc: http://purl.org/dc/elements/1.1 (0x80000000 : schema)
dc:title (0x1E00 : isLangAlt isAlt isOrdered isArray)

[1] = "Updated English US" (0x50 : hasLang hasQual)
? xml:lang = "x-default" (0x20 : isQual)

[2] = "Updated English US" (0x50 : hasLang hasQual)
? xml:lang = "en-US" (0x20 : isQual)

[2] = "Updated English UK" (0x50 : hasLang hasQual)
? xml:lang = "en-GB" (0x20 : isQual)

dc:description (0x1E00 : isLangAlt isAlt isOrdered isArray)
[1] = "Green Bush" (0x50 : hasLang hasQual)

? xml:lang = "x-default" (0x20 : isQual)

dc:subject (0x200 : isArray)
[1] = "XMP"
[2] = "SDK"
[3] = "Test"
[4] = "File"

dc:format = "image/jpeg"
dc:creator (0x600 : isOrdered isArray)

[1] = "Author Name"

CHAPTER 2: The XMPCore Component Reading XMP properties 20

The dump shows all schemas, prefixes and properties of an object, and the option bits that describe each
property. You can compare this format with the RDF for the same XMP, shown in “Parsing XMP” on
page 58. The following extract highlights the different data components in the data dump:

The callback function that you provide for DumpObject() must have the following signature:

XMP_Status MyCallBack(void *callerData, XMP_StringPtr buff, XMP_StringLen buffSize){
// Processing here

}

To pass your callback function to DumpObject():

meta.DumpObject(MyCallback, &callerData);

The second argument is a pointer to any data type you wish, for example a file or an output stream. The
data is passed as the first argument to your callback function. Your callback must cast it to the correct data
type. For example, the following code demonstrates how to dump an XMP object to a file:

XMP_Status MyCallBack(void *callerData, XMP_StringPtr buff, XMP_StringLen buffSize){
XMP_Status status = 0;
ofstream * outFile = static_cast<ofstream*>(callerData);
(*outFile) write(buff, buffsize);
return status;

}
// ...
std::ofstream outFile;
outFile.open("MyFile.txt", ios::out);
meta.DumpObject(MyCallBack, &outFile);
outFile.close();

This callback writes the XMP_StringPtr, passed as buff, to the file, passed in as *callerData. The callback
also accepts the length of the data buffer as an XMP_StringLen, buffSize. You should make use of this to
restrict that amount of data written each time the function is called.

Your callback must return a valid status; anything other than a no-error status causes output to be aborted.

dc: http://purl.org/dc/elements/1.1 (0x80000000 : schema)

dc:description (0x1E00 : isLangAlt isAlt isOrdered isArray)
[1] = "Green Bush" (0x50 : hasLang hasQual)

? xml:lang = "x-default" (0x20 : isQual)

dc:subject (0x200 : isArray)
[1] = "XMP"
[2] = "SDK"
[3] = "Test"
[4] = "File"

dc:format = "image/jpeg"
dc:creator (0x600 : isOrdered isArray)

[1] = "Author Name"

Schema URIprefix

simple property

option bits

CHAPTER 2: The XMPCore Component Modifying XMP data in the XMP object 21

Modifying XMP data in the XMP object
This section discusses how to use XMPCore to modify XMP properties. These techniques are illustrated
using examples from the tutorial provided with the SDK; see “Walkthrough 2: Modifying XMP” on page 71.

NOTE ON HANDLING NEWLINES IN USER INTERFACES: The way a user interface handles newlines in text values is
important to the global and cross-platform portability of XMP. When displaying text, applications should
recognize common newline characters and sequences and ensure that they display as such. One
technique is to modify the displayed text, substituting appropriate local newlines. You must take care,
however, that the stored XMP value is not modified simply as a result of display.

Typical newlines are a single ASCII linefeed (LF, U+000A), a single ASCII carriage return (CR, U+000D), or
ASCII CR-LF. Section 2.11 of the XML 1.0 specification includes other sequences as recognized newlines for
normalization purposes: U+0085, U+2028, and the pair U+000D U+0085.

It is recommended that applications store all newlines in XMP text values as ASCII linefeed.

Creating and modifying simple properties

The simplest way to create a new property or set the value of an existing property is with
SXMPMeta::SetProperty(). You provide the namespace URI, the property name, the updated value for
the property; if you are creating a new property, you must also provide option flags that describe the
property type, such as struct or array.

meta.SetProperty(kXMP_NS_XMP, "CreatorTool", "My Application Name", NULL);

If the property does not exist, it is created and assigned the given value. The automatic creation of
properties may not always be desirable; to avoid it, use DoesPropertyExist() to determine if the
property is already available:

if(meta.DoesPropertyExist(kXMP_NS_XMP, "CreatorTool"){
meta.SetProperty(kXMP_NS_XMP, "CreatorTool", "My Application Name", NULL)

}

Parameters and return values

Most of the functions in the XMP Toolkit SDK store retrieved values in buffers passed to the function
(call-by-reference). The actual return value of the function, in most cases, is simply a Boolean value that
describes the success of the operation.

When an operation is unsuccessful, the value of a variable passed in to store a retrieved value is not
guaranteed; it may be empty, or contain the prior value, or something else. Your code must not depend on
the value.

For example, this shows a common pattern for working with returned references:

SXMPMeta meta;

//some file operations here to get the metadata into the xmp object

std::string value;
XMP_OptionBits opts;

// get property if present:
bool result=meta.GetProperty(kXMP_NS_XMP, "CreatorTool", &value, &opts);

CHAPTER 2: The XMPCore Component Modifying XMP data in the XMP object 22

// if the property is not present, the operation fails
if (result==false)

// "value" could contain anything, so we explicitly set it
// with an empty string
value.clear();

// ... continute processing...

Creating and modifying arrays

Use SXMPMeta::SetArrayItem() to modify the item values in an existing array. The function signature is
similar to that of SetProperty(), with the addition of the index to the item that needs to be modified.
Array indexes are 1-based; that is, the first item is at index 1, not 0. For example this sets the value of the
first element of the ‘creator’ array:

meta.SetArrayItem(kXMP_NS_DC, "creator", 1, "Authors Name", NULL);

You can only use SetArrayItem() if the array already exists; if it does not, the function throws an
exception. To create a new array or add an item to an array, use SXMPMeta::AppendArrayItem().

To create a new array, you must supply options flags that describe the type of the array; ordered,
unordered, or language-alternative. If you do not supply the options flags, and the array does not already
exist, AppendArrayItem()throws an exception. For example:

// Will throw an exception if array does not exist
meta.AppendArrayItem(kXMP_NS_DC,"creator",0,"A Name",NULL);

If the XMP already has a property from the Dublin Core schema named ‘creator’, the array is modified; an
item is added to the array with value of ‘A Name’. However, because no options flag is supplied, if the array
does not exist, the function throws an exception and does not create a new array.

// Create the array if it does not already exist
meta.AppendArrayItem(kXMP_NS_DC,"creator",kXMP_PropArrayIsOrdered,"A Name",NULL);

Here again, if the XMP already has the property, the existing array is modified. However, because the
options flag is supplied, if the property does not exist, it is created as an ordered array.

Modifying and creating complex properties

Schemas can contain very complex properties, such as arrays nested within structures. A complex
property can be, for instance:

 A structure with nested arrays.

 A structure with nested structures.

 An array with nested structures.

 An array with nested arrays.

Each property can have an arbitrary number of nested levels. For example, a structure can have arrays as its
field values; the array items themselves could also be arrays or structures, and so on.

CHAPTER 2: The XMPCore Component Modifying XMP data in the XMP object 23

This figure shows a conceptual diagram of a complex property:

In this example, Resource.pdf has a single property named "MyProperty". The property type is a
structure which has several fields, one of which is an ordered array. The array holds items which are
themselves structures.

The debugging dump of this XMP object looks like this:

sdk: http://ns.adobe.com/xmp/sdk/ (0x80000000 : schema)
sdk:MyProperty (0x100 : isStruct)

sdk:F1 = "A Value1"
sdk:F2 (0x600 : isOrdered isArray)

[1] (0x100 : isStruct)
sdk:F4 = "A Value3"
sdk:F5 = "A Value4"

[2] (0x100 : isStruct)
sdk:F4 = "A Value5"
sdk:F5 = "A Value6"

sdk:F3 = "A Value2"

The same XMP serialized to RDF looks like this:

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
 <rdf:Description rdf:about=""

xmlns:sdk="http://ns.adobe.com/xmp/sdk/">

<sdk:MyProperty rdf:parseType="Resource">
<sdk:F1>A Value1</sdk:F1>

Resource.pdf

"A Value 1"

sdk:MyProperty

sdk:F1 sdk:F3

sdk:F2

bag

seq

"A Value 2"

"A Value 3"

sdk:F4

sdk:F5

bag

"A Value 4"

"A Value 6"

sdk:F5

sdk:F4

bag

"A Value 5"

CHAPTER 2: The XMPCore Component Modifying XMP data in the XMP object 24

<sdk:F2>
<rdf:Seq>

<rdf:li rdf:parseType="Resource">
<sdk:F4>A Value3</sdk:F4>
<sdk:F5>A Value4</sdk:F5>

</rdf:li>
<rdf:li rdf:parseType="Resource">

<sdk:F4>A Value5</sdk:F4>
<sdk:F5>A Value6</sdk:F5>

</rdf:li>
</rdf:Seq>

</sdk:F2>

<sdk:F3>A Value2</sdk:F3>
</sdk:MyProperty>

 </rdf:Description>
</rdf:RDF>

In order to create properties like this, you must provide the correct name for the property when using any
of the property-setting functions of SXMPMeta. To access deeply nested properties, such as sdk:F5, the
name alone does not point to the correct property; you must provide a path. For example:

MyProperty2/sdk:F2[last()]/sdk:F5

—or—

MyProperty2/sdk:F2[2]/sdk:F5

You should not try to compose a complex path by hand. The XMP API provides utility functions, which you
should use to compose paths to deeply nested properties.

Composing paths to complex properties

The functions in SXMPMeta such as GetProperty(), GetArrayItem(), and GetStructField() provide
easy access to top-level simple properties, items in top-level arrays, and fields of top-level structs. They are
not as convenient for more complex properties, such as fields several levels deep in a complex struct. The
SXMPUtils class provides path composition functions that help you access such complex properties.

All of the utility functions are static; that is, they are called directly from the SXMPUtils class. You never
need to instantiate the SXMPUtils class.

You can create the complex properties by composing the paths using the utility function, then setting
property values incrementally.

For example, to add a value to sdk:F4 in the complex property structure shown in the diagram above, you
would first create the MyProperty structure, using the options flag kXMP_PropValueIsArray to signify
the value type of the property.

The structure sdk:F2 contains three fields, the second of which is an ordered array. To create the array, you
would follow these steps, illustrated by the following code extract:

1. Compose a path to the second field of the structure, by using the utility function
SXMPUtils::ComposeStructFieldPath().

2. Create the array by passing the composed path to SXMPMeta::AppendArrayItem().

CHAPTER 2: The XMPCore Component Modifying XMP data in the XMP object 25

3. Compose a path to the element that has just been added, using
SXMPUtils::ComposeArrayItemPath().

4. Compose a path to the structure field named sdk:F4.

5. Set the value for the structure field sdk:F4.

string ns = "http://ns.adobe.com/xmp/sdk/";
meta.SetProperty(ns.c_str(), "MyProperty", NULL, kXMP_PropValueIsStruct);
string path;

SXMPUtils::ComposeStructFieldPath(ns.c_str(), "MyProperty",
ns.c_str(), "F2", &path);

// path is now "MyProperty2/sdk:F2"

meta.AppendArrayItem(ns.c_str(), path.c_str(),
kXMP_PropArrayIsOrdered, NULL, kXMP_PropValueIsStruct);

SXMPUtils::ComposeArrayItemPath(ns.c_str(), path.c_str(),
kXMP_ArrayLastItem, &path);

// path is now "MyProperty2/sdk:F2[last()]"

SXMPUtils::ComposeStructFieldPath(ns.c_str(), path.c_str(),
ns.c_str(), "F4", &path);

// path is now "MyProperty2/sdk:F2[last()]/sdk:F4"

meta.SetProperty(ns.c_str(), path.c_str(), "AValue3", NULL);

This illustrates the general technique; you can, of course, use different functions to achieve the same
effect. In this case, for instance, you could use the function SXMPMeta::SetStructField(), replacing the
last two lines of code with the following:

meta.SetStructField(ns.c_str(), path.c_str(),
ns.c_str(), "F4", "aValue3", NULL);

It is sometimes possible, depending on the property type, to create several nested properties at once, just
by providing a path expression. For example, to create a structure of structures, you could supply the path
and have the properties created directly. The following code adds several nested structures to a new
property:

SXMPUtils::ComposeStructFieldPath(ns.c_str(), "MyProperty", ns.c_str(),
"StructOne", &path);

SXMPUtils::ComposeStructFieldPath(ns.c_str(), path.c_str(), ns.c_str(), "
StructTwo", &path);

SXMPUtils::ComposeStructFieldPath(ns.c_str(), path.c_str(), ns.c_str(),
"StructThree", &path);

meta.SetProperty(ns.c_str(), path.c_str(), "MyValue", NULL);

The structures are not created explicitly by the path composition functions, but are added when the path
is evaluated in the SetProperty() call.

Modifying qualifiers in complex properties

Leaf properties of complex structs and arrays can have property qualifiers and text alternatives, regardless
of how deeply nested they may be. The arrays and structures themselves cannot have qualifiers; see the
XMP Specification Part 1, Data Model, Serialization, and Core Properties.

To add a qualifier to a property, you must provide the name of the qualifier and the name of the property
to which it is attached. In the case of a property within a nested structure, you must compose the path to

CHAPTER 2: The XMPCore Component Modifying XMP data in the XMP object 26

the field and then set the qualifier value. The following shows how to add a qualifier for sdk:F4 from the
example:

string path;
SXMPUtils::ComposeStructFieldPath(ns.c_str(), "MyProperty",

ns.c_str(), "F2", &path);

SXMPUtils::ComposeArrayItemPath(ns.c_str(), path.c_str(), 1, &path);
SXMPUtils::ComposeStructFieldPath(ns.c_str(), path.c_str(),

ns.c_str(), "F4", &path);

meta.SetQualifier(ns.c_str(), path.c_str(), ns.c_str(), "MyQual", "MyValue");

To set the qualifier with a binary value, compose the path using SXMPUtils::ComposeQualifierPath()
and use the appropriate mutator for setting the binary value:

SXMPUtils::ComposeStructFieldPath(ns.c_str(), "MyProperty",
ns.c_str(), "F2", &path);

SXMPUtils::ComposeArrayItemPath(ns.c_str(), path.c_str(), 1, &path);

SXMPUtils::ComposeStructFieldPath(ns.c_str(), path.c_str(),
ns.c_str(), "F4", &path);

SXMPUtils::ComposeQualifierPath(ns.c_str(), path.c_str(),
ns.c_str(), "MyBoolQual", &path);

meta.SetProperty_Bool(ns.c_str(), path.c_str(), true, NULL);

Modifying language alternatives

Use SXMPMeta::SetLocalizedText() to modify an alt-text array. The function signature is:

bool TXMPMeta< tStringObj >::SetLocalizedText (
XMP_StringPtr schemaNS,
XMP_StringPtr altTextName
XMP_StringPtr genericLang,
XMP_StringPtr specificLang,
tStringObj * itemValue,
XMP_OptionBits * options)

The specificLang and genericLang arguments determine which item in the array is modified. The result
depends on whether the array is empty and if there is an x-default item present:

 If the array is empty (that is, there are no items in the array, including an x-default item) then two items
are added to the array.

 An x-default item is created at index 1 with the value of itemValue, and with an xml:lang property
qualifier with the value of ‘x-default’.

 An item is added to the array at the first available index (in this case 2) with a value of itemValue
and with an xml:lang property qualifier with the value of specificLang.

 If the array only contains an x-default item, the x-default item is modified and a new item added to the
array.

 The x-default item value is set to itemValue and has an xml:lang qualifier with a value of
‘x-default’.

CHAPTER 2: The XMPCore Component Modifying XMP data in the XMP object 27

 An item is added to the array at the first available index (in this case 2) with a value of itemValue
and with an xml:lang property qualifier with the value of specificLang.

 If there are already several items in the array, including the x-default item:

 If an item matches specificLang, that item’s value is modified. If the matching item’s existing value
matches that of the x-default item, the x-default item is also modified.

 If an item matches the genericLang and there are no other items that match the genericLang, that
item’s value is modified. If the item’s existing value matches that of the x-default item then the
x-default item is also modified.

 If an item matches the genericLang and there are other items that match the genericLang, a new
item is created. The new item value is set to itemValue and given an xml:lang qualifier with the
value of specificLang.

If you want to always add an item to the array if it does not already exist, then do not use both the
genericLang and the specificLang arguments. If you specify only a specific language, you guarantee that a
new item is added if an exact match is not made.

Deleting language alternatives

Use SXMPMeta::DeleteLocalizedText() to delete specific language alternatives from an alt-text array.
The function signature is:

bool TXMPMeta< tStringObj >::DeleteLocalizedText (
XMP_StringPtr schemaNS,
XMP_StringPtr altTextName
XMP_StringPtr genericLang,
XMP_StringPtr specificLang)

The rules for finding the language value to delete, based on the genericLang and specificLang values,
are similar to those for SetLocalizedText().

Accessing language alternatives in complex properties

To create an alt-text array within a complex property, construct the correct path to the property, using the
SXMPUtils path composition functions. You can then use SetLocalizedText() to add items.

This code adds an alt-text array and several items to the complex structure in the example shown in
“Modifying and creating complex properties” on page 22. The new property has the name F6:

SXMPUtils::ComposeStructFieldPath(ns.c_str(), "MyProperty",
ns.c_str(), "F2", &path);

SXMPUtils::ComposeArrayItemPath(ns.c_str(), path.c_str(), 1, &path);

SXMPUtils::ComposeStructFieldPath(ns.c_str(), path.c_str(),
ns.c_str(), "F6", &path);

meta.SetLocalizedText(ns.c_str(), path.c_str(), "en", "en-US", "Color", NULL);
meta.SetLocalizedText(ns.c_str(), path.c_str(), "", "en-GB", "Colour", NULL);

There is also a utility function for composing a path to a desired item within an alt-text array based on the
value of the property qualifier. SXMPUtils::ComposeLangSelector() composes a path to a specific item,
and only that item.

CHAPTER 2: The XMPCore Component Modifying XMP data in the XMP object 28

For example, the following shows XMP containing some alt-text items:

sdk: http://ns.adobe.com/xmp/sdk/ (0x80000000 : schema)
sdk:MyProperty (0x100 : isStruct)

sdk:F1 = "A Value1"

sdk:F2 (0x600 : isOrdered isArray)
[1] (0x100 : isStruct)

sdk:F4 = "A Value3" (0x10 : hasQual)
? sdk:MyQual = "MyValue" (0x20 : isQual)
? sdk:MyBoolQual = "True" (0x20 : isQual)

sdk:F5 = "A Value4"

sdk:F6 (0x1E00 : isLangAlt isAlt isOrdered isArray)
[1] = "Color" (0x50 : hasLang hasQual)

? xml:lang = "x-default" (0x20 : isQual)
[2] = "Color" (0x50 : hasLang hasQual)

? xml:lang = "en-US" (0x20 : isQual)
[3] = "Colour" (0x50 : hasLang hasQual)

? xml:lang = "en-GB" (0x20 : isQual)
[2] (0x100 : isStruct)

sdk:F4 = "A Value5"
sdk:F5 = "A Value6"

sdk:F3 = "A Value2"

To access the GB English item and only that item, use this code:

string gbItemPath, gbItemVal;
SXMPUtils::ComposeLangSelector(ns.c_str(), path.c_str(), "en-GB", &gbItemPath);
// gbItemPath = MyProperty/sdk:F2[1]/sdk:F6[?xml:lang="en-GB"]
bool exists = meta.GetProperty(ns.c_str(), gbItemPath.c_str(), &gbItemVal, NULL);

The difference between these two function calls is subtle:

 ComposeLangSelector() returns a path that accesses a specific item, and only that item.

 The Get/SetLocalizedText() functions access the best matching item for the language parameters,
and if all else fails, return or set the x-default item.

Modifying dates and times

Use SXMPMeta::SetProperty_Date() to modify properties with date-time values. You can use the utility
functions in SXMPUtils to obtain or construct an XMP_DateTime object to represent any date and time.
For example, to apply the current date and time to a property:

XMP_DateTime updatedTime;
SXMPUtils::CurrentDateTime(&updatedTime);
meta.SetProperty_Date(kXMP_NS_XMP, "MetadataDate", updatedTime, NULL);

SXMPUtils provides a number of utility functions for examining, creating, and manipulating dates; for
example, to convert between time-zone and UTC times. The utility function
SXMPUtils::ConvertFrom_Date() converts an XMP_DateTime value into a string formatted according to
the ISO 8601 profile at http://www.w3.org/TR/NOTE-datetime. For example, 2006-04-10T16:35:34+0100.

http://www.w3.org/TR/NOTE-datetime

CHAPTER 2: The XMPCore Component Working with schemas 29

You can use SXMPUtils::CompareDateTime() to compare date-time instances; for example, if you have
several dates and want to apply the latest time to a property. This shows how to compare dates, and also
how to construct a date-time value from an array:

XMP_DateTime myDate = { 2000, 4, 8, 18, 22, 57, 0, 0, 0, 0 };
XMP_DateTime timeNow;
SXMPUtils::CurrentDateTime(&timeNow);

int result = SXMPUtils::CompareDataTime(myDate, timeNow);

if(result < 0)
// myDate is before timeNow

else if(result > NULL)
// timeNow is before myDate

else
// dates are equal

Using local time values

It is recommended that you use local times, with a time zone designator of +hh:mm or -hh:mm, instead of Z.
This promotes human readability. For example, for a file saved in Los Angeles at 10 pm on July 23, 2005, a
timestamp of 2005-07-23T22:00:00-07:00 is understandable, while 2005-07-24T05:00:00Z is
confusing.

Working with schemas
There are a range of metadata schemas available for you to take advantage of, as described in the XMP
Specification Part 2, Additional Properties. If you need to, however, you can either extend an existing schema
or create a new one.

Although you can add new properties to extend an existing schema, the standard schemas are generally
intended for specific uses and should not be altered. Although you can, technically, add a property to, say,
the Dublin Core schema, it is not recommended. If you need a specific set of properties, you should create
a new schema. For example, you might create a schema com.companyName.xmp/1.0, and properties
within that schema for itemCode, orderNumber, and so on.

Creating custom schemas

To create a schema, you define your own namespace and within that namespace you define a set of
properties. Once you have created a schema, you can extend it by adding new properties at any time; see
“Extending schemas” on page 30.

A schema must have a unique name, in order to avoid collisions with properties in other schemas. The
schema name is in the form of a URI and must comply with the XML 1.0 namespace rules, as defined at
http://www.w3.org/TR/2006/REC-xml-names-20060816/. You can also define a preferred prefix to use with
your namespace; defining a prefix is not mandatory, but it is recommended.

You will add properties to your namespace as you would to an existing schema. For your own schema, you
should also create a specification document that lists and describes all of the properties and data types. The
specification document is plain text, human readable, and does not need to be in any specialized format.
You should make it available to anyone wishing to work with your custom schema; however, it is not
necessary to publish it in the public domain.

http://www.w3.org/TR/2006/REC-xml-names-20060816/

CHAPTER 2: The XMPCore Component Working with schemas 30

Registering namespaces

To use your custom schema, you must register the namespace and prefix that you have chosen. There are
two ways to do this:

 Register the namespace explicitly using the static function SXMPMeta::RegisterNameSpace().

 Create a new XMP object from valid RDF. Unknown namespaces are registered automatically.

To register a namespace explicitly, you provide the namespace URI and a preferred prefix:

string actualPrefix
SXMPMeta::RegisterNamespace("http://ns.adobe.com/MyNamespace/",

"MyPrefix", &actualPrefix);

The prefix you pass in is a suggestion; it is not guaranteed to be registered as the prefix for the namespace.
The last argument, actualPrefix, returns the actual prefix that will be used for the registered namespace.

 If you register a new namespace with a new prefix (that is, one not yet in use), the namespace is
registered with your suggested prefix, and the function returns it in the actualPrefix buffer.

 If the prefix you supply for a new namespace is already in use, the function generates a new, unique
prefix based on the one you supplied. For example, if there is already a prefix "MyPrefix" then the
actual prefix returned is "MyPrefix_1_"; or, if "MyPrefix_1_" is already used, "MyPrefix_2_", and so on.

 If you register an existing namespace with a new prefix, the function returns the prefix that is already
registered for that namespace.

The same rules apply if you create an XMP object from an RDF stream.

Prefix collisions can occasionally occur, both at run time and when XMP is serialized and stored. You should
never depend on the suggested prefix being used, but always check for and use the actual returned prefix
when registering a namespace.

To view all of the registered namespaces and their prefixes you can create a dump using a callback
function. See “Examining XMP objects” on page 19 for details on using callbacks and debugging dumps.

Extending schemas

There are no restrictions as to what properties you can add to a namespace; however, it is recommended
that you try to keep properties consistent with those already existing in a schema.

 New properties that you add to a schema do not interfere with existing applications, as they have no
knowledge of your extensions. This also means, of course, that they cannot take advantage of them.
Your extensions are of use only to your own applications.

 You should not change existing property definitions from other schemas. This may cause existing
applications to perform unexpectedly and produce incorrect results.

To add a new property to a schema you need only create that property and set a value, even if the value is
empty. For example if you wish to add a new text property to a schema you have created, the following is
sufficient:

meta.SetProperty(myNamepaceURI, "MyNewProperty", "The property value", NULL);

CHAPTER 2: The XMPCore Component Iterating over metadata 31

Any property type can be used when extending a schema and there are is no limitation to the number of
properties that can be added. When the XMP object is written back to the resource, the new property is
also written.

As long as you have provided a unique namespace URI for your schema, new properties that you define
are guaranteed to not interfere with existing schemas or their properties, even if your new properties have
the same local name as a property defined elsewhere.

You can also define new property value types; for example, your properties can define structures and
arrays. The specification document for your schema should document all schema properties and any new
property types.

Iterating over metadata
The XMP Toolkit SDK API provides the SXMPIterator class which allows you to traverse over an XMP
object. The iterator allows you to define a starting point for the iteration and what properties should be
visited.

Creating iterators

There are several constructors available for the iterator object that provide different levels of control over
how the iteration is done. The simplest iterator allows you to traverse an entire XMP object:

SXMPIterator iter(meta);

If you do not need to traverse the entire tree, you can provide the constructor with a schema name to
control where the iterator starts. To traverse a single schema, simply specify the schema name. For
example, this iterator only visits nodes from the Dublin Core schema:

SXMPIterator iter(meta, kXMP_NS_DC);

You can further specify a property within the schema at which to start the iteration. This is particularly
convenient for complex properties that may have many nested levels of arrays and structures. This code
creates an iterator for the single property ""Keywords" in the XMP Basic schema:

SXMPIterator iter(meta, kXMP_NS_XMP, "Keywords");

Finally, you can provide option bits that control how the iteration progresses from the starting point. If, for
example, you do not want to traverse the entire subtree in a schema, you can limit the iteration to a single
level with the options kXMP_IterJustChildren:

SXMPIterator iter(meta, kXMP_NS_DC, kXMP_IterJustChildren);

This iterator visits only the immediate children of the root node, which in this case is the Dublin Core
schema. You can provide the options flag as the last parameter, following any other set of parameters (that
is, XMP object only; XMP object and schema; or XMP object, schema, and property).

A number of options flags (kXMP_Iter*) allow different kinds of control over which nodes are visited
during the iteration. You can, for example, create an iterator that visits only leaf nodes:

SXMPIterator iter(meta, kXMP_NS_DC, kXMP_IterJustLeafNodes);

This iterator visits only nodes that can have values. For example if you have a structured property with
several fields, the iterator does not visit the structure node itself, but does visit all of the structures fields.

CHAPTER 2: The XMPCore Component Iterating over metadata 32

You can combine multiple option bits with a logical OR to create the desired iterator. See “Creating iterator
objects” on page 42 for the list of available options.

Visiting nodes

To use your iterator instance, call its Next() method. The first time you call Next(), the method provides
information for the first node; each succeeding call visits the next node, until the iteration completes. The
method returns a Boolean value to indicate whether there are more nodes to visit; true if there are, and
false if the iteration is complete.

The parameters you pass to the Next() method store the details of the current node; that is, the schema
name, the property path, the property value, and the option bits that describe the property. All of the
parameters are optional; if you don’t need all of the information, you can omit or pass null for any of
them. For example, the following displays the schema name, path, and value of all properties in the Dublin
Core schema of the XMP object, but does not collect the property-type options flag:

SXMPIterator iter(meta, kXMP_NS_DC);

while(iter.Next(&schemaNS, &propPath, &propVal)){
cout << schemaNS << " " << propPath << " = " << propVal << endl;

}

The default behavior of the iterator is to return a full path to the property; however, with complex
properties you may not be interested in the full path, but only in the property name. In this case, you can
create an iterator that uses the options flag kXMP_IterJustLeafName. This affects how the path is
returned for a visited node.

For example, the following shows an RDF extract representing a complex structure:

<xmpTest:MyTopStruct rdf:parseType="Resource">
<xmpTest:MySecondStruct rdf:parseType="Resource">

<xmpTest:MyThirdStruct rdf:parseType="Resource">
<xmpTest:MyThirdStructField>Field Value 3</xmpTest:MyThirdStructField>

</xmpTest:MyThirdStruct>
<xmpTest:MySecondStructField>Field Value 2</xmpTest:MySecondStructField>
</xmpTest:MySecondStruct>
<xmpTest:MyTopStructField>Field Value 1</xmpTest:MyTopStructField>

</xmpTest:MyTopStruct>

This code creates an iterator that returns only the name of the property and not the full path for this
structure:

XMP_OptionBits opts = (kXMP_IterJustLeafNodes | kXMP_IterJustLeafName);
SXMPIterator iter(meta, kXMP_NS_SDK, "MyTopStruct", opts);

while(iter.Next(&schemaNS, &propPath, &propVal)){
cout << propPath << " = " << propVal << endl;

}

The following shows how the returned string can differ significantly depending on the options used to
create the iterator. This shows output from two different iterators for the same XMP object that visit the
same nodes, but use different output options:

CHAPTER 2: The XMPCore Component Iterating over metadata 33

In this example, only the fields with values have been visited, because the option flag
kXMP_IterJustLeafNodes was used to construct both iterators. The first set of output lines shows the
complete path for each field, which is the default behavior. The second set of output lines shows only the
property name because the option flag kXMP_IterJustLeafName was used.

Skipping nodes

The iterator object has a Skip() method that allows you to skip some or all of the remaining iterations.
The function accepts option bits that describe what should be skipped. In the following call, the option
kXMP_IterSkipSubtree skips a subtree below the current node:

iter.Skip(kXMP_IterSkipSubtree);

For example, if you want your iterator to visit each node in the XMP data tree except a particular schema
and then continue visiting other nodes in other schemas, use something like this:

SXMPIterator skipExifIter (meta); // Visit all nodes and properties

while(skipExifIter.Next(&schemaNS, &propPath, &propVal)){
if(schemaNS == kXMP_NS_EXIF){

skipExifIter.Skip(kXMP_IterSkipSubtree);

} else {
cout << schemaNS << " " << propPath << " = " << propVal << endl;

}
}

The options kXMP_IterSkipSiblings is similar, but with a subtle difference. Like
kXMP_IterSkipSubtree, it skips any subtree below the current node; however, it also skips any siblings of
the current node. To understand the effect, consider what the current node is and where it appears in the
XMP data tree:

 If the current node is a top-level node and you skip all of its siblings, the iteration is complete and no
more nodes will be visited.

 If the current node is nested some number of levels down, then other nodes higher up the tree will still
be visited.

To illustrate this, consider the metadata structure in the following illustration. When the iteration reaches
"Item 4", we want to skip the rest of the array, but go on to visit remaining nodes at a higher level.

To achieve this behavior, use code like this:

CHAPTER 2: The XMPCore Component API summary: the XMPCore component 34

XMP_OptionBits opts = kXMP_IterJustLeafNodes | kXMP_IterOmitQualifiers |
kXMP_IterJustLeafName;

SXMPIterator skipIter (meta, kXMP_NS_SDK, opts);

while(skipIter.Next(&schemaNS, &propPath, &propVal)){
if(propVal == "Item 4"){

skipIter.Skip(kXMP_IterSkipSiblings);

} else {
cout << schemaNS << " " << propPath << " = " << propVal << endl;

}
}

If "Item 4" were a complex property, rather than a simple one, this would skip any subtree below that node,
and any of that node’s remaining siblings (the rest of the items in "NestedArray").

API summary: the XMPCore component
The client view of the XMPCore API is provided through three C++ class templates:

 TXMPMeta provides the core services of the XMP Toolkit SDK. Its methods allow you to create and
delete metadata properties, and to retrieve and modify property values.

 TXMPUtils provides additional utilities layered on top of TXMPMeta.

 TXMPIterator provides methods to iterate over existing XMP metadata.

CHAPTER 2: The XMPCore Component SXMPMeta class 35

In your code, you will work with the concrete classes SXMPMeta, SXMPUtils, and SXMPIterator.

Instantiate the SXMPMeta class to represent a set of metadata. You can create an empty object and fill it
with a string of serialized XMP data that you construct, or you can read the XMP metadata from a file into
the object. Use the SXMPMeta functions to work with namespaces and properties.

 You can create your own private namespaces, but must register them before use, using
SXMPMeta::RegisterNamespace().

 Property accessor functions of various kinds allow you to retrieve and set existing property values, and
to create new properties.

 You can get and set property values as strings, or as binary types. SXMPUtils provides functions
for converting between types.

 Use SXMPMeta::Get/SetLocalizedText() with language alternative (alt-text) arrays.

 Use the path composition functions provided by SXMPUtils to construct complex paths with
nested structs or arrays. It is recommended that you not depend on specific namespace prefixes;
rather than hard-coding the prefixes for struct fields, use functions like GetStructField() and
SetStructField(), or ComposeStructFieldPath().

 Create an SXMPIterator object to operate on all or a subset of the properties in the metadata tree
contained in an SXMPMeta object.

There is an additional constant class XMP_DateTime, which is not provided as a template, but is simply
defined. See the API documentation for details.

SXMPMeta class
This class defines functions for working with namespaces and with properties, and for serializing XMP data
into RDF text. In addition, static functions available through the SXMPMeta class allow you to initialize and
terminate the Toolkit cleanly, discover the Toolkit version, set up user notification for Toolkit failures, and
write out debugging information.

 “Creating metadata objects” on page 35

 “Preparing metadata for I/O” on page 36

 “Working with namespaces” on page 38

 “Working with properties” on page 39

 “Toolkit configuration” on page 42

 “Handling error notifications” on page 42

Creating metadata objects

The default constructor creates a new empty SXMPMeta object:

SXMPMeta ();

Another form of the constructor allows you to create a new SXMPMeta object and populate it with
metadata from a buffer containing serialized RDF text.

CHAPTER 2: The XMPCore Component SXMPMeta class 36

SXMPMeta (ptrToXML, sizeOfXML);

A buffer of RDF text that you pass directly to the constructor must contain a complete XMP packet. See
“Preparing metadata for I/O” on page 36 for additional options.

Copying metadata

You can pass an existing SXMPMeta object or reference to the constructor to do a shallow copy of the
object:

 Create a new SXMPMeta object that refers to the same internal XMP object as an existing SXMPMeta
object.

 Create a new SXMPMeta object that refers to the underlying reference for an existing XMP object,
which was obtained from some other XMP object by the GetInternalRef() method. This is used to
safely pass XMP objects across DLL boundaries.

These operations increment the reference count for the object, but do not perform a deep copy. They
return a reference to the same underlying object; they do not create a new object.

To reproduce an entire metadata tree contained in an XMP object, use SXMPMeta::Clone(). The clone
function returns a new object, not a pointer to the same object. The Clone() function is easy to misuse.
The following examples show correct and incorrect usage:

CORRECT USAGE: In this example, the clone2 line shows that you do not have to use an explicit pointer. This
is good for local usage, you do not have to worry about memory leaks.

SXMPMeta * clone1 = new SXMPMeta(sourceXMP.Clone()); // This works
SXMPMeta clone2(sourceXMP.Clone()); // This works also. (Not a pointer)

INCORRECT USAGE: In this code, the assignment to clone3 creates a temporary object, initializes it with the
clone, assigns the address of the temporary to clone3, then deletes the temporary.

SXMPMeta * clone3 = &sourceXMP.Clone(); // This does not work!

Preparing metadata for I/O

To store and retrieve XMP metadata, it must first be serialized into XML text (specifically a subset of RDF).
The serialization protocol is described in XMP Specification Part 1, Data Model, Serialization, and Core
Properties. The serialized data is then wrapped in packets for embedding in files; the XMP Specification Part
3, Storage in Files, describes the structure and capabilities of these packets.

 The function SXMPMeta::SerializeToBuffer() transforms the metadata tree contained in the XMP
object into a buffer of RDF text that conforms to the serialization model (see “Serializing for output” on
page 37).

 The serialized buffer that results from the call to SXMPMeta::SerializeToBuffer(), or a serialized
buffer that you read from a file using XMPFiles::GetXMP() (see “Accessing metadata in files” on
page 53) can be reconstituted as an SXMPMeta object using SXMP::ParseFromBuffer(). You can also
parse multiple buffers of partial data into a single XMP object (see “Parsing serialized data into an XMP
object” on page 37).

CHAPTER 2: The XMPCore Component SXMPMeta class 37

These functions support serialization of metadata into RDF text that conforms to the serialization model
given in the XMP Specification Part 1, Data Model, Serialization, and Core Properties.

Serializing for output

To specify options for serialization, use a logical OR of bit-flag constants such as these:

kXMP_OmitPacketWrapper: Do not include an XML packet wrapper.
kXMP_ReadOnlyPacket: Create a read-only XML packet wapper.
kXMP_UseCompactFormat: Use a highly compact RDF syntax and layout.
kXMP_ExactPacketLength: The padding parameter provides the overall packet length. The actual
amount of padding is computed. An exception is thrown if the packet exceeds this length with no
padding.
kXMP_UseCanonicalFormat: Use a canonical form of RDF syntax and layout.

The options flags that you specify for serialization must be logically consistent; if they are not, an exception
is thrown. You cannot specify kXMP_OmitPacketWrapper along with kXMP_ReadOnlyPacket, or
kXMP_ExactPacketLength.

In addition, you can include one encoding option flag:

kXMP_EncodeUTF8: Encode as UTF-8, the default.
kXMP_EncodeUTF16Big: Encode as MSB-first (big-endian) UTF-16.
kXMP_EncodeUTF16Little: Encode as LSB-first (little-endian) UTF-16.
kXMP_EncodeUTF32Big: Encode as MSB-first (big-endian) UTF-32.
kXMP_EncodeUTF32Little: Encode as LSB-first (little-endian) UTF-32.

For an example, see “Serializing XMP” on page 61.

Parsing serialized data into an XMP object

You can obtain a buffer of serialized metadata from an existing SXMPMeta object using
SXMPMeta::SerializeToBuffer(), or from a file, using SXMPFiles::GetXMP(), or you might obtain or
construct the buffer in some other way, as long as it conforms to the serialization model given in the XMP
Specification Part 1, Data Model, Serialization, and Core Properties.

A buffer that contains a complete XMP packet can be reconstituted as an SXMPMeta object simply by
passing it to the constructor:

SXMPMeta(ptrToXML, sizeOfXML);

The length is the number of bytes, regardless of the character encoding.

SerializeToBuffer() Serializes an XMP object into a buffer as RDF that conforms to the serialization
model.

You can provide option flags that control how serialization is performed.

ParseFromBuffer() Parses RDF from one or more input buffers into an SXMPMeta object. The input
for parsing can be any valid Unicode encoding.

The buffers can be any length. The buffer boundaries need not respect XML
tokens or even Unicode characters.

CHAPTER 2: The XMPCore Component SXMPMeta class 38

This is the equivalent of creating an empty object, then calling SXMPMeta::ParseFromBuffer():

SXMPMeta meta;
meta::ParseFromBuffer(ptrToXML, sizeOfXML);

This parses a full XMP packet. You will more typically need to parse multiple buffers containing partial data
into a single SXMPMeta object. To do this, you can make multiple calls to SXMPMeta::ParseFromBuffer(),
passing the RDF in a sequence of buffers, and setting the option flag kXMP_ParseMoreBuffers for all but
the last call.

For examples, see “Parsing XMP” on page 58.

Working with namespaces

XMP uses XML namespaces for top-level properties, struct fields, and qualifiers. This is a requirement
inherited from RDF. The current specification for XML namespaces is "Namespaces in XML 1.0:"

http://www.w3.org/TR/2006/REC-xml-names-20060816/

For important details about constructing and referencing namespace names, refer to the discussion of
namespaces, prefixes, and XMP schemas in the XMP Specification Part 1, Data Model, Serialization, and Core
Properties.

XMPCore maintains a table of registered namespaces, which is initialized with a number of standard
namespaces. You can register custom namespaces, using the function
SXMPMeta::RegisterNamespace(). It is not an error if a specified namespace URI is already registered;
the function call does nothing in this case. If XMPCore encounters an unknown namespace when parsing
XML into an SXMPMeta object, it automatically registers the namespace.

The table of registered namespaces has one entry for each unique namespace URI, and one prefix for each
URI. When you explicitly register a new namespace, you can specify a suggested prefix. If the URI is not
already in the table, the suggested prefix is used only if that prefix is not already in use for some other URI.
If the suggested prefix is already in use, a derived prefix is constructed by appending a numeric suffix.

It is very important to understand that prefixes are local and scoped in the XML. The prefix is only a means
to look up the URI; the prefix itself is not considered in name comparison. Software must never depend on
the use of a specific prefix in stored XML. See “Creating custom schemas” on page 29.

When XMPCore parses XML, the stored prefix is used to look up the URI, then the URI is looked up in the
registered namespace table and added if not already there. This "active" prefix is unique within XMPCore.
XMPCore uses only the active prefix from the registered namespace table when it serializes data to XML; a
different prefix from parsed input is irrelevant.

These SXMPMeta functions manipulate namespaces:

RegisterNamespace() Registers a namespace URI and prefix.

GetNamespacePrefix() Obtains the prefix for a registered namespace URI.

GetNamespaceURI() Obtains the URI for a registered namespace prefix.

http://www.w3.org/TR/2006/REC-xml-names-20060816/

CHAPTER 2: The XMPCore Component SXMPMeta class 39

Working with properties

The first two parameters of all property access functions are the top-level namespace URI (the "schema"
namespace) and the basic name of the property being referenced. You can use the utility functions
provided by the XMPUtils class to compose path expressions to deeply nested properties.

Option constants describe the property type, which can be a simple type, a structure, or an array, as
described in the XMP Specification Part 1, Data Model, Serialization, and Core Properties.

 Simple properties, simple array items, and simple struct fields have values. Arrays and structs do not
have values. Leaf items or fields can contain values, or can be empty arrays or structs.

 There can be complex nesting of arrays, structs, and qualifiers. The SXMPUtils class offers functions
that help construct complex paths, which you can then pass to the property accessor functions.

 For properties that can have values, the values can be set and retrieved either as strings or as binary
values. The SXMPUtils class offers functions to help convert between these types.

The property accessors always use Unicode strings with UTF-8 encoding. When you serialize the data,
you can specify other encodings; see “Serializing for output” on page 37.

Setting property values and creating properties

You can create new properties using the property-setting functions. To create empty arrays and structs,
use the appropriate option flags. When you set a leaf value for a struct, all levels that are assigned implicitly
are created if necessary. Similarly, adding an array item with AppendArayItem() creates the named array if
necessary.

These functions set property values using UTF-8 encoded strings:

SetProperty() The simplest property setter, mainly for top level simple properties or after
using the path composition functions in XMPUtils.

SetArrayItem() Provides access to items within an array. The index is passed as an integer, you
need not worry about the path string syntax for array items, converting a loop
index to a string, and so on. The specified array must already exist; to create a
new array, use AppendArrayItem().

In normal usage the selected array item is modified. A new item is automatically
appended if the index is the array size plus 1. To insert a new item before or after
another item, use one of the option flags:

kXMP_InsertBeforeItem
kXMP_InsertAfterItem

AppendArrayItem() Simplifies construction of an array by not requiring that you pre-create an
empty array. The array that is assigned is created automatically if it does not yet
exist and the correct options are supplied; otherwise, the method throws an
exception.

Each call appends an item to the array. The corresponding parameters have the
same use as SetArrayItem(). You must specify the kind of array; if the array
exists, it must have the specified form.

CHAPTER 2: The XMPCore Component SXMPMeta class 40

These function set property values using binary values:

Setting localized text

Setting localized text in alt-text arrays follows these rules:

 If the selected item is from a match with the specific language, the value of that item is modified. If the
existing value of that item matches the existing value of the x-default item, the x-default item is
also modified. If the array only has one existing item (which is not x-default), an x-default item is
added with the given value.

 If the selected item is from a match with the generic language and there are no other generic matches,
the value of that item is modified. If the existing value of that item matches the existing value of the
x-default item, the x-default item is also modified. If the array only has one existing item (which is
not x-default), an x-default item is added with the given value.

 If the selected item is from a partial match with the generic language and there are other partial
matches, a new item is created for the specific language. The x-default item is not modified.

 If the selected item is from the last two rules then a new item is created for the specific language. If the
array only had an x-default item, the x-default item is also modified. If the array was empty, items
are created for the specific language and x-default.

Retrieving property values

All of the retrieval functions return a Boolean result telling if the property exists, and, if it does, option flags
describing the property. If the property exists and has a value, the function returns the value.

SetStructField() Provides access to fields within a nested structure. The namespace for the field
is passed as a URI, you need not worry about the path string syntax.

SetQualifier() Provides access to a qualifier attached to a property. The namespace for the
qualifier is passed as a URI, you need not worry about the path string syntax.

SetLocalizedText() Modifies the value of a selected item in an alt-text array. Creates an appropriate
array item if necessary, and handles special cases for the x-default item. See
“Setting localized text” on page 40.

SetProperty_Bool() Sets the value of a Boolean property from a C++ bool.

SetProperty_Int() Sets the value of an integer property from a C long integer.

SetProperty_Int64() Sets the value of an integer property from a C long long integer.

SetProperty_Float() Sets the value of a floating point property from a C double float.

SetProperty_Date() Sets the value of a date/time property from an XMP_DateTime struct.

CHAPTER 2: The XMPCore Component SXMPMeta class 41

These retrieval functions return values as UTF-8 encoded strings:

These functions return binary property values:

Deleting and detecting properties

These functions delete properties. It is not an error if the specified property does not exist.

These functions report whether properties exist:

GetProperty() The simplest property getter, mainly for top level simple properties or after
using the path composition functions in TXMPUtils.

GetArrayItem() Provides access to items within an array. The index is passed as an integer, you
need not worry about the path string syntax for array items, convert a loop index
to a string, and so on.

CountArrayItems() Useful for iteration within an array.

GetStructField() Provides access to fields within a nested structure. The namespace for the field is
passed as a URI, you need not worry about the path string syntax.

GetQualifier() Provides access to a qualifier attached to a property. The namespace for the
qualifier is passed as a URI, you need not worry about the path string syntax.

Note: Currently qualifiers are supported only for simple leaf properties.

GetLocalizedText() Returns information about a selected item in an alt-text array.

GetProperty_Bool() Returns the value of a Boolean property as a C++ bool.

GetProperty_Int() Returns the value of an integer property as a C long integer.

GetProperty_Int64() Returns the value of an integer property as a C long long integer.

GetProperty_Float() Returns the value of a floating point property as a C double float.

GetProperty_Date() Returns the value of a date/time property as an XMP_DateTime struct.

DeleteProperty() Deletes the given XMP subtree rooted at the given property.

DeleteArrayItem() Deletes the given XMP subtree rooted at the given array item.

DeleteStructField() Deletes the given XMP subtree rooted at the given struct field.

DeleteQualifier() Deletes the given XMP subtree rooted at the given qualifier.

DeleteLocalizedText() Deletes a specific language alternative value from an alt-text array.

DoesPropertyExist() Reports whether a property exists.

DoesArrayItemExist() Reports whether an array item exists.

CHAPTER 2: The XMPCore Component SXMPIterator class 42

Handling error notifications

You can choose to provide error handlers that provide suggestions for attempted error recovery. A handler
should return true if recovery should be attempted, false if not. Use these SXMPMeta functions to register
callback functions to handle error notifications:

Toolkit configuration

These globally-available static functions, called directly from the SXMPMeta class, provide utilities for
working with and configuring the XMP Toolkit SDK.

Initialization and termination

These static functions provide a framework for using the Toolkit:

SXMPIterator class
This class provides iteration services for the SXMPMeta object. The SXMPIterator functions provide a
uniform means to iterate over the schema and properties within an XMP object.

Creating iterator objects

The default constructor creates a new empty SXMPIterator object:

SXMPIterator();

 You can pass an existing SXMPIterator object to the constructor to copy it. The copy constructor
creates a new client iterator that refers to the same underlying iterator.

Pass a specific SXMPMeta object to the constructor to create an iterator for the properties in that object.
You can specify an iteration root within the property tree, and can provide option flags that control how
the iteration is performed.

DoesStructFieldExist() Reports whether a struct field exists.

DoesQualifierExist() Reports whether a qualifier exists.

SetDefaultErrorCallback() Registers a global error-recovery callback, and resets the error
notification count and limit.

SetErrorCallback() Registers an error-recovery callback for a specific SXMPMeta object.

GetVersionInfo() Obtains version information for XMPCore.

Initialize() Explicitly initializes XMPCore; must be called before using the library.

Terminate() Terminates XMPCore.

CHAPTER 2: The XMPCore Component SXMPUtils class 43

The options to control the iteration are:

Performing iterations

Metadata within an XMP object is represented as a data tree with a single root node, which does not
explicitly appear in the data dump and is never visited by an iterator. Beneath the root are schema nodes,
which collect top-level properties in the same namespace. These are created and destroyed implicitly.
Beneath the schema nodes are the property nodes. The nodes below a property node depend on its type
(simple, struct, or array) and whether it has qualifiers.

An SXMPIterator constructor defines a starting point for the iteration and options that control how it
proceeds. By default, iteration starts at the root and visits all nodes beneath it in a depth-first manner. The
root node is not visited; the first visited node is a schema node.

You can provide a schema name or property path to select a different starting node. By default, this visits
the named root node first, then all nodes beneath it in a depth-first manner.

The SXMPIterator::Next() method delivers the schema URI, path, and option flags for the node being
visited. For a simple property node, it also delivers the value. Qualifiers for this node are visited next. The
fields of a struct or items of an array are visited after the qualifiers of the parent.

The SXMPIterator class provides these functions for performing iterations:

SXMPUtils class
This class provides utilities that support the use of the main SXMPMeta functions.

 The Path composition functions provide support for composing path expressions to deeply nested
properties.

 The Type conversion functions provide support for converting property values between binary types
and UTF-8 encoded strings.

kXMP_IterJustChildren Visit just the immediate children of the root. Skip the root itself and all
nodes below the immediate children. This omits the qualifiers of the
immediate children, the qualifier nodes being below what they qualify.

kXMP_IterJustLeafNodes Visit just the leaf property nodes and their qualifiers.

kXMP_IterJustLeafName Return just the leaf component of the node names. The default is to return
the full path name.

kXMP_IterOmitQualifiers Do not visit the qualifiers of a node.

Next() Visits the next node in the iteration. Returns true if there was another node to visit, false if the
iteration is done.

Skip() Skips some portion of the remaining iterations. You can choose to skip the subtree below the
current node, or the subtree below and remaining siblings of the current node.

CHAPTER 2: The XMPCore Component SXMPUtils class 44

Path composition functions

The accessor functions in SXMPMeta such as GetProperty(), GetArrayItem(), and GetStructField()
provide easy access to top-level simple properties, items in top-level arrays, and fields of top-level structs.
They do not provide convenient access to more complex things, such as fields several levels deep in a
complex struct, fields within an array of structs, or items of an array that is a field of a struct.

You can use the utility functions provided by SXMPUtils to construct the paths required to access such
deeply nested properties. You can also use them to compose paths to top-level array items or struct fields
to use with binary accessors like GetProperty_Int().

You can use these functions to compose a complete path expression, or all but the last component. For
example, suppose you have a property that is an array of integers within a struct. You can access one of the
array items like this:

SXMPUtils::ComposeStructFieldPath(schemaNS, "Struct", fieldNS, "Array", &path);
SXMPUtils::ComposeArrayItemPath(schemaNS, path, index, &path);
exists = xmpObj.GetProperty_Int(schemaNS, path, &value, &options);

You could also use this code if you want the string form of the integer:

SXMPUtils::ComposeStructFieldPath(schemaNS, "Struct", fieldNS, "Array", &path);
xmpObj.GetArrayItem(schemaNS, path, index, &value, &options);

(In these examples, the schemaNS value refers to the top-level "schema" namespace, which the XMP
Toolkit SDK keeps separate from the rest of the path expression.)

The SXMPUtils class defines these path-composition functions:

Composing paths from fields

The path syntax allows two forms of "content addressing" that you can use to select an item in an array of
alternatives. The form used in ComposeFieldSelector() lets you select an item in an array of structs
based on the value of one of the fields in the structs. The other form of content addressing is shown in
ComposeLangSelector().

For example, consider a simple struct that has two fields, the name of a city and the URI of an FTP site in
that city. Use ComposeFieldSelector() to create an array of download alternatives. You can show the
user a popup built from the values of the city fields. You can then get the corresponding URI as follows:

ComposeFieldSelector(schemaNS, "Downloads", fieldNS, "City", chosenCity, &path);
exists = GetStructField(schemaNS, path, fieldNS, "URI", &uri);

ComposeArrayItemPath() Composes the path expression for an item in an array.

ComposeStructFieldPath() Composes the path expression for a field in a struct.

ComposeQualifierPath() Composes the path expression for a qualifier.

ComposeLangSelector() Composes the path expression to select an alternate item by language.

ComposeFieldSelector() Composes the path expression to select an alternate item by a field's
value.

CHAPTER 2: The XMPCore Component SXMPUtils class 45

Type conversion functions

These functions support the conversion of property values between binary types and UTF-8 encoded
strings:

These functions provide date/time manipulation:

These functions provide Base64 encoding and decoding:

ConvertFromBool() Converts from Boolean to string.

ConvertFromInt() Converts from integer to string.

ConvertFromInt64() Converts from 64-bit integer to string.

ConvertFromFloat() Converts from floating point to string.

ConvertFromDate() Converts from date/time to string.

ConvertToBool() Converts from string to Boolean.

ConvertToInt() Converts from string to integer.

ConvertToInt64() Converts from string to 64-bit integer.

ConvertToFloat() Converts from string to floating point.

ConvertToDate() Converts from string to date/time.

CurrentDateTime() Obtains the current date and time.

SetTimeZone() Sets the local time zone.

ConvertToUTCTime() Guarantees that a time is UTC.

ConvertToLocalTime() Guarantees that a time is local.

CompareDateTime() Compares the order of two date/time values.

EncodeToBase64() Converts from raw data to Base64 encoded string.

DecodeFromBase64() Decodes from Base64 encoded string to raw data.

 46

3 The XMPFiles Component

This chapter introduces the XMPFiles component of the XMP Toolkit SDK, which supports file input and
output for XMP, as opposed to the XMPCore API that supports manipulation of the XMP data itself.

 “Using XMPFiles for metadata I/O” on page 46 introduces the XMPFiles component and how to use it
to access XMP metadata stored in files.

 “API summary: SXMPFiles class” on page 52 summarizes the functions provided by SXMPFiles. For
reference details, see the online documentation of the template class, TXMPFiles, provided with the
XMP Toolkit SDK.

Using XMPFiles for metadata I/O
The XMPFiles component of the XMP Toolkit SDK provides convenient access to the main, or document
level, XMP for a file in any supported format. Some file types can have additional XMP packets embedded;
for example, if a PDF file has several embedded images, each of the images may have its own XMP data.
However, the XMPFiles API retrieves only the document-level XMP.

The XMPFiles API is a front end to a set of file handlers for various formats. The file handlers attempt to
provide smart, efficient support for all file formats for which the means to embed XMP is defined in the
XMP Specification, as documented in Part 3, Storage in Files. Adding XMP file-handling support for
individual formats is an ongoing effort. These formats currently have specific handlers:

Image formats DNG (Digital Negative)
GIF (Graphics Interchange Format)
JPEG (Joint Photographic Experts Group)
PNG (Portable Network Graphics)
SVG (Scalable Vector Graphics)
TIFF (Tagged Image File Format)

Dynamic media formats AIFF (Audio Interchange File Format)
ASF (Windows Media Audio/Video)
AVI (Audio-Video Interleaved)
FLV (Flash Video)
MOV (QuickTime)
MP3 (MPEG-1 Audio Layer 3)
MPEG-2
MPEG-4
SWF (Flash)
WAV (Waveform)
WMA (Windows Media Audio)
WMV (Windows Media Video)

CHAPTER 3: The XMPFiles Component Using XMPFiles for metadata I/O 47

You can extend XMPFiles with plug-ins that handle additional file formats; for complete details, see
XMPFiles Custom File-handler Plug-in SDK and the support files that are included with this toolkit.

You can still access metadata in file formats for which there is no specific handler; XMPFiles provides a
generic packet-scanning mechanism for files of any format, but its use is not recommended. In particular,
you should not use packet-scanning to look for XMP metadata in a file that is not known to have
document-level metadata. A Power Point file, for example, could have embedded metadata for an
included image, but no document-level metadata. Packet scanning would find the embedded metadata
and treat it as document metadata, with unpredictable results.

Where possible, the XMP file handlers allow:

 injection of XMP where none currently exists;

 expansion of XMP without regard to existing padding;

 reconciliation of the XMP and other non-XMP forms of metadata.

The XMPFiles API is designed for use by clients interested in the metadata and not in the primary file
content; the Adobe Bridge application is a typical example. The API is not intended to be particularly
appropriate for files authored by an application; that is, those files for which the application has explicit
knowledge of the file format.

The XMPFiles API is defined in the template class TXMPFiles. Use of the concrete class SXMPFiles (based
on std::string) is standard.

 The class defines functions for opening and closing files, and for accessing the embedded metadata,
in addition to initialization and informational functions.

 The SXMPFiles class provides static functions to initialize and terminate the XMPFiles component,
retrieve version information for it, and allow you to query the features available in individual format
handlers.

For a summary of API functions, see “API summary: SXMPFiles class” on page 52.

Initializing and terminating XMPFiles

You must initialize the XMPFiles component of the Toolkit before you can create instances of the
SXMPFiles class. Do this by calling the static function Initialize() of the concrete class SXMPFiles:

SXMPFiles::Initialize();
SXMPFiles::Initialize(pluginPath);

Video package formats AVCHD
P2
SonyHDV
XDCAM
XDCAM-EX

Adobe application formats INDD, INDT (Adobe InDesign®)
PSD, PSB (Adobe Photoshop)

Document formats PS, EPS (PostScript® and Encapsulated PostScript)
UCF (Universal Container Format)

CHAPTER 3: The XMPFiles Component Using XMPFiles for metadata I/O 48

You can optionally pass the path of a folder that contains file-handler plug-ins which extend XMPFiles. For
information on building file-handler plug-ins, see the companion document XMPFiles Custom File-handler
Plug-in SDK.

The function returns true if the component has been initialized successfully; you can then use the
constructor to create SXMPFiles instance objects with which to access files and their contained XMP
metadata.

Once all processing is complete, you should explicitly terminate both components of the Toolkit, in order
to deallocate any global structures that were created on initialization. If you have initialized SXMPFiles,
terminate it explicitly before terminating SXMPMeta, which terminates the entire Toolkit:

SXMPMeta::Initialize();
SXMPFiles::Initialize();

// do the metadata work

SXMPFiles::Terminate();
SXMPMeta::Terminate();

Accessing metadata in files

Files must be opened before you can read from them. When you construct the SXMPFiles object with an
explicit file reference and opening options, the constructor also opens the file. You can also create an
empty object, however, and use it to open a file explicitly:

SXMPFiles myFile;
myFile.OpenFile(filename, file_format, options);

Options that you provide with either the constructor or the OpenFile() function allow you to open a file
for read-only access, or for read-write access. (There are additional details; see “File formats and open
options” on page 49).

Once a file has been opened, you can access the metadata. To request the metadata from the SXMPFiles
instance, use the function GetXMP(). This function reports whether the file has metadata, as well as
retrieving the metadata if present. The function parses file metadata into an SXMPMeta object. Depending
on the file format, you can also choose to retrieve the raw packet data.

When calling GetXMP(), you must provide at least an SXMPMeta instance. The function can take additional
arguments to retrieve the raw XMP packet and the packet information. For example:

SXMPMeta meta;
std::string packet;
XMP_PacketInfo info;
myFile.GetXMP(&meta, &packet, &info);

The call to GetXMP() returns true if the file contains XMP data, false if it does not. If it does contain XMP, the
function parses the data into the provided SXMPMeta instance, which you can then use to access any of the
XMP properties, according to how the file was opened.

 If you do not need to write out changed metadata, you can specify read-only access when you open
the file. In this case, the disk file is automatically closed in the file system after the data is read, and you
do not need to explicitly close it.

 Typically, you will need to open a file, read and write the metadata, then close the file. To do this, you
specify read-write access when you open the file.

CHAPTER 3: The XMPFiles Component Using XMPFiles for metadata I/O 49

 To modify the metadata in memory, use SXMPFiles::PutXMP(). You can do this as often as
necessary while the file is open.

 When you close the file, SXMPFiles::CloseFile() writes out the metadata to the disk file.

When processing is complete, you should close the file explicitly, even if the file has been opened with
read-only access. Use the function CloseFile() on the SXMPFiles instance:

myFile.CloseFile();

 If you opened the file as read-only, the disk file is actually closed in the file system immediately after
reading the XMP data, in order to avoid blocking the file. You can use CloseFile() to close the object
any time after calling GetXMP().

 If you opened the file for writing, any changes that you make to the metadata with PutXMP() are not
actually written to the file until you call CloseFile(), which assigns the metadata packet back to the
file and closes it in the file system.

File formats and open options

The XMPFiles component provides a set of handlers that understand specific file formats. You can extend
XMPFiles with plug-ins that handle additional file formats; see XMPFiles Custom File-handler Plug-in SDK
and the support files that are included with this toolkit.

The file format that you specify on creation or with OpenFile() helps the XMPFiles component determine
which file handler to use for the file. If you provide a specific expected format, XMPFiles uses it as a hint
about what file handler to try first. If you want to open only a file of the given type, set the option flag
kXMPFiles_OpenStrictly (see “Open options” on page 50). This causes XMPFiles to throw an exception if
the format doesn’t match, rather than going on to check for other formats.

If you do not know the file format, use the default file format constant, kXMP_UnknownFile. In this case (or
if the format does not match the specified one and the open-strictly option is not set) XMPFiles chooses a
handler based on the actual content of the file. It checks each registered file handler in turn to see if it
understands the file format until it finds a suitable handler. It uses the file’s extension to choose the first
handler to try.

The call to OpenFile() returns true if the file was successfully opened. If the file could not be opened
successfully but no serious errors occurred, the function returns false. For serious errors, for example if the
specified file does not exist, XMPFiles attempts to recover, using suggestions provided by any error
handlers that your client has registered, and if the attempt fails, throws an exception.

You should not attempt to open files that are not known to contain document-level metadata. Power Point
files, for instance, might contain embedded metadata for included images, but no document-level
metadata.

Querying the file handler

The static function SXMPMeta::GetFormatInfo() allows you to determine the extent to which file
handling is supported for a particular file format. Depending on the format, the handler can provide these
capabilities:

 Inject first-time XMP into an existing file.

 Expand XMP or other metadata in an existing file.

CHAPTER 3: The XMPFiles Component Using XMPFiles for metadata I/O 50

 Copy one file to another, writing new metadata.

 Reconcile data between XMP and non-XMP metadata formats.

 Allow access to just the XMP, ignoring other metadata formats.

 Retrieve raw XMP packet information.

Open options

In addition to the simple distinction of opening a file for read-only or read-write, you can combine option
bit flags to specify some additional control of the operation. Use the logical OR operator to combine the
bit-flag constants:

XMP_OptionBits opts = kXMPFiles_OpenForRead | kXMPFiles_OpenUseSmartHandler

These options are available:

Updating and writing file XMP

If a file is open for update, you can inject new XMP or write modified XMP back to a resource file when you
close that file; however, you must first update the XMP associated with the file by passing an XMP object
containing the new or modified data to the SXMPFiles instance in PutXMP().

If the file did not previously contain XMP, or if the modified XMP is larger than before, you might not
actually be able to update the file. It depends on the format and the file handler’s capabilities, as well as on
how the file was opened. It is a good idea to check first, using SXMPFiles::CanPutXMP():

if(myFile.CanPutXMP(meta)){
myFile.PutXMP(meta);

}

kXMPFiles_OpenForRead Open for read-only access.

kXMPFiles_OpenForUpdate Open for reading and writing.

kXMPFiles_OpenOnlyXMP Only the XMP is wanted, allows space/time optimizations.

kXMPFiles_OpenStrictly Be strict about locating XMP and reconciling with other forms.

kXMPFiles_OpenUseSmartHandler Require the use of a smart handler.

kXMPFiles_OpenUsePacketScanning Force packet scanning, do not use a smart handler.

kXMPFiles_OpenLimitedScanning Only packet scan files "known" to need scanning.

kXMPFiles_OpenInBackground Set if calling from background thread.

xmpFiles_OpenRepairFile Attempt to repair a file that is opened for update.

kXMPFiles_OptimizeFileLayout When updating a file, spend the necessary effort to optimize
file layout. This option is used to re-layout video files to support
streaming.

This option is presently supported only for files handled using
the MPEG4 Handler (MPEG4/MOV).

CHAPTER 3: The XMPFiles Component Using XMPFiles for metadata I/O 51

CanPutXMP() returns true if the file can be updated. For example, if the file was opened as read-only, the
call returns false.

Remember that the XMP is not actually written back to the file on disk until you close the file object by
calling CloseFile(). You can use PutXMP() to update the XMP any number of times before closing the
file and writing out the data.

If you have specified the option bit kXMPFiles_OptimizeFileLayout with the open flags, then the XMP
toolkit will attempt to ensure certain optimizations while writing the file. Currently, this can be used only
for MPEG4/MOV files where the structure of the file needs to be optimized. For details see “Open options”
on page 50

Many applications check metadata when opening a file. Leaving a file open can cause conflicts with other
applications that might wish to access the file while you are working with the metadata. If you plan to
keep a file open for longer than a few minutes, it is better practice to open it for read-only, obtain the
metadata, and close the file. When you have finished processing the metadata, you can re-open the file
briefly for write access.

Using client-managed I/O

Sometimes the file you want to manipulate does not reside on the local file system or mounted file server.
It might be a remote file accessed through HTTP or FTP URL, for example, or the file itself might be
managed by an asset management system, and accessed through that system’s API.

In such a case, XMPFiles uses an XMP_IO object to access the actual file through appropriate means. You
can call XMPFiles::OpenFile() on a client-defined XMP_IO object in place of the file’s path name string:

bool OpenFile (
XMP_IO * clientIO,
XMP_FileFormat format = kXMP_UnknownFile,
XMP_OptionBits openFlags = 0);

Call this as you would for a local file:

SXMPFiles myFile;
myFile.OpenFile(clientIO, file_format, options);

The second and third parameters are the same as when you use a file path name string; see “File formats
and open options” on page 49.

When you use this form of OpenFile(), XMPFiles uses the XMP_IO object to read from and write to the
source, without directly touching the actual file through the file system.

Clients can provide their own implementations of XMP_IO to provide read-write access to a file that is
otherwise completely managed by the client; for complete details of this interface class, see the API
documentation in XMP_IO.hpp. Creating the XMP_IO object opens the source in a customized manner, and
destroying the object closes the source as needed.

CHAPTER 3: The XMPFiles Component API summary: SXMPFiles class 52

API summary: SXMPFiles class
This concrete class provides the API for the Adobe XMP Toolkit SDK's XMPFiles component. The class
provides convenient access to the main, or document level, XMP for a file.

The general model for metadata access is to open a file, read and write the metadata, then close the file.
While open, portions of the file might be maintained in RAM data structures. Memory usage can vary
considerably depending on file format and access options. You can open a file for read-only or read-write
access, with typical exclusion for both modes.

File handler configuration

Globally-available static functions, called directly from the SXMPFiles class, provide utilities for working
with and querying the XMP file handler.

These static functions are provided:

Creating file objects

The default constructor initializes an object that is associated with no file.

SXMPFiles();

You can pass a file with which to initialize the object; this opens the specified file. The destructor
automatically closes the object’s associated file if necessary.

You can pass an existing file object to the constructor to copy it; this increments an internal reference
count, but does not perform a deep copy; see “Copying metadata” on page 36.

Initialize() You must initialize the file handler before using SXMPFiles. You can optionally
pass the path of a folder containing file-handler plug-ins that extend
XMPFiles.

Terminate() You can terminate the file handler when done using SXMPFiles. This
deallocates global data structures created by initialization.

GetVersionInfo() Reports version information for the XMP file handler.

GetFormatInfo() Reports the supported features for a given file format. The supported features
can vary considerably among file formats, depending on both the general
capabilities of the format and the implementation of the handler for that
format.

CheckFileFormat() Reports the format of a file, as would be determined when attempting to
open that file.

CheckPackageFormat() Reports the format of a package, given the name of the top-level folder.
Examples of recognized packages include the video formats P2, XDCAM, or
Sony HDV. These packages contain collections of clips, stored as multiple files
in specific subfolders.

This is not the same path you would pass OpenFile(). For example, the
top-level path for a package might be ".../MyMovie", while the path to a file
you wish to open would be ".../MyMovie/SomeClip".

CHAPTER 3: The XMPFiles Component API summary: SXMPFiles class 53

Performing file operations

The functions defined in SXMPFiles allow you to open and close files, and retrieve file information. File
operation functions include:

Accessing metadata in files

OpenFile() Opens a file for metadata access. You can open it for reading, or for
updating. If you open a file for update, you must explicitly close it.
Options determine whether to reconcile other forms of metadata.

CloseFile() Closes an opened file.

GetFileInfo() Retrieves basic information about an opened file.

SetAbortProc() Allows you to define a callback function that checks for and responds
to a user-signaled abort.

GetFileModDate() Retrieves the most recent modification date for all of the files
associated with the metadata.

 For a single file containing embedded XMP, this is the
modification date of that file.

 For a format with a sidecar file such as MPEG2, or a video
package format such as P2, it returns the most recent
modification date for any associated file.

GetAssociatedResources() Retrieves a list of all files and subfolders that are associated with a
given file.

IsMetadataWritable() Reports whether metadata can be updated or written to a file.

GetXMP() Obtains the parsed XMP from an open file. You can also choose to get the raw
XMP packet, and information about the raw XMP packet. Can report whether
XMP is present or not.

PutXMP() Updates the XMP in a file. This function supplies new XMP for the file; however,
the file is not actually written until closed. The options provided when the file
was opened determine whether the function reconciles other forms of
metadata.

CanPutXMP() Reports whether the XMP can be updated in the file, for a given XMP packet
size.

CHAPTER 3: The XMPFiles Component API summary: SXMPFiles class 54

Handling notifications

You can choose to provide handlers for error notifications and for progress notifications from XMPFiles
functions.

 Error notification handlers should provide suggestions for attempted error recovery. A handler should
return true if recovery should be attempted, false if not. Use these SXMPFiles functions to register
callback functions to handle error notifications:

 Progress notification handlers allow you to track the progress of long-running file-write operations.
Use your handler to report on progress to your user or abort the operation if needed. Use these
SXMPFiles functions to register callback functions to handle progress notifications:

SetDefaultErrorCallback() Registers a global error-recovery callback for all SXMPFiles
errors, and resets the error notification count and limit.

SetErrorCallback() Registers an error-recovery callback for a specific SXMPFiles
object.

SetDefaultProgressCallback() Registers a global progress-notification callback.

SetProgressCallback() Registers an progress-notification callback for a specific
SXMPFiles object.

 55

4 Using the XMP Toolkit SDK

This chapter provides hands-on examples and advice for using the XMP Toolkit to perform typical
metadata handling.

 “Getting started” on page 55 describes how to build the XMP Toolkit from the projects included with
the SDK, and demonstrates how to build your own project using the XMP Toolkit libraries.

 “Obtaining and creating XMP data” on page 58 discusses how to use the XMPFiles and XMPCore
components together to create, obtain, modify, and store XMP data.

 Tutorial examples show how to work with the SDK. All projects and code to accompany the tutorials is
included in the SDK, in <xmpsdk>/samples; see “Sample code and tools” on page 11.

 “Walkthrough 1: Opening files and reading XMP” on page 63 shows how to create and configure a
project in Windows or in Mac OS. It then demonstrates the basic use of the XMPFiles and XMPCore
components, obtaining read-only XMP from a file and examining it through the XMP object. It also
shows how to do a data-dump of the XMP object to get a more direct view of its contents.

 “Walkthrough 2: Modifying XMP” on page 71 demonstrates more sophisticated techniques,
opening a file for update, and modifying the contained XMP before writing it back to the file. It
also shows how to work with XMP in the form of RDF strings.

 “Walkthrough 3: Working with a custom schema” on page 75 demonstrates how to work with a
custom schema that has complex properties. It shows how to access and modify properties with
complex paths using the path composition utilities from the XMP API.

Getting started
This section describes how to build the Toolkit and where to locate the resulting libraries.

Before you begin

In order to build the XMP libraries you must download the Expat XML parser. To use the XMPFiles
component, you must install the ZLib compression library.

Installing the Expat XML Parser

You must obtain the Expat XML Parser in order to create the XMP libraries. For a full list of files required to
install the Expat XML Parser see readme.txt in <xmpsdk>/third-party/expat.

1. Obtain a copy of the Expat distribution, minimum version 2.1. This can be downloaded from:

http://sourceforge.net/projects/expat

2. Extract the archive and copy the lib folder to <xmpsdk>/third-party/expat.

http://sourceforge.net/projects/expat

CHAPTER 4: Using the XMP Toolkit SDK Getting started 56

Installing ZLib

You must obtain and install the ZLib compression library in order to use the XMPFiles component with
compressed file formats such as UCF.

1. Obtain a copy of the ZLib distribution, minimum version 1.2.8, from:

http://www.zlib.net/zlib.html

2. Extract the archive and install as directed in the Usage.txt file.

Installing CMake

You must obtain and install the CMake tool that manages the build process for the XMP Toolkit SDK.

1. Obtain a copy of the CMake distribution for your platform (version 3.5.2) from:
http://www.cmake.org/cmake/resources/software.html

2. Extract the archive and install as directed in the file <xmpsdk>/tools/cmake/ReadMe.txt.

3. Set execute permission for the installed CMake executable. In UNIX/Linux, for example:

$chmod u+x <cmake_root_path>

Building the XMP libraries

You must run the CMake script or makefile for your platform to produce static and dynamic libraries for use
in Windows, Mac OS, iOS, or Linux. Scripts are provided with the XMP Toolkit SDK in the <xmpsdk>/build/
folder.

The following sections give instructions on how to build the libraries for each platform.

 Before you can run any of the CMake helper scripts mentioned in these steps, you must make sure that
you have execute privileges for those file, as appropriate for your platform.

Building the Toolkit in Windows with Visual Studio 2015

1. Run the batch file <xmpsdk>\build\GenerateXMPToolkitSDK_win.bat.

2. Follow the instruction to choose build options for projects; the Generate All option generates all
possible Visual Studio projects.

3. Open the generated solution file with MS Visual Studio 2015. For example, if you choose to generate a
static 32-bit binary, you will see the file:

<xmpsdk>\build\vc11\static\windows\XMPSDKToolkitSDK.sln

4. From the menu in MS Visual Studio, choose Build > Build Solution. This compiles the Toolkit to
produce two static libraries, XMPCoreStatic.lib and XMPFilesStatic.lib.

After a successful build for the 32-bit debug target, the libraries can be found in:

<xmpsdk>\public\libraries\windows\debug\

http://www.zlib.net/zlib.html
http://www.cmake.org/cmake/resources/software.html

CHAPTER 4: Using the XMP Toolkit SDK Getting started 57

Building the Toolkit in Mac OS

The development environment for Mac OS is XCode 7.2.1. You can build the libraries in this environment
for deployment in Mac OS X or in iOS. XMPCore and XMPFiles, both are supported in iOS.

1. Run the shell script <xmpsdk>/build/GenerateXMPToolkitSDK_mac.sh.

2. Follow the instruction to choose build options for projects; the Generate All option generates all
possible XCode projects.

You can choose to build for deployment in Mac OS X, or in iOS. If you choose iOS, the script builds only
the XMPCore library.

3. Open the generated project file with XCode. For example:

 If you choose to generate a static 64-bit binary for Mac OS X, you will see the file:

<xmpsdk>/build/xcode/static/intel_64/XMPToolkitSDK64.xcodeproj

 If you choose to generate a static binary for iOS, you will see the file:

<xmpsdk>/build/xcode/static/ios/XMPToolkitSDK.xcodeproj

4. From the menu in XCode, choose Build > Build. This compiles the Toolkit to produce the static
libraries, libXMPCoreStatic.a and libXMPFilesStatic.a.

 After a successful build for the 64-bit debug target for Mac OS X, both libraries can be found in:

<xmpsdk>/public/libraries/macintosh/intel_64/debug/

 After a successful build for the armv7 arm64 iOS Device debug target, the XMPCore and XMPFiles
library can be found in:

<xmpsdk>/public/libraries/ios/armv7 armv64/Debug/

NOTE: If you have multiple versions of XCode installed on your development system, use the
xcode-select command to specify the one you wish to use:

a) Fetch the current XCode folder:

$ xcode-select -print-path

b) Change the folder if necessary. For example, if the path to the version you want is
/Applications/Xcode.app, use:

$ sudo xcode-select -switch /Applications/Xcode.app

Building the Toolkit in Linux

1. Modify the file <xmpsdk>/build/shared/ToolchainGCC.cmake:

 Set the variable CMAKE_SYSTEM_LIBRARY_PATH to the root of the installed gcc compiler.

 Change XMP_ENABLE_SECURE_SETTINGS if needed for your gcc configuration.

2. Open <xmpsdk>/build/ProductConfig.cmake in an editor, then use gcc -v to check whether you
have enabled the SSP library.

CHAPTER 4: Using the XMP Toolkit SDK Obtaining and creating XMP data 58

 If SSP is enabled, set the variable XMP_GCC_LIBPATH to the path containing the static library
libssp.a, and set the variable the XMP_ENABLE_SECURE_SETTINGS to on.

 If SSP is disabled, set the variable the XMP_ENABLE_SECURE_SETTINGS to off.

3. You might need to adjust the environment variables for your distribution and installation. For
example, LD_LIBRARY_PATH must include folder paths that contain pthread and uuid shared libraries.

4. Navigate to <xmpsdk>/build/ in a command shell.

5. To build the toolkit, execute this statement:

make <target>

Look at the file <xmpsdk>/build/Makefile to see all of the build options that are available for each
target. Some of the available targets are:

all
clean
rebuild
DebugAll

Obtaining and creating XMP data
This section discusses how to use XMPFiles together with XMPCore to obtain or create new sets of XMP
metadata. You can:

 Parse one or more buffers containing RDF XML into an XMP object, from which you can manipulate it
or write it to a file.

 Combine multiple XMP objects into a single set of data.

 Serialize the XMP contained in an XMP object into a buffer containing an XMP packet as RDF XML.

 Use RDF XML to create an XMP object and then apply the XMP to a file.

Parsing XMP

You can construct an SXMPMeta object directly from a buffer. A constructor is available that can accept a
single RDF buffer and create the XMP object. The buffer must contain a complete and valid RDF stream,
comprising an rdf:RDF element containing one or more rdf:Description elements.

For example, the following shows some valid RDF that represents several properties from the Dublin Core
schema. This RDF can be parsed and used to construct an XMP object.

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<rdf:Description rdf:about="" xmlns:dc="http://purl.org/dc/elements/1.1/">

<dc:title>
<rdf:Alt>

<rdf:li xml:lang="x-default">An English Title</rdf:li>
<rdf:li xml:lang="en-US">An English Title</rdf:li>
<rdf:li xml:lang="fr-FR">Un Titre Francais</rdf:li>

</rdf:Alt>
</dc:title>

CHAPTER 4: Using the XMP Toolkit SDK Obtaining and creating XMP data 59

<dc:description>
<rdf:Alt>

<rdf:li xml:lang="x-default">Green Bush</rdf:li>
</rdf:Alt>

<dc:format>image/jpeg</dc:format>
<dc:creator>

<rdf:Seq>
<rdf:li>Author Name</rdf:li>

</rdf:Seq>
</dc:creator>

</rdf:Description>
</rdf:RDF>

To parse this into an XMP object, you must supply the RDF as an XMP_StringPtr, together with the length
of the buffer:

string buffer = ""
// populate buffer with valid RDF
SXMPMeta meta(buffer.c_str(), strlen(buffer.c_str());

The constructor can only parse a single valid RDF stream. If you have multiple buffers, you can either
combine them into a single buffer before constructing the object, or you can create an empty object, then
use SXMPMeta::ParseFromBuffer() to load multiple buffers of data. Each buffer can be any length and
does not have to end at a valid XML token or Unicode character. However, all buffers should ultimately
produce valid RDF.

The parsing function takes an options flag that specifies whether there are more input buffers to be
parsed. Use the option kXMP_ParseMoreBuffers if there are more buffers to process:

meta.ParseFromBuffer(buffer, buffersize, kXMP_ParseMoreBuffers);

When all buffers are processed, terminate input to the XMP object by calling the function again with
kXMP_NoOptions or 0 (which is the default). The following extract demonstrates using multiple buffers to
construct an XMP object:

// buffers created here
vector <string>::iterator i;
for(i = buffs->begin();i != buffs->end(); ++i){

meta.ParseFromBuffer((*i).c_str(),strlen((*i).c_str()),kXMP_ParseMoreBuffers);
}
meta.ParseFromBuffer(NULL, NULL);

The last call to ParseFromBuffer() uses null as the input buffer, 0 as the length and the default option
flag, to signify that there are no more buffers for input.

Combining XMP objects

You can combine the properties from two XMP objects, creating an updated XMP object with properties
from both original objects. Use the utility function SXMPUtils::ApplyTemplate() to append the
properties from one object to another. Supply a source XMP object and a destination XMP object; the
destination object is modified by adding the source properties. The source object remains unmodified.

Supply option flags for ApplyTemplate() to determine how the function should handle properties that
appear in both objects. You can choose to update, modify, or delete properties in the source.

These option flags are available:

CHAPTER 4: Using the XMP Toolkit SDK Obtaining and creating XMP data 60

kXMPTemplate_ClearUnnamedProperties
kXMPTemplate_AddNewProperties
kXMPTemplate_ReplaceExistingProperties
kXMPTemplate_ReplaceWithDeleteEmpty
kXMPTemplate_IncludeInternalProperties

For example the following affects all properties, both internal and external, and adds new properties from
the source to the destination:

SXMPUtils::ApplyTemplate(&destinationXMP, sourceXMP,
(kXMPTemplateAddNewProperties | kXMPTemplate_IncludeInternalProperties));

This adds properties from the source only if they do not already exist in the destination. Arrays and
structures are merged. If a property exists in the destination and not in the source, it remains unmodified.

For example, suppose we have two XMP objects, represented by the RDF/XML shown here:

Source
RDF/XML

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<rdf:Description rdf:about="" xmlns:dc="http://purl.org/dc/elements/1.1/">

<dc:creator>
<rdf:Seq>

<rdf:li>C Name</rdf:li>
</rdf:Seq>

</dc:creator>

<dc:title>
<rdf:Alt>

<rdf:li xml:lang="x-default">English US</rdf:li>
</rdf:Alt>

</dc:title>

<dc:subject>
<rdf:Bag>

<rdf:li>One</rdf:li>
</rdf:Bag>

</dc:subject>

</rdf:Description>
</rdf:RDF>

Destina-
tion
RDF/XML

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<rdf:Description rdf:about="" xmlns:dc="http://purl.org/dc/elements/1.1/">

<dc:creator>
<rdf:Seq>

<rdf:li>A Name</rdf:li>
<rdf:li>B Name</rdf:li>

</rdf:Seq>
</dc:creator>

<dc:format>image/jpeg</dc:format>

<dc:subject>
<rdf:Bag>

<rdf:li>Two</rdf:li>
<rdf:li>Three</rdf:li>

</rdf:Bag>
</dc:subject>

</rdf:Description>
</rdf:RDF>

CHAPTER 4: Using the XMP Toolkit SDK Obtaining and creating XMP data 61

If you append properties from the source onto the destination using the given options, the result in the
destination object is as follows:

Combined
RDF/XML

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<rdf:Description rdf:about="" xmlns:dc="http://purl.org/dc/elements/1.1/">

<dc:creator>
<rdf:Seq>

<rdf:li>A Name</rdf:li>
<rdf:li>B Name</rdf:li>
<rdf:li>C Name</rdf:li>

</rdf:Seq>
</dc:creator>

<dc:format>image/jpeg</dc:format>

<dc:title>
<rdf:Alt>

<rdf:li xml:lang="x-default">English US</rdf:li>
</rdf:Alt>

</dc:title>

<dc:subject>
<rdf:Bag>

<rdf:li>One</rdf:li>
<rdf:li>Two</rdf:li>
<rdf:li>Three</rdf:li>

</rdf:Bag>
</dc:subject>

</rdf:Description>
</rdf:RDF>

In this example:

 Both the ‘creator’ property and the ‘subject’ property are present in both the source and destination,
so the arrays have been merged.

 The ‘title’ property exists in the source, but does not exist in the destination, so it has been added.

 The source does not have the ‘format’ property at all, so it remains unmodified in the destination.

You can use ApplyTemplate() to apply your own XMP templates to resources by providing a source XMP
object with the template properties.

NOTE: The SXMPUtils::ApplyTemplate() function replaces the SXMPUtils::AppendProperties()
function used for this purpose in previous releases.

Serializing XMP

You can use SXMPMeta::SerializeToBuffer() to create a serialized string of XML in valid RDF format
from the XMP data contained in the XMP object. The XMP Specification Part 1, Data Model, Serialization, and
Core Properties provides a complete overview of the storage model, describes how XMP is serialized and
discusses issues with RDF.

You can provide option flags that control the final format of the serialized RDF. For example, it can be a
complete XMP packet (which is the default), or you can specify kXMP_OmitPacketWrapper. If you want the
XMP data to use as little space as possible, use kXMP_UseCompactFormat to produce RDF with a very
compact syntax; this is the default option. If you have special formatting requirements, you can specify
which newline characters to use or how much indentation to apply to the RDF.

CHAPTER 4: Using the XMP Toolkit SDK Obtaining and creating XMP data 62

This simple call produces serialized XMP in the default compact format, without the packet wrapper:

string xmpBuffer;
meta.SerializeToBuffer(&xmpBuffer, kXMP_OmitPacketWrapper);

This is what the XMP looks like after it has been written to a file:

<x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="XMP Core 4.1.1">
 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<rdf:Description rdf:about=""
 xmlns:xmp="http://ns.adobe.com/xap/1.0/"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
xmp:ModifyDate="2007-07-16T11:33:20+01:00"
xmp:CreateDate="2007-07-16T11:33:20+01:00"
xmp:MetadataDate="2007-07-24T12:26:06+01:00"
dc:format="image/jpeg">

<dc:title>
<rdf:Alt>

<rdf:li xml:lang="x-default">English US</rdf:li>
<rdf:li xml:lang="en-US">English US</rdf:li>
<rdf:li xml:lang="en-GB">English UK</rdf:li>

</rdf:Alt>
</dc:title>

<dc:description>
<rdf:Alt>

<rdf:li xml:lang="x-default">Green Bush</rdf:li>
</rdf:Alt>

</dc:description>

</rdf:Description>
 </rdf:RDF>
</x:xmpmeta>

In contrast, the following code segment serializes XMP data in canonical format, with the XMP packet
wrapper, using default values for indentation, newline characters and the base indent:

string xmpBuffer;
XMP_Options outOpts = kXMP_UseCanonicalFormat;
meta.SerializeToBuffer(&xmpBuffer, outOpts, NULL, "", "", NULL);

The following shows the resulting RDF:

<?xpacket begin="_" id="W5M0MpCehiHzreSzNTczkc9d"?>
<x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="XMP Core 4.1.1">
 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<rdf:Description rdf:about=""
xmlns:xmp="http://ns.adobe.com/xap/1.0/">

<xmp:ModifyDate>2007-07-16T11:33:20+01:00</xmp:ModifyDate>
<xmp:CreateDate>2007-07-16T11:33:20+01:00</xmp:CreateDate>
<xmp:MetadataDate>2007-07-24T12:26:06+01:00</xmp:MetadataDate>

</rdf:Description>

CHAPTER 4: Using the XMP Toolkit SDK Walkthrough 1: Opening files and reading XMP 63

<rdf:Description rdf:about=""
xmlns:dc="http://purl.org/dc/elements/1.1/">

<dc:title>
<rdf:Alt>

<rdf:li xml:lang="x-default">English US</rdf:li>
<rdf:li xml:lang="en-US">English US</rdf:li>
<rdf:li xml:lang="en-GB">English UK</rdf:li>

</rdf:Alt>
</dc:title>

<dc:description>
<rdf:Alt>

<rdf:li xml:lang="x-default">Green Bush</rdf:li>
</rdf:Alt>

</dc:description>

<dc:format>image/jpeg</dc:format>

</rdf:Description>
 </rdf:RDF>
</x:xmpmeta>

<?xpacket end="w"?>

Walkthrough 1: Opening files and reading XMP
This tutorial shows how to use the XMPFiles component to open a file and access the XMP data, then use
the XMPCore component to read several properties from standard schemas. As an aid to development, it
also shows how to create dumps of XMP objects. The tutorial creates the MyReadingXMP console
application, which shows how to access different properties.

This walkthrough is based on the sample <xmpsdk>/samples/source/ReadingXMP.cpp; see “Sample
code and tools” on page 11.

 The first section of the walkthrough guides you through creating a CMake script that builds your
project for MS Visual Studio 2015 or for XCode 7.2.1

 The second part of the walkthrough guides you through adding the necessary code to open a file and
read XMP properties.

Setting up a project

This section guides you through creating a console application which will be used to open a file and read
XMP properties.

 Before you begin creating the project, make sure you have built the necessary libraries. Verify that the
library folder exists:

 In Windows: <xmpsdk>\public\libraries\windows\debug

 in Mac OS: <xmpsdk>/public/libraries/macintosh/debug/

If not, check that you have completed all of the steps in “Getting started” on page 55.

 The SDK provides a set of samples that illustrate coding techniques for various tasks. In addition to the
source code for each sample, there are CMake scripts that generate project files for use with a
platform-specific IDE.

CHAPTER 4: Using the XMP Toolkit SDK Walkthrough 1: Opening files and reading XMP 64

 In Windows, build the project files for MS Visual Studio 2015 by running the batch file:
 <xmpsdk>\samples\build\GenerateSamples_win.bat

The project is created in the folder <xmpsdk>\samples\build\vc11\[windows|windows_x64].

 In Mac OS, build the project files for XCode 7.2.1 by running the shell script:
 <xmpsdk>/samples/build/GenerateSamples_mac.sh

The project is created in the folder <xmpsdk>/samples/build/xcode/[intel64].

Creating a CMake script for a new project

The build folder contains the master CMake script, <xmpsdk>/samples/build/cmake/CMakeLists.txt.
The CMake scripts that are included in the master script are executed for each platform when you execute
one of the platform build scripts.

The master script includes, at the end, all of individual CMake scripts for the samples that are provided
with the XMP Toolkit SDK. Each script generates the project for its corresponding sample. These scripts are
executed for the appropriate platform when you run GenerateSamples_win.bat or
GenerateSamples_mac.sh.

You can create a CMake script for your own sample project and add it to this list, so that the samples build
automatically generates the target-platform project for your new sample.

Create your script from a template

Here is a sample CMake script template, which you can modify with your own names and paths. In this
template, the project name is SampleTemplate. To customize this template for your own project, you must:

1. Define the minimum CMake version required for this script to generate projects on all supported
platforms (Windows, Mac OS, and Linux).

2. Add the name of your project. The project name is used as the base name of the executable project file
that will be created for each platform from the source files.

3. Add the source files that are to be compiled for your project.

4. Add include directories. This helps the build tool to search all the header files defined in the source
files. You can also specify preprocessor definitions such as the example one here,
TEMPLATE_EXAMPLE=1.

5. Add the paths to libraries that will be linked to the executable. This will always include at least the
XMPCore static library. Also, specify the output directory where the executable should be placed.

==
Define minimum cmake version
==
cmake_minimum_required(VERSION 3.5.2)

==
Replace "SampleTemplate" with your own project name
==
project (SampleTemplate)

==

CHAPTER 4: Using the XMP Toolkit SDK Walkthrough 1: Opening files and reading XMP 65

Add source files to the project
Here: ${SAMPLE_SOURCE_ROOT} = <xmpsdk>/samples/source/
==
file (GLOB SOURCE_FILES ${SAMPLE_SOURCE_ROOT}/SampleTemplate.cpp)
source_group(SampleTemplate FILES ${SOURCE_FILES})

==
Add include directories to the project
Here: ${XMP_SDK_ROOT} = <xmpsdk>
${PUBLIC_INCLUDE} = <xmpsdk>/public/include
==
include_directories(${XMP_SDK_ROOT})
include_directories(${PUBLIC_INCLUDE})
add_definitions(-DTEMPLATE_EXAMPLE=1)

==
The base name of the executable to be created from the source files
==
add_executable(${PROJECT_NAME} ${SOURCE_FILES})

==
Set the XMP_BUILDMODE_DIR variable to Debug/Release
==
SetupInternalBuildDirectory()

==
Add link paths for required libraries and set the output paths for all platforms
Here we link all of the XMP libs, and set the output paths based on SAMPLE_SOURCE_ROOT
==
if(UNIX)

 if(APPLE) #For Mac
target_link_libraries(${PROJECT_NAME}

${XMP_SDK_ROOT}/public/libraries/${PLATFORM_FOLDER}/${XMP_BUILDMODE_DIR}/lib${XMPCORE_LIB}${LIB_
EXT}
${XMP_SDK_ROOT}/public/libraries/${PLATFORM_FOLDER}/${XMP_BUILDMODE_DIR}/lib${XMPFILES_LIB}${LIB
_EXT})

set(OUTPUT_DIR ${SAMPLE_SOURCE_ROOT}/../target/${PLATFORM_FOLDER}/)
set(EXECUTABLE_OUTPUT_PATH ${OUTPUT_DIR})

else(APPLE) #For Linux
 SetPlatformLinkFlags(${PROJECT_NAME} "" "")

target_link_libraries(${PROJECT_NAME}
${XMP_SDK_ROOT}/public/libraries/${PLATFORM_FOLDER}/${XMP_BUILDMODE_DIR}/${XMPCORE_LIB}${LIB_EXT
}
${XMP_SDK_ROOT}/public/libraries/${PLATFORM_FOLDER}/${XMP_BUILDMODE_DIR}/${XMPFILES_LIB}${LIB_EX
T})

set(OUTPUT_DIR ${SAMPLE_SOURCE_ROOT}/../target/${PLATFORM_FOLDER}/${XMP_BUILDMODE_DIR})
set(EXECUTABLE_OUTPUT_PATH ${OUTPUT_DIR})

endif(APPLE)

else(UNIX) #For Windows
 target_link_libraries(${PROJECT_NAME}
${XMP_SDK_ROOT}/public/libraries/${PLATFORM_FOLDER}/${XMP_BUILDMODE_DIR}/${XMPCORE_LIB}${LIB_EXT
}
${XMP_SDK_ROOT}/public/libraries/${PLATFORM_FOLDER}/${XMP_BUILDMODE_DIR}/${XMPFILES_LIB}${LIB_EX
T})

set(OUTPUT_DIR ${SAMPLE_SOURCE_ROOT}/../target/${PLATFORM_FOLDER}/)
set(EXECUTABLE_OUTPUT_PATH ${OUTPUT_DIR})

endif(UNIX)

CHAPTER 4: Using the XMP Toolkit SDK Walkthrough 1: Opening files and reading XMP 66

==
Add the Framework required for Mac OS (Cocoa here)
==
ADD_FRAMEWORK(Cocoa ${PROJECT_NAME})

Using your new script

When you have modified the template to create a CMake script for your own project, add the new script to
the list in the master script, CMakeLists.txt, so that your project will automatically be generated when
you build the samples for your platform.

For example, if you place your new CMake script in this folder:

<xmpsdk>/samples/build/cmake/SampleTemplate

then this line in the master script, CMakeLists.txt, adds it to your script list:

${PROJECT_ROOT} ==>> <xmpsdk>/samples/build/cmake/
add_subdirectory(${PROJECT_ROOT}/SampleTemplate ${PROJECT_ROOT}/SampleTemplate/build${POSTFIX})

Creating the MyReadXMP application

The application your are about to create will accept a file path to a resource and open the file as read-only,
then read the XMP data from the file. Once the XMP packet is available, it will access several properties,
display the values in the console window, and also write the results to a file named XMPDump.txt. For
purposes of illustration, you can observe how these properties describe the resource files that accompany
these tutorials, located in the folder <xmpsdk>/samples/testfiles/.

The application reads properties from three different schemas, the XMP Basic schema, the Dublin Core
schema and the EXIF schema. The properties demonstrate a variety of property and value types:

The following steps provide the major outline of creating the application; they do not show all code used
in the application. For the full code listing see <xmpsdk>/samples/source/ReadingXMP.cpp.

1. Provide the string class with which to instantiate the template classes:

Schema Properties Description

XMP Basic CreatorTool A simple property which stores the name of the first known tool
used to create the resource.

MetadataDate A date-time value that represents the last time any metadata for the
resource was changed.

Dublin Core creator An ordered array that holds the authors of the resource.

title A language alternative that stores the name given to the resource.

subject An unordered array that stores phrases or keywords which specify
the content of the resource.

EXIF Flash A structure that describes the flash state when a photograph was
taken.

CHAPTER 4: Using the XMP Toolkit SDK Walkthrough 1: Opening files and reading XMP 67

#include <string>
#define TXMP_STRING_TYPE std::string

2. Include the XMPFiles component of the XMP Toolkit:

#define XMP_INCLUDE_XMPFILES 1

3. Ensure that the XMP class templates are instantiated:

#include "XMP.incl_cpp"

4. Provide access to the XMP API:

#include "XMP.hpp"

5. Include streaming support:

#include <iostream >
#include <fstream>
using namespace std;

6. Create a main method. Inside the main method, initialize both XMPCore and XMPFiles, using
conditional statements to verify initialization was successful:

if (!SXMPMeta::Initialize()) exit(1);
if (!SXMPFiles::Initialize()) exit(1);

7. Create the options to open the file for read-only access and request to use a format-specific handler:

XMP_OptionBits opts = kXMPFiles_OpenForRead | kXMPFiles_OpenUseSmartHandler;

8. The file to be read is provided as a parameter on the command line. Create an SXMPFiles instance and
open the file, providing the filename, the file format and the options.

Depending on the file type, there may be no appropriate handler available. In this case, you would
have to open the file using packet scanning, providing a different set of option bits:

std::string status = "";
SXMPFiles myfile;

// First, try to open the file
bool ok = myFile.OpenFile(filename, kXMP_UnknownFile, opts);
if(! ok){

status += "No smart handler available for " + filename + "\n";
status += "Trying packet scanning.\n";

// Now try using packet scanning
opts = kXMPFiles_OpenForUpdate | kXMPFiles_OpenUsePacketScanning;
ok = myFile.OpenFile(filename, kXMP_UnknownFile, opts);

}

9. Create the SXMPMeta instance and retrieve the XMP from the file. We are not concerned with the raw
packet or the packet information, so you can leave out those output parameters:

if(ok){
SXMPMeta meta;
myFile.GetXMP(&meta);

}

CHAPTER 4: Using the XMP Toolkit SDK Walkthrough 1: Opening files and reading XMP 68

10. Within the same logic block as the created SXMPMeta instance, add the code to display the simple
property "CreatorTool" by providing the namespace URI, the name of the property and a pointer to a
string in which to return the property value:

bool exists;
string simpleValue;
exists = meta.GetProperty(kXMP_NS_XMP, "CreatorTool", &simpleValue, NULL);
if(exists)

cout << "CreatorTool = " << simpleValue << endl;
else

simpleValue.clear();

This checks that the property exists, so that the variable has been assigned a valid value, before
attempting to write that value to the console.

11. Display the first element of the ‘creator’ array. Provide the namespace URI, the name of the array, the
array index (1 for the first element) and a string in which to return the value:

string elementValue;
exists = meta.GetArrayItem(kXMP_NS_DC, "creator", 1, &elementValue, NULL);
if(exists)

cout << "dc:creator = " << elementValue << endl;
else

elementValue.clear();

12. Traverse the ‘subject’ property (an array) and display all elements. Use the number of items in the array
to control the traversal:

string propValue;
int arrSize = meta.CountArrayItems(kXMP_NS_DC, "subject");
for(int i = 1;i <= arrSize;i++){

meta.GetArrayItem(kXMP_NS_DC, "subject", i, &propValue, NULL);
cout << "dc:subject[" << i << "] = " << propValue << endl;

}

13. Get a localized text item; display the ‘title’ property in English:

string itemValue;
meta.GetLocalizedText(kXMP_NS_DC, "title", "en", "en-US", NULL,

&itemValue, NULL);
cout << "dc:title in English = " << itemValue << endl;

14. Get a localized text item; display the ‘title’ property in French:

meta.GetLocalizedText(kXMP_NS_DC, "title", "fr", "fr-FR", NULL,
&itemValue, NULL);

cout << "dc:title in French = " << itemValue << endl;

15. Get a date property; read the ‘MetadataDate’ property if it exists. If so convert the XMP_DateTime into
a string and display it:

XMP_DateTime myDate;
if(meta.GetProperty_Date(kXMP_NS_XMP, "MetadataDate", &myDate, NULL)){

string myDateStr;
SXMPUtils::ConvertFromDate(myDate, &myDateStr);
cout << "meta:MetadataDate = " << myDateStr << endl;

}

CHAPTER 4: Using the XMP Toolkit SDK Walkthrough 1: Opening files and reading XMP 69

16. Discover if the EXIF Flash structure is available, if so display the flash status at the time the photograph
was taken:

bool exist;
string path, value;
exist = meta.DoesStructFieldExist(kXMP_NS_EXIF, "Flash", kXMP_NS_EXIF,"Fired");
if(exist){

bool flashFired;
SXMPUtils::ComposeStructFieldPath(kXMP_NS_EXIF, "Flash", kXMP_NS_EXIF,

"Fired", &path);
meta.GetProperty_Bool(kXMP_NS_EXIF, path.c_str(), &flashFired, NULL);
string flash = (flashFired) ? "True" : "False";
cout << "Flash Used = " << flash << endl;

}

17. Close the SXMPFiles instance:

myFile.CloseFile();

18. Outside of the logic block used to initialize XMPFiles, terminate both XMPCore and XMPFiles.

SXMPFiles::Terminate();
SXMPMeta::Terminate();

19. If you are going to run the application within your IDE, place a break point on the very last line of the
application. If you are going to run it from the command line, this is not necessary.

20. Compile and run the application. You should see output similar to this in the console window:

Adding a debugging callback

For easy viewing of the XMP within a file, you can add a callback function to support dumping of XMP
objects to a text file.

1. In MyReadingXMP.cpp, add a callback function just above the main function. The function must
conform to the signature for the typedef XMP_TextOutputProc. Name the function
DumpXMPToFile():

XMP_Status DumpXMPToFile(void *ref,XMP_StringPtr buff,XMP_StringLen buffSize)

2. Inside the function, cast the *ref to an ofstream and direct the buffer to the file. Use the buffSize
parameter to control how much data is written to the file:

ofstream * outFile = static_cast<ofstream*>(ref);
(*outFile).write (buff, buffSize);

CHAPTER 4: Using the XMP Toolkit SDK Walkthrough 1: Opening files and reading XMP 70

3. Ensure the callback returns a valid XMP_Status:

XMP_Status status = 0;
return status;

4. Within the main function add a call to DumpObject(). Add this just before the XMPFiles instance is
closed:

ofstream dumpFile;
dumpFile.open("XMPDump.txt", ios::out);
meta.DumpObject(DumpXMPToFile, &dumpFile);
dumpFile.close();
cout << endl << "XMP dumped to XMPDump.txt" << endl;

5. Compile and run the application.

6. Navigate to the appropriate target file of the compiled application and open the file XMPDump.txt,
which now contains a dump of the XMP data for the file provided as a parameter to the command.

CHAPTER 4: Using the XMP Toolkit SDK Walkthrough 2: Modifying XMP 71

Walkthrough 2: Modifying XMP
This tutorial demonstrates how to modify XMP properties from standard schemas. It shows you how to
construct an XMP object from an RDF stream, apply updates to the metadata values, and write the
modified XMP back to the resource. It also covers serializing XMP into a string containing an XMP packet in
RDF notation.

This walkthrough is based on the sample <xmpsdk>/samples/source/ModifyingXMP. Sample resource
files accompany these tutorials, located in the folder <xmpsdk>/samples/testfiles. See “Sample code
and tools” on page 11.

Creating the MyModifyXMP application

Follow the steps in “Setting up a project” on page 63 to set up a project for the console application that
will be used for this walkthrough. Name this project MyModifyingXMP and add a file named
MyModifyingXMP.cpp.

The application you are about to create will accept a file path to a resource, open the file for update, and
read the XMP data from the file.

You will modify or add several properties to that XMP using XMPCore functions. You will then create an
XMP object from an RDF stream and append its properties to the first XMP object. Finally you will serialize
the resulting XMP and write it to a file.

Many of the initial steps are essentially the same as those in the previous tutorial; use the directions in
“Creating the MyReadXMP application” on page 66.

1. Add the necessary headers and macros to use both components of the XMP Toolkit SDK. See steps 1 to
5 of “Creating the MyReadXMP application” on page 66.

2. Initialize both XMPCore and XMPFiles. See step 6 of “Creating the MyReadXMP application” on
page 66.

3. Create the options to open the file for update, using a format-specific handler:

XMP_OptionBits opts = kXMPFiles_OpenForUpdate | kXMPFiles_OpenUseSmartHandler;

4. Create an SXMPFiles instance and open the file providing the filename, the file format and the
options. See steps 7 to 9 of “Creating the MyReadXMP application” on page 66.

Modifying XMP properties

These steps provide the major outline of creating the application; they do not show all code used in the
application. For the full code listing see <xmpsdk>/samples/source/ModifyingXMP.cpp.

1. Add code that will write the current values for the properties used in this tutorial to the console
window. You can copy the utility function named displayPropertyValues(), provided in
<xmpsdk>/samples/source/ModifyingXMP.cpp. Place the copy in your source file just above the
main function.

2. In the main function, just after the call to GetXMP(), display the desired property values in the console
by calling displayPropertyValues():

displayPropertyValues(&meta);

CHAPTER 4: Using the XMP Toolkit SDK Walkthrough 2: Modifying XMP 72

3. Modify the ‘CreatorTool’ property. First check the property exists and then apply the edit.

if(meta.DoesPropertyExist(kXMP_NS_XMP, "CreatorTool")){
meta.SetProperty(kXMP_NS_XMP, "CreatorTool", "Updated By XMP SDK", NULL);

}

4. Set the ‘MetadataDate’ property to the current date and time:

XMP_DateTime updatedTime;
SXMPUtils::CurrentDateTime(&updatedTime);
if(meta.DoesPropertyExist(kXMP_NS_XMP, "MetadataDate")){

meta.SetProperty_Date(kXMP_NS_XMP, "MetadataDate", updatedTime, NULL);
}

5. Create a new ‘dc:creator’ property, an ordered array. Set the first item of the array to ‘Author Name’.
Note how you must supply the correct options flag to create an array of a particular type:

meta.AppendArrayItem(kXMP_NS_DC, "creator", kXMP_PropArrayIsOrdered,
"Author Name", NULL);

6. Add a new item to the new ‘creator’ array. Give the item a value of ‘Another Author Name’:

meta.AppendArrayItem(kXMP_NS_DC, "creator",
kXMP_PropArrayIsOrdered, "Another Author Name", NULL);

7. Update the ‘dc:title’ property. Set two items, one for English and one for French. This also creates the
x-default item:

meta.SetLocalizedText(kXMP_NS_DC, "title", "en", "en-US", "An English Title");
meta.SetLocalizedText(kXMP_NS_DC, "title", "fr", "fr-FR", "Un Titre Francais");

8. Add code to write the current values for the properties used in this tutorial to the console. See step 1.

9. Close the SXMPFiles instance and terminate XMPFiles and XMPCore, then see steps 17 and 18 of
“Creating the MyReadXMP application” on page 66.

10. If you are running the application in an IDE, place a break point on the very last line of the application.

11. Compile and run the application. The output in the console looks like the following. Note, however,
that no data has yet been written back to the file.

CHAPTER 4: Using the XMP Toolkit SDK Walkthrough 2: Modifying XMP 73

Using RDF to create XMP

Up to this point the application has been modifying properties by editing them directly. Next you will
create an XMP object from RDF and append the newly created object to the existing one.

To demonstrate creating an XMP object from multiple buffers you will create a string of RDF XML. The RDF
represents the ‘subject’ property from the Dublin Core schema. To simulate using multiple buffers, we pass
ten characters at a time to the XMP object using ParseFromBuffer().

1. Create a new function just above the main function, that takes no parameters and returns an
SXMPMeta instance. Name the function createXMPFromRDF(). You can copy the code from
<xmpsdk>/samples/source/ModifyingXMP.cpp.

2. Inside the body of the function create a string to hold the following RDF:

<rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'>
 <rdf:Description rdf:about='' xmlns:dc='http://purl.org/dc/elements/1.1/'>

<dc:subject>
<rdf:Bag>

<rdf:li>XMP</rdf:li>
<rdf:li>SDK</rdf:li>
<rdf:li>Sample</rdf:li>

</rdf:Bag>
</dc:subject>
<dc:format>image/jpeg</dc:format>

 </rdf:Description>
</rdf:RDF>

3. Create an empty XMP object.

4. Loop over the RDF string and pass ten characters at a time to the XMP object using
ParseFromBuffer(). This is demonstrates how to create an XMP object from multiple buffers. Note
the use of the option flag kXMP_ParseMoreBuffers:

SXMPMeta meta;
int i;
for(i = 0; i < (long)strlen(rdf) - 10; i += 10)
{

meta.ParseFromBuffer(&rdf[i], 10, kXMP_ParseMoreBuffers);
}

5. Terminate the input to the XMP object by supplying the final piece of RDF. For this final buffer, allow
the options flag to default to 0:

meta.ParseFromBuffer(&rdf[i], strlen(rdf) - i);

6. Return the XMP object from the function.

7. Create a new XMP object by calling the createXMPFromRDF() in the main function, just before the call
to close the SXMPFiles instance:

SXMPMeta rdfMeta = createXMPFromRDF();

8. Append the properties of the XMP object created with the RDF to the XMP object retrieved from the
file. This adds the subject property from the Dublin Core schema:

SXMPUtils::ApplyTemplate(&meta, rdfMeta, (kXMPTemplate_IncludeInternalProperties
| kXMPTemplate_AddNewProperties | kXMPTemplate_ReplaceExistingProperties));

CHAPTER 4: Using the XMP Toolkit SDK Walkthrough 2: Modifying XMP 74

9. Add code to write the current values for the properties used in this tutorial to the console. See step 1
from “Modifying XMP properties” on page 71.

10. Place a break point on the last line of the application.

11. Compile and run the application. The output in the console window looks like the following:

Serializing the updated XMP

After all updates have been made to the XMP, we can serialize it to view the changes. These steps walk you
through serializing the modified XMP first in standard format and again using a compact RDF format.

1. Create a new function just above the main function, that accepts two arguments, and returns nothing.
The first argument is a string pointer that will point to the RDF produced by the serialization. The
second argument is a string, the path to a file to which to write the RDF. Name the function
writeRDFToFile(). The function signature is:

void writeRDFToFile(string * rdf, string filename)

2. Inside the function add code to open a file and write the RDF to it:

ofstream outFile;
outFile.open(filename.c_str(), ios::out);
outFile << *rdf;
outFile.close();

3. Serialize the XMP object, specifying the default values for space and indentation and setting no option
flags. Add this code inside the main function, just before the call to close the SXMPFiles instance:

string xmpBuffer;
meta.SerializeToBuffer(&xmpBuffer, NULL, NULL, "", "", NULL);

CHAPTER 4: Using the XMP Toolkit SDK Walkthrough 3: Working with a custom schema 75

4. Write the data to a file using your utility function writeRDFToFile():

writeRDFToFile(&xmpBuffer, filename+"_XMP_RDF.txt");

5. Serialize the XMP object again, this time with options to omit the XMP packet wrapper and serialize
the RDF in canonical format. This call omits the newline, indent, and baseIndent parameters, allowing
them to default. Write the data to a different file:

XMP_OptionBits outOpts = kXMP_OmitPacketWrapper | kXMP_UseCanonicalFormat;
meta.SerializeToBuffer(&xmpBuffer, outOpts);
writeRDFToFile(&xmpBuffer, filename+"_XMP_RDF_Canonical.txt");

6. Both output files can be found in the same folder as the test file. Open each file and review the
contents. Note that the XMP properties are exactly same, although the RDF is different.

Writing the updated XMP back to the file

To this point, all of the changes have been made in the XMP object; no properties have been written back
to the resource file. These steps show how to update the SXMPFiles instance so that the modifications are
written back to the file upon close.

1. Associate the modified XMP with the SXMPFiles instance. Place this just before the call to close the
SXMPFiles instance:

if(myFile.CanPutXMP(meta)){
myFile.PutXMP(meta);

}

2. Compile and run the application. The call to CloseFile() actually writes out the modified XMP back
to the resource file.

Walkthrough 3: Working with a custom schema
This tutorial demonstrates how to work with a custom schema that has complex properties. It shows how
to access and modify properties with complex paths using the path composition utilities from the XMP
API.

This walkthrough is based on the sample <xmpsdk>/samples/source/CustomSchema. Sample resource
files accompany these tutorials in the folder <xmpsdk>/samples/testfiles. See “Sample code and tools”
on page 11.

In the course of this walkthrough, you will add custom properties to an XMP object, with complex
structures and values, demonstrating how to access nested structs, arrays, and language alternatives. You
will then use that object to write the metadata to a file.

A schema is provided for the walkthrough and is used to demonstrate how to register you own schema
and add complex properties. This schema is purely illustrative, and not intended for actual use. It contains
some properties that are available in other schemas, but is not intended to replace those. The sample
schema is designed to track document changes; it provides properties to record the authors of a
document, along with contact details for each author, and the document changes each author has made.

CHAPTER 4: Using the XMP Toolkit SDK Walkthrough 3: Working with a custom schema 76

Creating the MyCustomSchema application

Follow the steps in “Setting up a project” on page 63 to set up a project for the console application that
will be used for this walkthrough. Name this project MyCustomSchema and add a file named
MyCustomSchema.cpp.

Many of the initial steps are essentially the same as those in the first tutorial; use the directions in “Creating
the MyReadXMP application” on page 66.

1. Add the necessary headers and macros. You do not need to include XMPFiles. See steps 1 to 5 of
“Creating the MyReadXMP application” on page 66.

2. Initialize the XMPCore component; see step 6 of “Creating the MyReadXMP application” on page 66.
You do not need to initialize XMPFiles.

Creating a custom schema

These steps provide the major outline of creating the application; they do not show all code used in the
application. For the full code listing see <xmpsdk>/samples/source/CustomSchema.cpp.

1. Register the namespaces and the prefixes that will be used for the schema:

const XMP_StringPtr kXMP_NS_SDK_EDIT = "http://ns.adobe/xmp/sdk/Edit/";
const XMP_StringPtr kXMP_NS_SDK_USERS = "http://ns.adobe/xmp/sdk/User/";
// ...
string actualPrefix;
SXMPMeta::RegisterNamespace(kXMP_NS_SDK_EDIT, "xsdkEdit", &actualPrefix);
SXMPMeta::RegisterNamespace(kXMP_NS_SDK_USERS, "xsdkUser",&actualPrefix);

Creating complex properties

1. Create an XMP object and create the DocumentUsers property as an unordered array, using the
correct option bits for the array items. The array will store structures, so use
kXMP_PropValueIsStruct:

SXMPMeta meta;
meta.AppendArrayItem(kXMP_NS_SDK_EDIT, "DocumentUsers", kXMP_PropValueIsArray,

NULL, kXMP_PropValueIsStruct);

2. Compose the path to the last item, a UserDetails structure, in the DocumentUsers array:

string userItemPath;
SXMPUtils::ComposeArrayItemPath(kXMP_NS_SDK_EDIT, "DocumentUsers",

kXMP_ArrayLastItem, &userItemPath);

3. We need to add fields and their values to the UserDetails structure. First, set the User field for the
UserDetails structure, using the path that was composed in the previous step:

meta.SetStructField(kXMP_NS_SDK_EDIT, userItemPath.c_str(),
kXMP_NS_SDK_USERS, "User", "John Smith");

CHAPTER 4: Using the XMP Toolkit SDK Walkthrough 3: Working with a custom schema 77

4. Add a qualifier to the new User field. Create a path to the field, then use this path to set the qualifier
value:

string userFieldPath;
SXMPUtils::ComposeStructFieldPath(kXMP_NS_SDK_EDIT, userItemPath.c_str(),

kXMP_NS_SDK_USERS, "User", &userFieldPath);
meta.SetQualifier(kXMP_NS_SDK_EDIT, userFieldPath.c_str(),

kXMP_NS_SDK_USERS, "Role", "Dev Engineer");

5. To set the DUID field, compose a path to the field and set the binary value using SetProperty_Int():

string duidPath;
SXMPUtils::ComposeStructFieldPath(kXMP_NS_SDK_EDIT, userItemPath.c_str(),

kXMP_NS_SDK_USERS, "DUID", &duidPath);
meta.SetProperty_Int(kXMP_NS_SDK_EDIT, duidPath.c_str(), 2);

6. Add the ContactDetails field, which is itself a struct of type Contact. The options bit
kXMP_PropValueIsStruct makes the new property a struct:

meta.SetStructField(kXMP_NS_SDK_EDIT, userItemPath.c_str(), kXMP_NS_SDK_USERS,
"ContactDetails", NULL, kXMP_PropValueIsStruct);

7. Compose a path to the new structure:

string contactStructPath;
SXMPUtils::ComposeStructFieldPath(kXMP_NS_SDK_EDIT, userItemPath.c_str(),

kXMP_NS_SDK_USERS, "ContactDetails", &contactStructPath);

8. Use the composed path to the ContactDetails field to add the three fields to the structure; Email,
Telephone, and BaseLocation. In each case, we must provide the correct options bit to describe the
property:

meta.SetStructField(kXMP_NS_SDK_EDIT, contactStructPath.c_str(),
kXMP_NS_SDK_USERS, "Email", NULL, kXMP_PropArrayIsAlternate);

meta.SetStructField(kXMP_NS_SDK_EDIT, contactStructPath.c_str(),
kXMP_NS_SDK_USERS, "Telephone", NULL, kXMP_PropValueIsArray);

meta.SetStructField(kXMP_NS_SDK_EDIT, contactStructPath.c_str(),
kXMP_NS_SDK_USERS, "BaseLocation", "", NULL);

9. Compose a path to the Email field using the previously composed path to the ContactDetails field,
and add two items to the array:

string path;

SXMPUtils::ComposeStructFieldPath(kXMP_NS_SDK_EDIT,
contactStructPath.c_str(), kXMP_NS_SDK_USERS, "Email", &path);

meta.AppendArrayItem(kXMP_NS_SDK_EDIT, path.c_str(), NULL, "js@adobe.xmp.com");
meta.AppendArrayItem(kXMP_NS_SDK_EDIT, path.c_str(), NULL, "js@adobe.home.com");

10. Do the same for the Telephone field:

SXMPUtils::ComposeStructFieldPath(kXMP_NS_SDK_EDIT,
contactStructPath.c_str(), kXMP_NS_SDK_USERS, "Telephone", &path);

meta.AppendArrayItem(kXMP_NS_SDK_EDIT, path.c_str(), NULL, "89112");
meta.AppendArrayItem(kXMP_NS_SDK_EDIT, path.c_str(), NULL, "84432");

CHAPTER 4: Using the XMP Toolkit SDK Walkthrough 3: Working with a custom schema 78

11. Add the BaseLocation field value:

SXMPUtils::ComposeStructFieldPath(kXMP_NS_SDK_EDIT,
contactStructPath.c_str(), kXMP_NS_SDK_USERS, "BaseLocation", &path);

meta.SetProperty(kXMP_NS_SDK_EDIT, path.c_str(), "London");

You have now completed adding the DocumentUsers property to the XMP object, with values for one user.
Here is the debugging dump of this object:

xsdkEdit: http://ns.adobe/xmp/sdk/Edit/ (0x80000000 : schema)
xsdkEdit:DocumentUsers (0x200 : isArray)

[1] (0x100 : isStruct)
xsdkUser:User = "John Smith" (0x10 : hasQual)

? xsdkUser:Role = "Dev Engineer" (0x20 : isQual)
xsdkUser:DUID = "2"
xsdkUser:ContactDetails (0x100 : isStruct)

xsdkUser:Email (0xE00 : isAlt isOrdered isArray)
[1] = "js@adobe.xmp.com"
[2] = "js@adobe.home.com"

xsdkUser:Telephone (0x200 : isArray)
[1] = "89112"
[2] = "84432"

xsdkUser:BaseLocation = "London"

Adding more properties

We will now add the second set of properties from the custom schema, to represent editing actions in the
described document and note what actions have taken place. For this sample we add data that shows
when the document was created.

1. Create a new property for the DocumentEdit ordered array, an array that will hold EditDetail
structures:

meta.AppendArrayItem(kXMP_NS_SDK_EDIT, "DocumentEdit",
kXMP_PropArrayIsOrdered, NULL, kXMP_PropValueIsStruct);

2. Compose the path to the last item of the new array. Because we have not created any values yet, this
points to an EditDetails structure at the first index of the array:

string lastItemPath;
SXMPUtils::ComposeArrayItemPath(kXMP_NS_SDK_EDIT, "DocumentEdit",

kXMP_ArrayLastItem, &lastItemPath);

3. Use the composed path to add the EditDate field, and set the date with the current time:

SXMPUtils::ComposeStructFieldPath(kXMP_NS_SDK_EDIT, lastItemPath.c_str(),
kXMP_NS_SDK_EDIT, "EditDate", &path);

XMP_DateTime dt;
SXMPUtils::CurrentDateTime(&dt);
meta.SetProperty_Date(kXMP_NS_SDK_EDIT, path.c_str(), dt);

CHAPTER 4: Using the XMP Toolkit SDK Walkthrough 3: Working with a custom schema 79

4. Add the EditComments field to store an alt-text array for any localized versions of the
document-update comments. Compose a path to the field and use SetLocalizedText() to set the
value:

SXMPUtils::ComposeStructFieldPath(kXMP_NS_SDK_EDIT, lastItemPath.c_str(),
kXMP_NS_SDK_EDIT, "EditComments", &path);

meta.SetLocalizedText(kXMP_NS_SDK_EDIT, path.c_str(),
"en", "en-US", "Document created.");

5. Add the EditTool field:

meta.SetStructField(kXMP_NS_SDK_EDIT, lastItemPath.c_str(), kXMP_NS_SDK_EDIT,
"EditTool", "FrameXML");

Examining the new schema

To examine the schema we have built, we will dump the XMP object to a file.

1. Add code to serialize the XMP to RDF. See “Serializing the updated XMP” on page 74.

2. Add code to dump the XMP object to a file; to this, you add a callback function to dump the registered
namespaces to a file. See “Adding a debugging callback” on page 69.

3. Compile and run the application.

4. Review the output from the application. Notice that the namespaces for the custom schema have
been registered. Here is an extract of the namespace dump with both the custom schema namespaces
and the prefix used:

xmpT: => http://ns.adobe.com/xap/1.0/t/
xmpTPg: => http://ns.adobe.com/xap/1.0/t/pg/
xml: => http://www.w3.org/XML/1998/namespace
xmpDM: => http://ns.adobe.com/xmp/1.0/DynamicMedia/
xmpNote: => http://ns.adobe.com/xmp/note/
xmpidq: => http://ns.adobe.com/xmp/Identifier/qual/1.0/
xsdkEdit: => http://ns.adobe/xmp/sdk/Edit/
xsdkUser: => http://ns.adobe/xmp/sdk/User/

5. Examine the serialized RDF and dumped XMP and note how the properties are organized.

 80

A XMP Toolkit Build Reference

These tables map the build targets to the generated XMP Toolkit libraries for the supported platforms and
architectures. To build for each platform, use the correct batch file, shell script, or makefile:

For Windows

 Run the batch file <xmpsdk>\build\GenerateXMPToolkitSDK_win.bat

For Mac OS X or iOS

 Run the shell script <xmpsdk>/build/GenerateXMPToolkitSDK_mac.sh

Target OS Target Library
 Names

 Generated Project Location and Name
 under <xmpsdk>\build\vc11\

 Build Target Location under
 <xmpsdk>\public\libraries\

 Windows x86
 static

XMPCoreStatic.lib
XMPFilesStatic.lib

static\windows\XMPToolkit.sln windows\[Debug|Release]\

 Windows x86
 dynamic

XMPCore.dll
XMPFiles.dll

dynamic\windows\XMPToolkit.sln windows\[Debug|Release]\

 Windows x64
 static

XMPCoreStatic.lib
XMPFilesStatic.lib

static\windows_x64\XMPToolkit.sln windows_x64\[Debug|Release]\

 Windows x64
 dynamic

XMPCore.dll
XMPFiles.dll

dynamic\windows_x64\XMPToolkit.sln windows_x64\[Debug|Release]\

Target OS Target Library
 Names

 Generated Project Location and
 Name under <xmpsdk>/build/xcode/

 Build Target Location under
 <xmpsdk>/public/libraries/

 Mac OS X
 x86_64
 static

libXMPCoreStatic.a
libXMPFilesStatic.a

static/intel_64/
 XMPToolkitSDK.xcodeproj

macintosh/intel_64/[Debug|Release]/

 Mac OS X
 x86_64
 dynamic

XMPCore.framework
XMPFiles.framework

dynamic/intel_64/
 XMPToolkitSDK.xcodeproj

macintosh/intel_64/[Debug|Release]/

 iOS i386
 static
simulator
32 bit

libXMPCoreStatic.a
libXMPFilesStatic.a

static/ios/
 XMPToolkitSDK.xcodeproj

ios/i386/[Debug|Release]/

CHAPTER A: XMP Toolkit Build Reference 81

For Unix/Linux

 Execute the gcc makefile.

 iOS
x86_64
static:
simulator
64 bit

libXMPCoreStatic.a
libXMPFilesStatic.a

static/ios/
 XMPToolkitSDK.xcodeproj

ios/x86_64/[Debug|Release]/

 iOS armv7
arm64
static: fat
binaries
for device

libXMPCoreStatic.a
libXMPFilesStatic.a

static/ios/
 XMPToolkitSDK.xcodeproj

ios/armv7 arm64/[Debug|Release]/

Target OS Target Library
 Names

 Generated Project Location and
 Name under <xmpsdk>/build/xcode/

 Build Target Location under
 <xmpsdk>/public/libraries/

Target OS Target Library
 Names

 Generated Project Location and
 Name under <xmpsdk>/build/gcc/

 Build Target Location under
 <xmpsdk>/public/libraries/

 Linux x86
 static

staticXMPCore.ar
staticXMPFiles.ar

static/i80386linux/
 [Debug|Release]/Makefile

i80386linux/[debug|release]/

 Linux x86
 dynamic

XMPCore.so
XMPFiles.so

dynamic/i80386linux/
 [Debug|Release]/Makefile

i80386linux/[debug|release]/

 Linux x86_64
 static

staticXMPCore.ar
staticXMPFiles.ar

static/i80386linux_x64/
 [Debug|Release]/Makefile

i80386linux_x64/[debug|release]/

 Linux x86_64
 dynamic

XMPCore.so
XMPFiles.so

dynamic/i80386linux_x64/
 [Debug|Release]/Makefile

i80386linux_x64/[debug|release]/

	XMP Toolkit SDK
	Preface
	About this document
	How this document is organized
	New features and changes in this release
	Conventions used in this document

	XMP Toolkit SDK Overview
	The XMP Data Model
	About the XMP Toolkit SDK
	SDK components
	Dependencies

	The XMP libraries
	Template classes and accessing the API
	Multi-threading in the API
	Error handling
	Progress notifications
	Sample code and tools

	The XMPCore Component
	Reading XMP properties
	Basic property types
	Simple properties
	Arrays and structures

	Special value handling
	Property qualifiers and language alternatives
	Dates and times

	Examining XMP objects

	Modifying XMP data in the XMP object
	Creating and modifying simple properties
	Parameters and return values

	Creating and modifying arrays
	Modifying and creating complex properties
	Composing paths to complex properties
	Modifying qualifiers in complex properties

	Modifying language alternatives
	Deleting language alternatives
	Accessing language alternatives in complex properties

	Modifying dates and times
	Using local time values

	Working with schemas
	Creating custom schemas
	Registering namespaces
	Extending schemas

	Iterating over metadata
	Creating iterators
	Visiting nodes
	Skipping nodes

	API summary: the XMPCore component
	SXMPMeta class
	Creating metadata objects
	Copying metadata

	Preparing metadata for I/O
	Serializing for output
	Parsing serialized data into an XMP object

	Working with namespaces
	Working with properties
	Setting property values and creating properties
	Setting localized text
	Retrieving property values
	Deleting and detecting properties

	Handling error notifications
	Toolkit configuration
	Initialization and termination

	SXMPIterator class
	Creating iterator objects
	Performing iterations

	SXMPUtils class
	Path composition functions
	Type conversion functions

	The XMPFiles Component
	Using XMPFiles for metadata I/O
	Initializing and terminating XMPFiles
	Accessing metadata in files
	File formats and open options
	Querying the file handler
	Open options

	Updating and writing file XMP
	Using client-managed I/O

	API summary: SXMPFiles class
	File handler configuration
	Creating file objects
	Performing file operations
	Accessing metadata in files
	Handling notifications

	Using the XMP Toolkit SDK
	Getting started
	Before you begin
	Installing the Expat XML Parser
	Installing ZLib
	Installing CMake

	Building the XMP libraries
	Building the Toolkit in Windows with Visual Studio 2015
	Building the Toolkit in Mac OS
	Building the Toolkit in Linux

	Obtaining and creating XMP data
	Parsing XMP
	Combining XMP objects
	Serializing XMP

	Walkthrough 1: Opening files and reading XMP
	Setting up a project
	Creating a CMake script for a new project
	Create your script from a template
	Using your new script

	Creating the MyReadXMP application
	Adding a debugging callback

	Walkthrough 2: Modifying XMP
	Creating the MyModifyXMP application
	Modifying XMP properties
	Using RDF to create XMP
	Serializing the updated XMP
	Writing the updated XMP back to the file

	Walkthrough 3: Working with a custom schema
	Creating the MyCustomSchema application
	Creating a custom schema
	Creating complex properties
	Adding more properties

	Examining the new schema

	XMP Toolkit Build Reference

